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Abstract

We propose Pathfinder, a variational method for approximately sampling from differentiable prob-
ability densities. Starting from a random initialization, Pathfinder locates normal approximations
to the target density along a quasi-Newton optimization path, with local covariance estimated us-
ing the inverse Hessian estimates produced by the optimizer. Pathfinder returns draws from the
approximation with the lowest estimated Kullback-Leibler (KL) divergence to the target distribution.

We evaluate Pathfinder on a wide range of posterior distributions, demonstrating that its approx-
imate draws are better than those from automatic differentiation variational inference (ADVI) and
comparable to those produced by short chains of dynamic Hamiltonian Monte Carlo (HMC), as
measured by 1-Wasserstein distance. Compared to ADVI and short dynamic HMC runs, Pathfinder
requires one to two orders of magnitude fewer log density and gradient evaluations, with greater
reductions for more challenging posteriors. Importance resampling over multiple runs of Pathfinder
improves the diversity of approximate draws, reducing 1-Wasserstein distance further and providing
a measure of robustness to optimization failures on plateaus, saddle points, or in minor modes.
The Monte Carlo KL divergence estimates are embarrassingly parallelizable in the core Pathfinder
algorithm, as are multiple runs in the resampling version, further increasing Pathfinder’s speed
advantage with multiple cores.
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1. Introduction

Obtaining efficient, scalable, and robust posterior inference remains the primary challenge in ad-
vanced Bayesian computation. The difficulty of this challenge has led researchers to develop a
wide range of posterior approximation algorithms. One of the most popular classes of approximate
methods is variational inference (VI), which searches for a tractable approximate distribution that
minimizes Kullback-Leibler (KL) divergence to the posterior. Although VI is typically faster than
Monte Carlo sampling (Blei et al., 2017), popular approaches such as black-box variational inference
(Ranganath et al., 2014) and automatic differentiation variational inference (Kucukelbir et al., 2017)
can fail to converge due to the high variance of nested gradient estimates (Dhaka et al., 2021).

In this paper, we develop Pathfinder, an algorithm that locates approximations to the target
density along a quasi-Newton optimization path. Starting from a random initialization in the tail
of the posterior distribution, the quasi-Newton optimization trajectory can quickly move from
the tail, through the body of the distribution, to a mode or pole. By evaluating the ELBO in
parallel for the normal approximations along the optimization path generated by L-BFGS, a popular
quasi-Newton method, Pathfinder can quickly find a region of high probability mass from which
to draw approximate samples. Novel contributions of this paper include (1) new VI algorithms
that use curvature information of the target distribution collected by optimization trajectories to
propose approximate distributions; (2) an efficient sampling algorithm for the normal approximations
estimated from quasi-Newton inverse Hessian approximations; (3) the design of Pathfinder, which
allows evaluating the evidence lower bound (ELBO) in parallel for each normal approximation.
Hence, Pathfinder can be greatly accelerated by parallel computing, which is not possible with
existing VI algorithms that directly minimize KL divergence, all of which are sequential.

Figure 1 illustrates the evolution of approximate posteriors along the optimization path for a
density with a single mode. In cases with posterior modes, Pathfinder provides a Laplace-like
approximation of the posterior density using the quasi-Newton optimizer’s efficient inverse Hessian
estimate for covariance. Figure 2 shows how Pathfinder behaves for unbounded target densities like
the funnel, where it balances the competing goals of high entropy and containment within the target
density to stop before heading off to a pole. In both cases, the use of approximate inverse Hessian
information allows the quasi-Newton optimizer to move quickly and stably into and through the high
probability region of the posterior.

Multimodal distributions can be approximated by running several instances of Pathfinder in
parallel from different initialization points, followed by filtering with importance resampling. In
Section 2.2, we describe this multi-path version of Pathfinder. We adapt importance sampling using
Pareto smoothed importance weights (Yao et al., 2018; Vehtari et al., 2019) to importance resampling
to obtain more stable approximate draws.

We evaluate the performance of Pathfinder experimentally in Section 3. We compare Pathfinder
to automatic differentiation variational inference (ADVI), a state-of-the-art variational inference
algorithm (Kucukelbir et al., 2017).1 We also compare to the approximate draws generated by
running many short MCMC chains with dynamic Hamiltonian Monte Carlo in the form of the
no-U-turn sampler (Hoffman and Gelman, 2014) as refined by Betancourt (2017).2 The short MCMC

1. We also evaluated a robust version of ADVI from Dhaka et al. (2020), which provided similar results in its mean-field
form, but the implementation failed to converge in its dense form.

2. We use Stan’s implementation of ADVI and dynamic HMC (Stan Development Team, 2021a).
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Figure 1: A series of normal approximations (black ellipse for 95% central region) along a quasi-
Newton optimization path (black polyline) for the posterior of a logistic regression model (green to
blue contours), whose high probability mass region is indicated by the yellow to orange contours. As
the optimization path reaches the mode, the central 95% region of the normal approximation closely
matches the high probability mass region of the target density.

chains can be viewed as the first stage of warmup for MCMC sampling or as a variational inference
algorithm in its own right, following Hoffman and Ma (2020).

We evaluate approximations to the target density based on the discrete form of 1-Wasserstein
distance, with the target density defined by long runs of dynamic HMC thinned to roughly independent
draws. Wasserstein distance measures how much one distribution would need to be distorted to
match the other. Unlike the asymmetric KL divergence measure, Wasserstein distance is a proper
distance metric obeying symmetry and the triangle inequality.

Over a diverse set of 20 models from the posteriordb evaluation set (Magnusson et al.,
2021), we found Pathfinder’s approximations ranged from slightly worse to much better than those of
ADVI using diagonal covariance (mean field), ADVI with dense covariance (full rank), and dynamic
HMC using short chains (75 iterations). Pathfinder required one to two orders of magnitude fewer
log density and gradient evaluations than these systems without parallelization. We further explore
Pathfinder’s features and limitations based on case studies of high-dimensional models in Section 3.

Although we frame Pathfinder as a form of variational inference, its development was motivated
by the question of how to efficiently generate a handful of approximate draws with which to initialize
asymptotically exact Markov chain Monte Carlo (MCMC) methods such as dynamic HMC. The
best initialization for MCMC is a draw from the posterior, as that leads to a stationary Markov chain.
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Figure 2:A series of normal approximations (black ellipse for 95% central region) along a quasi-
Newton optimization path (black polyline) for a funnel-like posterior density with no mode (green to
blue contours), whose high probability mass region is indicated by the yellow to orange contours. The
normal approximations with the highest ELBO value (lower left) occurs at a point on the optimization
trajectory before it heads off toward the pole at negative in�nity on the vertical axis. The ELBO
values rise and fall along the optimization path.

Initializing MCMC with an approximate draw from the posterior allows us to skip this �rst stage of
MCMC adaptation (sometimes called “burn-in”). In Section 4, we demonstrate the bene�ts of using
Path�nder to initialize MCMC through an analysis of a Gaussian process model.

2. Path�nder

This section describes the Path�nder algorithm for generating approximate draws from a differentiable
target density known only up to a normalizing constant. We follow the presentation of the basic
Path�nder algorithm in Section 2.1 with a multi-path version in Section 2.2, which runs multiple
optimization paths and uses importance resampling to select draws. Resampling from multiple normal
approximations better matches non-normal target densities and also mitigates the problem of L-BFGS
getting stuck at local optima or in saddle points on plateaus. To discriminate the Path�nder algorithms
in Section 2.1 and Section 2.2, we refer to the former one as single-path Path�nder and the latter one
as multi-path Path�nder. The remaining sections provide details of the algorithms used in the inner
loop of Path�nder. Section 2.3 provides relevant details of L-BFGS optimization, Sections 2.4 and
2.5 present the algorithm for evaluating and sampling from the normal approximations in Path�nder,
Section 2.6 explains the Monte Carlo evaluations of the evidence lower bound, and Section 2.7
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describes the importance resampling algorithm implemented in the multi-path Path�nder algorithm.
We review connections to related methods in Section 2.8.

