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Figure 18.9 Five independent sequences of a Metropolis algorithm, with overdispersed start-
ing points indicated by solid squares. (a) After 50 iterations, the sequences are still far from
convergence. (b) After 1000 iterations, with the sequences nearer to convergence. (c¢) The
iterates from the second halves of the sequences, jittered so that steps in which the random
walks stood still are not hidden.

mean sd 2.5% 25% 50%  75% 97.5% Rhat n.eff

a 166.3 0.6 154.1 154.9 155.3 15656.7 156.3 1.0 53
b 4.8 0.2 4.5 4.7 4.8 4.9 5.1 1.0 150
sigma 26.5 0.5 25.7 26.2 26.5 26.9 27.6 1.0 69
z[3] 216.9 13.0 200.7 206.1 215.4 223.7 247.7 1.0 87
z[6] 210.9 9.3 200.3 203.5 208.9 214.9 234.1 1.0 150
z[11] 208.5 7.1 200.3 203.4 206.6 211.7 226.2 1.0 150

which is essentially identical to the results from the Bugs run (as it should be, given
that we are fitting the same model).

Section 25.6 briefly describes a more realistic and complicated example of cen-
soring that arises in a study of reversals of the death penalty, in which cases are
censored that are still under consideration by appellate courts.

18.6 Metropolis algorithm for more general Bayesian computation

Moving to even more general models, the Gibbs sampler is a special case of a larger
class of Markov chain simulation algorithms that can be used to iteratively estimate
parameters in any statistical model. Markov chain simulation in general (and the
Gibbs sampler in particular) can be thought of as iterative imputation of unknown
parameters, or as a random walk through parameter space.

The Gibbs sampler updates the parameters one at a time (or in batches) us-
ing their conditional distributions. It can also be efficient to use the Metropolis
algorithm, which takes a random walk through the space of parameters.

The Gibbs sampler and Metropolis algorithms are special cases of Markov chain
simulation (also called Markov chain Monte Carlo, or MCMC), a general method
based on drawing values of 8 from approximate distributions and then correcting
those draws to better approximate the target posterior distribution, p(f|y). The
samples are drawn sequentially, with the distribution of the sampled draws depend-
ing on the last value drawn; hence, the draws form a Markov chain. (As defined in
probability theory, a Markov chain is a sequence of random variables (1), ()
for which, for any ¢, the distribution of #*) given all previous #’s depends only on
the most recent value, G(t’l).) The key to the method’s success, however, is not
the Markov property but rather that the approximate distributions are improved
at each step in the simulation, in the sense of converging to the target distribution.

Figure 18.9 illustrates a simple example of a Markov chain simulation—in this