2.1 Path�nder algorithm

The Path�nder algorithm begins by drawing from an initialization distributionc0, from which
it follows a quasi-Newton optimization trajectory. We use L-BFGS to generate an optimization
trajectory\ ¹0:! º = ¹\ ¹0º– • • • – \¹ ! ºº towards a local maximum (or pole) of the log densitylog ?¹\ º,
where\ ¹0º denotes the initial point and the superscript indicates the iteration. In applications to
Bayesian posterior sampling, the target density?¹\ º is the posterior?¹\ j Hº, where\ 2 R#

represents the# -dimensional parameter vector andHdenotes the observations. The exact posterior
is often intractable, and practitioners have to resort to iterative algorithms like MCMC and VI
to obtain posterior samples or inferences based on a log probability function, which is the log
density of the posterior up to an additive constant. For the ease of explanation, we uselog ?¹\ º
to refer to the tractable log probability function. Based on the exploration of the optimization
trajectory, Path�nder generates local normal approximations of the target density using the gradient
and curvature information collected along the optimization trajectory. To obtain the approximations,
we develop a functionU-RECOVER that uses the optimization trajectory and the gradient along
the optimization pathr log ?¹\ ¹0:! ºº to compute a diagonal estimate of the covariance matrix
of the approximation for each iteration. TheU-RECOVER routine returns the diagonal elements
of the covariance estimation for all iterationsU¹1:! º, and provides indicatorsb¹1:! º of whether a
pair of the updates of the position and gradient along the optimization path should be used in
further covariance estimation or not. It also returns the updates of locationsB¹1:! º and gradients
of the negative log joint densityI ¹1:! º along the optimization path, whereB¹;º = \ ¹;º � \ ¹;� 1º

and I ¹;º = r log ?¹\ ¹;� 1ºº � r log ?¹\ ¹;ºº. We describe the algorithmU-RECOVER and provide
pseudocode in Section 2.4. Then for each iteration, we generate a local approximation based on the
second-order Taylor series expansion and the quasi-Newton inverse Hessian estimate of covariance.
We further develop an evaluation algorithm that generates samples and estimates the evidence
lower bound (ELBO) in parallel for all local approximations. In particular, we propose an ef�cient
sampling algorithmBFGS-SAMPLE in Section 2.5, which returns samplesq¹;–1: º and their
log-densities under the approximationlog@¹q¹;–1: ºº for the local approximation at iteration;. Here
we use double superscripts to distinguish samples from different approximations, the �rst superscript
indexes the approximation and the second superscript indexes the draws. We calculate a Monte
Carlo estimate of the ELBO_¹;º for approximation; with Algorithm 6 in Appendix F.The last step
in Path�nder selects the approximation that maximizes the evidence lower bound (equivalently,
minimizes Kullback-Leibler divergence to the target density), and then generates" draws from
the best normal approximation. Algorithm 1 presents pseudocode for Path�nder. We later show
in Section 3 that Path�nder is not particularly sensitive to its tuning parameters, which include an
initial distribution, maximum number of L-BFGS iterations (! max), L-BFGS convergence tolerance
(grel), size of the history used to approximate the inverse Hessian (� ), and the number of Monte Carlo
draws used to evaluate the ELBO ( ).

The computational cost of single-path Path�nder is dominated by the (1) L-BFGS optimization,
(2) sampling from the approximate normal distributions, and (3) evaluating the evidence lower
bounds. The cost of L-BFGS optimization is dominated by log density and gradient evaluations, the
number of which will be determined by the tuning parameters of L-BFGS, includinggrel, ! max, and
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Algorithm 1 Single-path Path�nder
Input:

log ?: differentiable log density function of dimension#
c0: initial distribution
! max: maximum number of L-BFGS iterations
grel: relative tolerance for convergence of L-BFGS
� : size of the history used to approximate the inverse Hessian
 : number of Monte Carlo draws to evaluate ELBO
" : number of approximate posterior draws to return

Output:
k ¹1º– • • • – k¹ " º: draws from ELBO-maximizing normal approximation
log@¹k ¹1ºº– • • • –log@¹k ¹ " ºº: log density of draws in ELBO-maximizing normal approxi-

mation
1: procedure PATHFINDER(log ?– c0– !– grel– �–  – " )
2: sample\ ¹0º � c0

3: let
�
\ ¹0:! º–r log ?¹\ ¹0:! ºº

�
= L-BFGS

�
log ?– \¹0º– �– grel– !max�

4: let ¹U¹1:! º– b¹1:! º– B¹1:! º– I¹1:! ºº = U-RECOVER
�
\ ¹0:! º–r log ?¹\ ¹0:! ºº– �

�

5: for ; 2 1 : ! in paralleldo
6: let q¹;–1: º–log@¹q¹;–1: ºº = BFGS-SAMPLE¹B¹1:;º– I¹1:;º– \¹;º–r log ?¹\ ¹;ºº– U¹;º– b¹1:;º–  º
7: for : 2 1 :  do
8: evaluate and storelog ?¹q¹;–:ºº

9: let _¹;º = ELBO
�
log ?¹q¹;–1: ºº–log@¹q¹;–1: ºº

�

10: let ; � = arg max; _¹;º

11: let k ¹1:" º–log@¹k ¹1:" ºº = BFGS-SAMPLE¹B¹1:; � º– I¹1:; � º– \¹;
� º–r log ?¹\ ¹; � ºº– U¹; � º– b¹1:; � º– " º

� . The cost of sampling from the normal approximations is modest because we ef�ciently rescale
and rotate standard normal draws using the factored L-BFGS covariance approximation. Estimating
the evidence lower bound requires a number of log density evaluations equal to the number of Monte
Carlo draws ( ). The accuracy and reliability of the Monte Carlo estimates can be diagnosed without
regard to a reference distribution using a diagnostic based on the Pareto: statistic (Vehtari et al.,
2019; Dhaka et al., 2021). Sampling from the normal approximation and estimating the evidence
lower bound may be done in parallel across the points on the optimization trajectory. This makes
L-BFGS the serialization bottleneck for this algorithm. L-BFGS is economical in its calls to gradient
and log density functions because of its ability to leverage quasi-Newton estimates of local curvature.

In some cases, the optimization path terminates at the initialization point and in others it can
fail to generate a positive de�nite inverse Hessian estimate. In both of these settings, Path�nder
essentially fails. Rather than worry about coding exceptions or failure return codes, Path�nder returns
the last iteration of the optimization path as a single approximating draw with1 for the approximate
normal log density of the draw. This ensures that failed �ts get zero importance weights in the
multi-path Path�nder algorithm, which we describe in the next section.
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Algorithm 2 Multi-path Path�nder
Input:

log ?: differentiable log density function of dimension#
c0: initial distribution
! max: maximum number of L-BFGS iterations
grel: relative tolerance for convergence of L-BFGS
� : size of the history used to approximate the inverse Hessian
 : number of Monte Carlo draws to evaluate ELBO
� : number of independent Path�nder runs
" : number of draws returned by each Path�nder run
' : number of draws returned by importance resampling (' � � " )

Output:
k ¹1º– • • • – k¹ ' º: approximate draws from target density?

1: procedure MULTIPATHPATHFINDER(log ?– c0– !max– grel– �–  – �– "– ')
2: for 82 1 : � in paralleldo
3: let q¹8–1:" º–log@¹q¹8–1:" ºº = Path�nder¹log ?– c0– !max– grel– �–  – " º
4: compute and store target log densitieslog ?¹q¹8–1ºº– • • • –log ?¹q¹8–" ºº

5: let ¹k ¹1º– 8¹1ºº– • • • –¹k ¹ ' º– 8¹ ' ºº = PS-IR¹q¹1:�–1:" º–log ~@¹q¹1:�–1:" ºº–log ~?¹q¹1:�–1:" ºº– ' º,
6: wherelog ~@¹q¹8–<ºº = log 1

� � multi-normal¹q¹8–<º j ` ¹8º–� ¹8ººº = log@¹q¹8–<ºº � log¹� º
7: andlog ~?¹q¹8–<ºº = log 1

� � ?¹q¹8–<ºº = log ?¹q¹8–<ºº � log¹� º.

2.2 Multi-path Path�nder algorithm

The multi-path Path�nder algorithm is given in Algorithm 2. It runs Path�nder� times in parallel.
For run8of Path�nder, it saves the approximate samplesq¹8–1:" º. Then it generates' approximate
draws based on all of the approximate drawsq¹1:�–1:" º by importance resampling. The resulting
approximation generalizes the normal distribution of Path�nder to a mixture of� normal distributions,
which improves approximations for distributions that are far from normal. Importance resampling
from a mixture of normals also reduces the variability arising from single runs using random initial
values and stochastic ELBO estimates to choose the best normal approximation along the trajectory.
In particular, for more than one run of Path�nder, we augment the parameter space to include
the discrete index82 1:� indicating the mixture component that generated the parameters. With
the assumption that all runs of Path�nder return the same number of draws and that the mixture
components are equally weighted, the resulting proposal distribution of draws and mixture indicator
is

~@¹q– 8º =
1
�

� multi-normal¹q j ` ¹8º–� ¹8ºº–

wheremulti-normal¹` ¹8º–� ¹8ºº is the normal approximation selected by run8of Path�nder. The
corresponding joint target distribution can be extended in the same way, to

~?¹q– 8º =
1
�

� ?¹qº•

With the augmented parameter space, we can importance resample across different runs of Path�nder
without recomputing the marginal proposal distribution ofq for all draws. The importance resampling
procedure based on several proposal densities from multiple runs of Path�nder is a form of multiple
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importance sampling. More speci�cally, we use the scheme labeled N1 by Elvira et al. (2019), which
has the least computational burden among the proper alternatives and can be computed in parallel in
each individual run of Path�nder. Furthermore, optimization paths stuck in minor modes, at saddle
points, or on plateaus can be eliminated through the natural weighting of importance resampling. The
second step of the multi-path Path�nder algorithm in Algorithm 2 uses importance resampling, based
on the joint (parameter and mixture indicator) log density of the proposal density function~@¹q– 8º
and target density function~?¹q– 8º. The pseudocode for Pareto-smoothed importance resampling
(PS-IR) is provided in Algorithm 5.

Multi-path Path�nder performs� completely independent runs of Path�nder, so that its expected
number of operations is� times as many operations as are expected from Path�nder. Because
these independent runs can be executed asynchronously and each takes roughly the same amount
of work, wall time for multi-path Path�nder should be only slightly higher than that of Path�nder.
The importance resampling step is fast, but it requires all runs of Path�nder to complete before it is
executed, making the expected time to run multi-path Path�nder a bit longer than that of the slowest
of the independent Path�nder chains. There is a bit of additional parallelizable work to evaluate
log densities in the approximation and in the target density. After this evaluation, resampling only
requires normalization, random number generation, and selection, all of which are fast.

2.3 L-BFGS optimization

For minimizing the objective function� log ?¹\ º, Newton steps move in the direction of the inverse
Hessian of� log ?¹\ º times the gradient, with all derivatives being respect to the parameter vector\ ,

X= ¹�r 2 log ?¹\ ºº� 1 � r log ?¹\ º•

Quasi-Newton methods are so called because they use an approximation of the inverse Hessian.
The BFGS optimization algorithm is a quasi-Newton method that approximates the inverse

Hessian through updates of positions and gradients of the objective function at positions along the
optimization path (Broyden, 1970; Fletcher, 1987; Goldfarb, 1970; Shanno, 1970). The limited-
memory BFGS (L-BFGS) algorithm limits the size of the history of �nite differences for greater
scalability and to allow the local inverse Hessian estimates to adapt to varying curvature along the
optimization path (Nocedal, 1980). There are several prominent implementations of L-BFGS that
vary in their details; we use the version introduced by Byrd et al. (1995) and detailed by Zhu et al.
(1997).3 The pseudocode for Zhu et al.'s version of L-BFGS (without bounds) is listed in Algorithm 7
in Appendix F.

The standard L-BFGS algorithm approximates inverse Hessians using the previous� updates
of positions and gradients of the objective function along the optimization path. For iteration;, let
( =

�
( 1 � � � ( �

�
and/ =

�
/ 1 � � � / �

�
be# � � matrices that store the previous� updates of

positions and gradients, (i.e.,( 9 = \ ¹;� � ¸ 9º � \ ¹;� � ¸ 9� 1º, / 9 = r log ?¹\ ¹;� � ¸ 9ºº �r log ?¹\ ¹;� � ¸ 9� 1ºº
for 9= 1– • • • – �). Let Ube an# -vector that stores the diagonal elements of an initial diagonal inverse
Hessian estimate. Following Byrd et al. (1994, eq. 2.6), the estimated inverse Hessian at iteration;
based on the previous� positions can be formulated as

� ¹;º = diag¹Uº ¸ V� W� V> – (1)

3. We use the L-BFGS-B implementation in the R functionstats::optim() (R Core Team, 2021).
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where

V =
�
diag¹Uº � / (

�
– W=

�
0 � � � 1

� � �> � �> � ¹diag¹[ º ¸ / > � diag¹Uº � / º � � � 1

�
– (2)

with

� 8– 9=

(
( >

8 � / 9 if 8� 9

0 otherwise
– [ =

�
( >

1 � / 1 � � � ( >
� � / �

�
•

Although L-BFGS never explicitly constructs� ¹;º, in Section 2.5 we show how its factored form can
be used to derive an ef�cient algorithm to sample from the normal distributions with covariance� ¹;º,
which is the key step in the Monte Carlo estimator of the ELBO.

2.4 Local density approximations along the optimization path

The proposed normal approximations in Path�nder are located along the optimization path. The
second-order Taylor series expansion of the target log densitylog ?¹\ j Hº at a point\ ¹;º on the
optimization path is

log ?¹\ j Hº

� log ?¹\ ¹;º j Hº ¸ r log ?¹\ ¹;º j Hº � ¹\ � \ ¹;ºº � 1
2 ¹\ � \ ¹;ºº> � H¹\ ¹;ºº � ¹\ � \ ¹;ºº

= log ?̂¹\ j Hº–

whereH¹\ º = �r 2 log ?¹\ j Hº = �r 2 log ?¹\ º is the Hessian function mapping points to the matrix
of second derivatives of� log ?¹\ º with respect to\ at that point. The approximate distribution
?̂¹\ j Hº is a second-order Taylor series expansion around\ ¹;º, which produces a multivariate normal
approximation with mean

` ¹;º = \ ¹;º ¸ H� 1¹\ ¹;ºº � r log ?¹\ ¹;º j Hº = \ ¹;º ¸ H� 1¹\ ¹;ºº � r log ?¹\ ¹;ºº

and covarianceH� 1¹\ ¹;ºº. At a mode, the �rst-order term drops out and we are left with a standard
Laplace approximation.

Path�nder reconstructs the factors of the inverse Hessian approximations as needed using the
optimization trajectory, as shown in Algorithm 3. We construct covariance estimates rather than
caching the estimates from the optimization algorithm for three reasons. First, it gives us the �exibility
to use a different inverse Hessian approximation than that used in the optimization algorithm. In our
implementation, we use standard L-BFGS to generate an optimization path whose diagonal inverse
Hessian estimationdiag¹Uº is a scaled identity matrix, while we use Gilbert and Lemaréchal (1989,
eq. 4.9) in the recovery of the diagonal inverse Hessian estimation to allow the elements inU to vary.
Second, the separation allows us to set up a more restricted condition to �lter out sharp updates
for the inverse Hessian estimation. In Algorithm 3 line 5, the condition of selecting the correct
pairs¹B¹;º– I¹;ºº �lters out candidates whose gradient changes1012 times more than the position on
the direction of the update of gradient. Third, the outputs of theU-RECOVERprocedure enable us
to recover the factors in the covariance estimation(1) for each iteration in parallel without saving
matricesVandWin (2), which reduces total memory overhead and reduces communication costs.
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Algorithm 3 Diagonal inverse Hessian estimation.
Input:

\ ¹0º– • • • – \¹ ! º 2 R# : optimization path
r log ?¹\ ¹0ºº– • • • –r log ?¹\ ¹ ! ºº 2 R# : gradients of log density of\ ¹0:! º

� : size of the history used to approximate the inverse Hessian
Output:

¹U¹1º– • • • – U¹ ! ºº: The diagonal elements of the initial inverse Hessian approximation
¹b¹1º– • • • – b¹ ! ºº: The indicator of whether the updates of position and gradient are
included in the inverse-Hessian approximation or not.
¹B¹1º– • • • – B¹ ! ºº: The updates of position of the optimization path
¹I ¹1º– • • • – I¹ ! ºº: The updates of the gradient (�r log ?) of the optimization path

1: procedure U-RECOVER(\ ¹0:! º–r log ?¹\ ¹0:! ºº– �)
2: let U¹0º = 1# where1# denotes the vector of 1's inR# O¹# º
3: for ; 2 1 : ! do O¹!�# º
4: let B¹;º = \ ¹;º � \ ¹;� 1º and letI ¹;º = r log ?¹\ ¹;� 1ºº � r log ?¹\ ¹;ºº
5: if B¹;º> I ¹;º Ÿ n� kI ¹;º k2 with n = 10� 12 then
6: let b¹;º = 1
7: let 0 = I ¹;º> � diag¹U¹;� 1ºº � I ¹;º; 1 = I ¹;º> � B¹;º; 2 = B¹;º> � diag¹U¹;� 1ºº� 1 � B¹;º O¹# º
8: for = 2 1 : # do O¹# º

9: let U¹;º
= =

 
0

1 � U¹;� 1º
=

¸ I ¹;º2
=
1 � 0 � B¹;º2

=

1 � 2 � U¹;� 1º
=

2

! � 1

O¹1º

10: else
11: let U¹;º = U¹;� 1º andb¹;º = 0

We store a sequence of indicators to pick out pairs of positions and gradients to use in covariance
estimates.

Path�nder evaluates the evidence lower bound for all local approximations to select the best
normal approximation. By considering all normal approximations from the tail to the mode or pole
of the posterior distribution, Path�nder can quickly �nd approximations that generate draws in the
high probability region of the target density.

2.5 Sampling from the approximation and evaluating the log density of a draw

To implement Path�nder, we need to be able to sample from the approximating distributions in order
to evaluate the evidence lower bound. Furthermore, we need to be able to evaluate the log density
of these sampled points for importance resampling. While these operations could be implemented
by factoring our inverse Hessian approximations� ¹;º, this would requireO¹# 3º operations in#
dimensions.

Fortunately, the outer product representation may be used along with a thin QR factorization and
Cholesky factorization in order to produce draws and their log density inO¹#� 2 ¸ � 3º operations
using onlyO¹#� ¸ � 2º memory, where� is the history size of L-BFGS and# is the number of
dimensions. That is, the algorithm is linear in dimensionality, with a constant factor determined by
the history size for L-BFGS Hessian approximations.
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To achieve this ef�ciency, the Hessian can be factored as

� ¹;º = diag¹U
1
2 º

�
I ¸ diag¹U� 1

2 º � V� W� V> � diag¹U� 1
2 º

�
diag¹U

1
2 º– (3)

where we have simpli�ed notation by dropping the superscripts onU¹;º. Next, let

& � ~' = diag¹U� 1
2 º � V

be the thin QR-factorization ofdiag¹U� 1
2 º �V, so that& is an# � 2� matrix with orthonormal columns

and ~' is a2� � 2� upper triangular matrix. Let%be the# � ¹ # � 2� º matrix with orthonormal
columns that makes

�
& %

�
an# � # orthogonal matrix. We can then factor the inverse Hessian

estimate as
� ¹;º = ) � ) > – (4)

where
) = diag¹U

1
2 º �

�
& � ~! %

�
–

and ~! is de�ned through Cholesky decomposition to satisfy~! � ~! > = I ¸ ~' � W� ~' > . We provide a
more detailed derivation of (4) in Appendix A.

If we draw a standard normal# -vectorE� multi-normal¹0–Iº, then we can translate, scale, and
rotate it so that it is a draw from the approximate distribution,

` ¹;º ¸ ) � E � multi-normal¹` ¹;º–� ¹;ºº–

where the location vector is computed via

` ¹;º = \ ¹;º ¸ � ¹;º � r log ?¹\ ¹;º j Hº = \ ¹;º ¸ diag¹Uº � r log ?¹\ º ¸ V� W� V> � r log ?¹\ º–

which only involves matrix vector multiplication and requires orderO¹�# ¸ � 2º operations and
memory. Next, consider generatingD� multi-normal¹0–Iº and setting

E=
�
& %

� >
� D•

It follows thatE� multi-normal¹0–Iº, with the orthogonality between columns of%and& allowing
us to produce draws̀¹;º ¸ ) � E� multi-normal¹\ ¹;º–� ¹;ºº de�ned by

` ¹;º ¸ ) � E = ` ¹;º ¸ diag¹U
1
2 º¹& � ~! � &> � D¸ %� %> � Dº

= ` ¹;º ¸ diag¹U
1
2 º¹& � ~! � &> � D¸ D� & � &> � Dº • (5)

Using the factorization in(4), we can compute the log determinant required for evaluating the
approximate log density as

log
�
� � ¹;º

�
� = log jdiag¹Uºj ¸ 2 log

�
� ~!

�
� •

This provides a means to ef�ciently calculate the log density of the sampled point in the approximating
distribution as

lognormal¹` ¹;º ¸ ) � E j ` ¹;º–� ¹;ºº

= �
1
2

�
log

�
�� ¹;º

�
� ¸ ¹ ` ¹;º ¸ )E � ` ¹;ºº> ¹� ¹;ºº� 1¹` ¹;º ¸ )E � ` ¹;ºº ¸ # log¹2cº

�

= �
1
2

�
log

�
�� ¹;º

�
� ¸ D> D¸ # log¹2cº

�
•

(6)
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In summary, the sampling and log density evaluation algorithm relies on ef�ciently decomposing
the factored form instead of directly Cholesky decomposing� ¹;º to generate draws and compute
log densities of draws. Algorithm 4 provides the complete pseudocode for the sampling and density
evaluation algorithm.

Algorithm 4 Sample from local approximations
Input:

B¹1:;º: the updates of position upto iteration;
I ¹1:;º: the updates of gradient (�r log ?) upto iteration;
\ ¹;º: the position of optimization path at iteration;
r log ?¹\ ¹;º): the gradient of log density at\ ¹;º

U¹;º: The diagonal elements of the initial inverse Hessian approximation
b¹1:;º: The indicator of whether the update of the position and gradient are

included in the inverse-Hessian approximation or not.
� : size of the history used to approximate the inverse Hessian
" : number of draws to return

Output:
q¹1º– • • • – q¹ " º: draws from approximate distribution (" � # matrix)
log@¹q¹1ºº– • • • –log@¹q¹ " ºº: log densities of draws in the approximate normal distribution

(" -vector)
1: procedure BFGS-SAMPLE(B¹1:;º– I¹1:;º– \¹;º–r log ?¹\ ¹;ºº– U¹;º– b¹1:;º– " )
2: �nd the indexesj of the last (at most)� non-zero indicators inb¹1:;º and record the last�

updates of positions( = B¹ j º =
�
( 1 � � � ( �

�
and gradients/ = I ¹ j º =

�
/ 1 � � � / �

�
.

The latest update is on the last column
3: generate the upper-triangular matrix� by O¹� 2# º

� 8– 9=

(
( >

8 � / 9 if 8� 9

0 otherwise
– and save the diagonal elements of� as[

4: generateV– Wby O¹� 2# ¸ � 3º

V =
�
diag¹U¹;ºº � / (

�
– W=

�
0 � � � 1

� � �> � �> �
�
diag¹[ º ¸ / > � diag¹U¹;ºº � /

�
� � � 1

�

5: compute the thin QR-factorization& and ~' for diag¹U� 1
2 º � V O¹� 2# º

6: calculate the Cholesky decomposition~! of � ¸ ~' � W� ~' > O¹� 3º
7: let log j� j = log jdiag¹Uºj ¸ 2 log

�
� ~!

�
� O¹# º

8: let ` = \ ¸ diag¹Uº � r log ?¹\ º ¸ V� W� V> � r log ?¹\ º O¹�# ¸ � 2º
9: for < 2 1 : " do O¹�# " ¸ � 2" º

10: sampleD¹< º � multi-normal¹0–Iº O¹# º
11: let q¹< º = ` ¸ diag¹U

1
2 ºf& � ¹ ~! � � º � ¹&> � D¹< ºº ¸ D¹< ºg O¹�# ¸ � 2º

12: let log@¹q¹< ºº = � 1
2

�
log j� j ¸ D¹< º> � D¹< º ¸ # log¹2cº

�
O¹# º
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2.6 Estimating KL divergence from the approximate densities

From the sequencemulti-normal¹` ¹1º–� ¹1ºº– • • • –multi-normal¹` ¹ ! º–� ¹ ! ºº of normal approxima-
tions along the optimization path, Path�nder then selects the approximation from step; � that
minimizes Kullback-Leibler divergence to the target density,

; � = arg min; KL
�
multi-normal¹\ j ` ¹;º–� ¹;ºº

�
�
�
� ?¹\ j Hº

�
•

As usual in variational inference, it is more convenient to de�ne; � equivalently as the point that
maximizes the evidence lower bound (ELBO) (Wainwright and Jordan, 2008). With draws from the
approximating distribution,q¹1º– • • • – q¹ º � multi-normal¹` ¹;º–� ¹;ºº–the ELBO is straightforward
to evaluate with Monte Carlo,

ELBO
�
multi-normal¹` ¹;º–� ¹;ºº

�
�
�
� ?¹\ j Hº

�

�
1
 

 Õ

: =1

log ?¹q¹ : ºº � log¹multi-normal¹q¹ : º j ` ¹;º–� ¹;ººº•
(7)

The pseudocode for the ELBO estimation algorithm is provided in Algorithm 6 in Appendix F.
Given the factorization of the L-BFGS covariance described in the previous section, the ELBO

can be approximated using draws from the approximating distribution inO¹#� 2¸ � 3¸ �# ¸ � 2 º
operations using onlyO¹#� ¸ � 2º memory, where� is the history size of L-BFGS,# is the number
of dimensions, and is the number of Monte Carlo draws used to evaluate the ELBO. Both the
history size (� ) and number of Monte Carlo evaluations ( ) will be small and �xed, rendering the
overall complexity linear in the dimensionality of the target distribution (# ).

Using a larger number of Monte Carlo draws will reduce the variance of the ELBO estimate at
the cost of more computation. The ELBO tends to be more stable than other divergence measures
when using a �nite sample size (Dhaka et al., 2021). We have chosen = 5 in our experiments in
Section 3. Furthermore, the samples can be drawn and evaluated for log density in parallel with
no synchronization required until they are averaged to produce a �nal estimate. We evaluate the
sensitivity of our results to the choice of in Section 3.

2.7 Pareto-smoothed importance resampling

In the �nal step of multi-path Path�nder, we employ a Pareto-smoothed importance resampling
algorithm to re�ne the approximation draws based on approximations from� independent runs of
Path�nder. Importance resampling is a method for re�ning a set of draws from an approximating
distribution to better approximate draws from a target distribution (Rubin, 1987). Importance
resampling works by resampling from the original sample with replacement with probabilities
proportional to the importance weights. Importance sampling estimators weight draws based on
their importance ratios but can have high or even in�nite variance. Ionides (2008) showed that
truncating the importance weights improves the ef�ciency of the resulting Monte Carlo estimator
by reducing its variance. Vehtari et al. (2019) introduced a continuous generalization of truncation
that �ts the importance weights to a generalized Pareto distribution, whose cumulative distribution
function is then used to provide an evenly spaced set of importance weights. Rather than directly
using the smoothed weights to calculate expectations, we instead use them as importance resampling
weights, leading to Pareto smoothed importance resampling (PS-IR), as listed in Algorithm 5. As
far as we know, Pareto smoothing has not been previously applied to importance resampling, but
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Algorithm 5 Pareto-smoothed importance resampling (PS-IR)
Input:

q¹1º– • • • – q¹ � º: draws from proposal distribution@
log@¹q¹1ºº– • • • –log@¹q¹ � ºº: proposal log densities
log ?¹q¹1ºº– • • • –log ?¹q¹ � ºº: target log densities
' : number of draws resampled (' � � )

Output:
k ¹1º– • • • – k¹ ' º: importance resampled draws

1: procedure PS-IR(q¹1:� º–log@¹q¹1:� ºº–log ?¹q¹1:� ºº– ' )
2: let F1– • • • – F� = PSIS¹log@¹q¹1:� ºº–log ?¹q¹1:� ººº be the Pareto-smoothed

importance sampling weights O¹� º
3: samplek ¹1º– • • • – k¹ ' º from q¹1º– • • • – q¹ � º with replacement, with probabilities

proportional toF9 O¹'� º

only to importance sampling. We use resampling in order to make it easy to use as an initialization
algorithm for MCMC and to simplify expectation and quantile estimation by returning draws rather
than weighted draws.

2.8 Related methods

Automatic differentiation variational inference(ADVI) is a method for black-box variational inference
with differentiable densities (Kucukelbir et al., 2017). ADVI's variational objective is identical to
Path�nder's, namely Kullback-Leibler (KL) divergence from the approximating distribution to the
target distribution. The difference is that ADVI directly optimizes the variational objective using
stochastic gradient descent, whereas Path�nder optimizes the target density using quasi-Newton
optimization and then chooses the point along the optimization path based on the variational objective.

Like Path�nder, ADVI uses a multivariate normal approximating distribution on an unconstrained
parameter space. Any constrained variables such as scales or covariance matrices or simplexes
are transformed to an unconstrained representation inR# , with appropriate change of variables
adjustments. ADVI's covariance matrix may be taken to be dense or it may be constrained to be
diagonal; Kucukelbir et al. (2017) call the former “full rank” and the latter “mean �eld,” though both
are technically required to have rank# .

The Kullback-Leibler (KL) divergence from the normal approximation to the target distribution
is evaluated using Monte Carlo methods by taking an average of the log density of draws from the
approximating distribution. This results in a stochastic gradient algorithm, with gradients calculated
using automatic differentiation (Mohamed et al., 2019; Carpenter et al., 2015). Dhaka et al. (2021)
show that Monte Carlo estimates of this KL divergence and its gradient are in general stable, although
they may have high variance.

Compared to Path�nder's direct quasi-Newton optimization of the log density, ADVI is restricted
to small step sizes because of the stochastic nature of the gradient calculation and the lack of curvature
information. In evaluations below, we show that ADVI requires one to two orders of magnitude
more function evaluations than Path�nder to �nd the high probability mass region. In addition,
we show that Path�nder produces approximations that range from slightly worse to much better
than ADVI (with limited computation time) in complex problems as measured by the 1-Wasserstein
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metric. Finally, ADVI is intrinsically serial in its evaluation of the KL divergence at each iteration
of optimization, whereas Path�nder is embarrassingly parallel after the relatively fast L-BFGS
optimization.

Early stopping optimizationdivides the data in two parts, with one part used for optimization and
other part is used to compute out-of-sample performance criterion and the optimization is stopped
when the out-of-sample performance starts to decrease (Vehtari et al., 2000). The downside of the
approach is that it requires factorizing the likelihood and additional data manipulation to make the
data divisions. Path�nder works also for non-factorized likelihoods as the “stopping” is decided
by the ELBO estimate (in our implementation the optimization is not stopped early but run to the
termination and then ELBO is estimated for each optimization trajectory point, potentially in parallel).
Furthermore Path�nder returns normal approximations instead of just points along the trajectory.

Early stopping variational inferencegenerates approximate posterior draws by taking random
draws from an initialization distribution, then following an optimization path for a �xed number of
steps and taking the result as an approximate posterior draw (Duvenaud et al., 2016). The number of
steps is selected to minimize the KL divergence from the approximating distribution to the target
distribution. Early stopping variational inference can be viewed as a normalizing �ow (Rezende and
Mohamed, 2015), which generates an approximate draw from a target distribution by generating a
draw from a simple distribution, such as uniform or standard normal, then transforming it. Path�nder
is similar, but it stops at a normal approximation from which we draw a sample.

Early stopping VI differs from Path�nder in several substantive ways. Most importantly, early
stopping VI determines a number of optimization steps as the variational parameter, generating a
range of values based on the random initialization. Path�nder, in contrast, evaluates a variational
approximation centered at each point on the optimization path as a variational approximation.
Secondarily, early stopping VI chooses a point on the optimization path, whereas Path�nder generates
a point from a normal approximation located at a point on the optimization path. Computationally,
early stopping variational inference requires an optimization run for each approximate posterior
draw, whereas Path�nder uses a single optimization run (though multi-path Path�nder importance
resamples among several such paths).

Invertible �ow non-equilibrium sampling(InFiNE) is another method based on selecting points on
a deterministic optimization path with importance resampling (Thin et al., 2021). Unlike Path�nder
and the other systems mentioned so far, InFiNE is asymptotically exact. It was motivated by the
need for ef�cient estimators for normalizing constants of intractable densities known only up to a
constant factor, such as most Bayesian posteriors. The other motivation mentioned in the paper is
in accurately evaluating KL divergence using the evidence lower bound (ELBO). To achieve these
goals, InFiNE uses an iterative importance resampling scheme (Andrieu et al., 2010).

As with normalizing �ows, InFiNE keeps the Jacobian tractable over the optimization path by
using a Hamiltonian �ow with a friction term that will cause the �ow to come to rest at a local mode
(a well in potential energy, which is negative log density) or just keep falling.

Short parallel MCMC chains.Hoffman and Ma (2020) demonstrate that HMC can quickly reach
the high probability region, which they exploit by generating many short MCMC chains in parallel
and using only the small part from the end. In experiments not reported here, we tested starting many
parallel chains from the L-BFGS trajectory points and testing for a trend in the log density. A lack of
trend in the log density is consistent with the chains having been initialized in the high probability
region. Although we have veri�ed this approach works by evaluating short-chain dynamic HMC, the
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number of log density evaluations required is several orders of magnitude larger than needed by the
ELBO estimate used in Path�nder.

3. Experiments

This section provides experimental evaluations of Path�nder. In Section 3.1, we compare Path�nder
to two popular posterior approximation algorithms, ADVI and an ensemble of short adaptive HMC
chains. ADVI (Kucukelbir et al., 2017) is the industry standard black-box variational inference
algorithm, implemented in Stan (Stan Development Team, 2021a), PyMC3 (Salvatier et al., 2016),
Pyro (Bingham et al., 2019), TensorFlow Probability (Dillon et al., 2017), JAX (Bradbury et al., 2018),
Turing.jl (Ge et al., 2018), and other differentiable programming languages. Like Path�nder, ADVI
provides normal approximations of posteriors. ADVI can be con�gured to use a dense covariance
or restricted to a diagonal covariance matrix. We evaluate both alternatives in this section. We
treat Stan's no-U-turn sampler (Hoffman and Gelman, 2014; Betancourt, 2017) as a nonparametric
posterior approximation algorithm, and, following the conclusions in Hoffman and Ma (2020), we
ran many parallel MCMC chains and took samples from the last iteration as approximate draws. We
evaluate Path�nder's sensitivity to tuning parameters in Section 3.2. In Section 3.3, we investigate
the behavior of Path�nder for dif�cult posteriors. We evaluate the results of using Path�nder versus
short chains of adaptive HMC for initializing a Gaussian process model in Section 4. The code for
simulations is available athttps://github.com/LuZhangstat/Pathfinder .

We use 1-Wasserstein distance (Craig, 2016; Villani, 2009; McCann, 1995) between the empirical
distribution of the approximate samples and the target posterior distribution to evaluate how well
we are taking independent draws from the posterior. We provide an introduction to 1-Wasserstein
distance and its computation in our simulation studies in Appendix B.In all of the evaluations
presented in this section, the model parameters are transformed to the unconstrained scale, with
corresponding change of variables adjustments. The resulting support on all ofR# matches the
support of the multivariate normal approximations used by ADVI and Path�nder and allows the
algorithms to avoid dealing with boundaries. Moreover, we assume that the posterior distribution is
closer to normal in the unconstrained space. Hence, for both ADVI and Path�nder, the Gaussian
approximation is made in the unconstrained space. And in all of our experiments, we compare the
approximation performance through samples in the unconstrained space. In practice, these samples
will be (inverse) transformed back to the constrained space. Details of the transformations, inverse
transforms, and their log absolute Jacobian determinants are provided by Stan Development Team
(2021a, Chapter 10).

3.1 Evaluating Path�nder as variational inference

In this section, we compare Path�nder with ADVI and Stan's default phase I warmup (dynamic HMC
in the form of the no-U-turn sampler) through experiments. We evaluate Path�nder using the 20
models and data sets fromposteriordb (Magnusson et al., 2021), each of which is supplied with
reference posteriors in the form of 10,000 roughly independent draws. The set of models evaluated
includes

• generalized linear models:nes , earnings , dogs , diamonds sblrc ,

• hierarchical meta-analysis models:eight_schools (centered and non-centered),
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• Gaussian processes:gp_pois ,

• mixtures:low_dim_gauss_mix ,

• differential equation dynamics models:hudson_lynx_hare , one_comp_MM_elim ,

• hidden Markov models:bball_drive , and

• time-series models:arma, arK , andgarch .

For each model inposteriordb , we run single-path Path�nder with 100 different random initial-
izations, using our proposed default settings:

• maximum L-BFGS iterations (! max = 1000),

• relative tolerance for L-BFGS convergence (gA4; = 10� 13),

• size of L-BFGS history to approximate inverse Hessian (� = 6),

• number of Monte Carlo draws to evaluate ELBO ( = 5), and

• number of draws per run (" = 100).

For multi-path Path�nder, we again take 100 approximate draws, but use a larger number of interme-
diate runs,

• number of single-path Path�nder runs (� = 20),

• number of draws returned by each single-path Path�nder run (" = 100), and

• number of draws per run (' = 100).

For both single-path and multi-path Path�nder, we repeat the entire process 100 times. We use
Wasserstein distance from the approximate draws in each run to the reference posterior draws to
determine how well Path�nder achieves its goal of producing approximate posterior samples.

In addition to single-path and multi-path Path�nder, we also evaluate 100 runs by

• Stan phase I adaptation: adaptive Hamiltonian Monte Carlo with Stan's no-U-turn sampler
(unit metric, step size adaptation, and a maximum tree depth of 10, keeping the last of 75
iterations),

• dense ADVI: automatic differentiation variational inference with a dense covariance matrix
(Stan default settings, return 100 approximate draws), and

• mean-�eld ADVI: automatic differentiation variational inference with a diagonal covariance
matrix (Stan default settings, return 100 approximate draws).

Each of these procedures uses random initialization values, generated from auniform¹� 2–2º distri-
bution, which is the default for Stan.

The expressive power of Path�nder's low-rank plus diagonal covariance approximation is between
that of ADVI's diagonal and dense choices for covariance. In summary, we generated 100 runs of 100
draws for each of our candidate approximate posterior distribution algorithms, including Path�nder,
multi-path Path�nder, mean-�eld ADVI and dense ADVI, and we generated 100 approximate samples
using Stan's phase I sampler.
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Figure 3:Box plots of 1-Wasserstein distances between the reference posterior samples and approxi-
mate draws from single-path Path�nder and ADVI for the 20 models inposteriordb . Each box
plot displays 1-Wasserstein distances of 100 independent runs of (single-path) Path�nder, mean-�eld
ADVI, and dense ADVI. We calculate the 1-Wasserstein distance with 100 approximate draws from
the last iteration of 100 runs of Stan's phase I warmup (adaptive HMC). Distances for each model
are scaled by the median of the 1-Wasserstein distances for single-path Path�nder.

Assessing the quality of approximations. We provide a comparison of single-path Path�nder,
ADVI and Stan's phase I sampler through 1-Wasserstein distances for all 20 models fromposteriordb
in Figure 3. A comparison of multi-path Path�nder, single-path Path�nder and Stan's phase I sampler
is in Figure 4. To adjust for the varying scale of the 1-Wasserstein distances across target densities,
we scaled results relative to the median of the 100 1-Wasserstein distances for single-path Path�nder
for each model. This allows us to compare ratios of the 1-Wasserstein distance between Path�nder's
draws and the target posterior and the 1-Wasserstein distance between another system's draws and
the target posterior.

It is clear that single-path and multi-path Path�nder outperform the ADVI variants for most of
the models inposteriordb . The bar and whisker plots show that over 100 independent runs,
multi-path Path�nder is the most stable, followed by single-path Path�nder, and then mean-�eld
ADVI, with dense ADVI providing the most variability in 1-Wasserstein distance to the true posterior.
The median 1-Wasserstein distance for mean-�eld ADVI is more than double that of single-path
Path�nder for 8 (of 20) test models. Dense ADVI is worse, with 9 (of 20) test models having double
the 1-Wasserstein distance of single-path Path�nder.

There is only one model where the 1-Wasserstein distance is much smaller for mean-�eld
ADVI, the hidden Markov modelbball_drive_event_0-hmm_drive_0 , with a median 1-
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Figure 4: Box plots of 1-Wasserstein distances between the reference posterior samples and
approximate draws from single-path Path�nder and multi-path Path�nder for the 20 models in
posteriordb . Each box plot displays 1-Wasserstein distances of 100 independent runs of single-
path or multi-path Path�nder. We calculate 1-Wasserstein distance with 100 approximate draws from
the last iteration of 100 runs of Stan's phase I warmup (NUTS). Distances for each model are scaled
by the median of the 1-Wasserstein distances for single-path Path�nder.

Wasserstein distance that less than one tenth of that for single-path Path�nder. This particular model
has multiple meaningful posterior modes. The noise inherent in the stochastic gradient descent
approach used by ADVI allows it to escape minor modes than can trap the L-BFGS optimizer used
by Path�nder. It might be possible to resolve this problem for single-path Path�nder with a more
robust optimization algorithm. Until we �nd such an algorithm, we note that multi-path Path�nder
eliminates this problem for thebball_drive_event_0-hmm_drive_0 model, resulting in
1-Wasserstein distances that are comparable to those for mean-�eld ADVI.

In addition to working better on most posteriors, single-path and multi-path Path�nder are more
stable than Stan's HMC-based phase I adaptation for more challenging posteriors. For 7 (of 20)
test models, Stan's phase I warmup produced 1-Wasserstein distances more than double the median
distance of single-path Path�nder. Except for thebball_drive_event_0-hmm_drive_0
example, the 1-Wasserstein distances for single-path Path�nder are at most double that of Stan's
phase I warmup.

Assessing the computational cost. Path�nder, Stan's phase I sampler, and automatic differentiation
variational inference are all dominated computationally by log density and gradient calculations.
Using the number of these operations as a measure of computation conveys the further advantage of
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(a) Log density evaluations

(b) Gradient evaluations

Figure 5:Box plots of the number of (a) log density evaluations and (b) gradient evaluations required
by the candidate algorithms. For each algorithm, we performed 100 independent runs and summarize
the results with box plots. Candidate algorithms can abort due to various errors. We count the
log density and gradient evaluations in failed runs. We do not plot multi-path Path�nder because
its number of evaluations is just a multiple of the single-path results plus a small number of extra
approximate and log density evaluations for importance resampling.
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Multiple of Path�nder's evaluations
Stan phase I mean-�eld ADVI dense ADVI

log density 7.9 24 28
gradient 34 48 54

Table 1:The values in the table indicate how much more work is required for Stan's phase I warmup
and ADVI compared to Path�nder averaged over all of the test models inposteriordb . The
values are ratios of evaluations, so that, for example, mean-�eld ADVI required 48 times as many
gradient evaluations as Path�nder. Dense ADVI does additional work beyond gradient evaluations
in log density and simulation which are not included. The actual implementation of candidate
algorithms can be aborted due to various errors. In this experiment, we count all the log density and
its gradient evaluation in the failed trials until success.

being implementation agnostic. We summarize the cost for 100 repetitions of (single-path) Path�nder,
Stan phase I warmup, and ADVI for each model through box plots in Figure 5 (the repetitions are
not part of the algorithm, but merely to provide a sense of execution cost variability from run to run).

Table 1 summarizes average costs in terms of log density and gradient operations. Although
we summarize both log density and gradient costs for completeness, gradients typically consume
closer to 80% of overall compute cost for Stan phase I and ADVI when calculated with automatic
differentiation (Carpenter et al., 2015). Because gradients are more expensive with automatic
differentiation than log density evaluations, the results indicate that other methods require around 30
to 50 times more operations than Path�nder.

These results only consider serial execution. Multi-path Path�nder requires 20 (the default
number used in the experiments) times as many evaluations as single-path Path�nder plus the
importance resampling step. Importance resampling is fast, but it does require evaluating a few
log densities of each candidate in both the approximating and target density. Thus the wall time
for running multi-path Path�nder could be nearly as fast as the slowest of the runs of single-path
Path�nder. Compared to short chains of adaptive HMC, there is less variability across runs for
Path�nder, as can be gleaned from the plots in Figure 5. These are timings for single runs (averaged
over 100 runs). In practice, we typically initialize multiple Markov chains, so the gap in number of
evaluations becomes even wider, though these can be parallelized for all systems.

3.2 Sensitivity to tuning parameters

In this section, we provide an analysis of Path�nder's sensitivity to tuning parameters to evaluate
whether we just got lucky with our suggested default settings for Path�nder. For both adaptive
Hamiltonian Monte Carlo and automatic differentiation variational inference, we use the default
settings in Stan, which have proven successful for a broad range of applications (Stan Development
Team, 2021a).

Optimization tolerance and maximum number of iterations. To test the performance of Path-
�nder under different relative tolerances for convergencegrel and maximum iteration for L-BFGS
! max, we reproduced100runs of Path�nder with! max reduced to100andgrel increased to10� 3 for
each model inposteriordb . The lower cap on number of iterations and more relaxed tolerances
should lead to less computation and perhaps less stability in Path�nder. Following the simulation
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Figure 6: Box plots of 1-Wasserstein distances between the reference posterior samples and ap-
proximate draws from Path�nder for examples inposteriordb . Each box plot summarizes
1-Wasserstein distances for 100 independent runs of Path�nder. The two results are for Path�nder
with default settings (orange), and with the number of iterations reduced to! max = 100and the
convergence threshold increased to10� 3 (black). We scaled the 1-Wasserstein distances for the same
model by the median distances using the default settings.

design in Section 3.1, we estimate the 1-Wasserstein distance for100approximate draws from each
run of Path�nder. Figure 6 illustrates reduced �delity and increase in uncertainty with lower! max

and highergrel for most of the tested models. For modelearnings-logearn_interation ,
diamonds-diamond andbball_drive_event_1-hmm_drive_1 1-Wasserstein distances
increased more than a factor of 8. None of the models show improved performance under these
alternative settings. We thus prefer to keep a larger! and a smallergrel, as they do not add much
computation for simpler models, for which optimization terminates before the maximum iteration
threshold.

The number of Monte Carlo draws to estimate ELBO. Figure 7 reports our sensitivity test
for the number of Monte Carlo draws used to evaluate the evidence lower bound in Path�nder
(tuning parameter ). In particular, it compares 1-Wasserstein distances using the default = 5
draws for evaluating the ELBO with the result of = 30draws. This increases the number of log
density evaluations and the number of random numbers generated, but not the number of gradient
evaluations, and reduces the scale of Monte Carlo error by around¹1 �

p
5•

p
30º, or 60%. Increasing

 consistently improves the performance of Path�nder, but not by much. The median 1-Wasserstein
distances for all models were reduced by only about 3.2% on average, with a maximum reduction
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Figure 7:Box plots of 1-Wasserstein distances between the reference posterior samples and approxi-
mate draws from Path�nder for examples inposteriordb when using = 5 (default, in orange)
and = 30 (black) Monte Carlo draws to evaluate the evidence lower bound. The results are scaled
by the median of 1-Wasserstein distances for Path�nder in the default setting.

of only 15.1%. The cost is about 4.9 times as many log-density evaluations on average. Based on
the tradeoff between the quality of approximation and cost, a smaller is a better choice when
using Path�nder, especially multi-path Path�nder, to quickly �nd a handful of draws close to high
probability mass region. On the other hand, when using Path�nder to generate an approximate
posterior, a larger may be warranted. Using = 30also reduces the variability in 1-Wasserstein
distance by a little bit, as can be seen in the narrow 50% intervals and less extreme tail behavior.

History size of L-BFGS. Figure 8 provides a plot evaluating the difference between the default
history size of� = 6 for L-BFGS to estimate an inverse Hessian with the much longer history size
of � = 60. As before, we report on a comparison of 100 different runs of each system. Sensitivity
to L-BFGS history size (� ) varies across models. For the majority of models, Path�nder works
better with longer histories. There is substantial improvement fordiamonds-diamonds , whereas
performance forsblrc-blr declines with larger� . This is because in some cases we need
more history to get a higher-rank estimate of covariance, whereas in other cases, it can hurt local
adaptation to keep a longer history. The examplediamonds-diamonds has 27 parameters and
the posterior distribution exhibits high correlations among 25 parameters. Hence we observed a
great improvement of Path�nder with a larger� . We encourage a larger� for approximation when
the target distribution is expected to have high dependencies among a large number of parameters.
Meanwhile, a smaller� requires less memory and computational cost, which is more ef�cient for
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Figure 8:Box plots of 1-Wasserstein distances between the reference posterior samples and approx-
imate draws from Path�nder for examples inposteriordb with the default of� = 6 (orange)
gradients used to approximate the inverse Hessian and a much larger value of� = 60 (black) history
elements. The distances are scaled by the median of the default behavior (� = 6).

�nding draws from the high probability mass region. For the other 19 models inposteriordb ,
median 1-Wasserstein distances were reduced an average of 0.7% when moving from� = 6 to � = 60.
Among these 19 models, the maximum reduction was 16.3% and the maximum increase was 9.8%.
In summary, a good choice of� depends on the speci�c problem. We found that, in general,� = 6
works well for the models inposteriordb . Our default history length is in line with defaults
used for� in the range of 5–10 used as the default for most software distributions of L-BFGS. For
example, R'sstats::optim() function defaults to 5, whereasSciPy uses 10 as the default for
its scipy.optimize.fmin_l_bfgs_b function (Virtanen et al., 2020).

Number of parallel runs. To evaluate how sensitive multi-path Path�nder is to the number of
single-path Path�nder runs used (� ), we reproduce 100 runs of multi-path Path�nder with� 2
f 5–20–40g, generating' = 100 approximate draws from each run (20 is our suggested default
setting). We left all other tuning parameters at their proposed default values. We estimate the
1-Wasserstein distance for each run of multi-path Path�nder to compare the performance of multi-
path Path�nder under different values of� . Figure 9 shows that the change of� does not have
much impact on the approximate performance of multi-path Path�nder. When decreasing� from
20 to 5, the median 1-Wasserstein distances only increase 5.4% on average, with a minimum
increase of 0.1% and maximum increase of 12.5%. When increasing� from 20 to 40, the median
1-Wasserstein distances are reduced by only 1.1% on average, with a maximum reduction of 5.5%
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Figure 9:Box plots of 1-Wasserstein distances between the reference posterior samples and approxi-
mate draws from multi-path Path�nder for examples inposteriordb when using� = 5 (green),
20 (orange, default), and 40 (black) independent Path�nder runs. The results are scaled by the
median of 1-Wasserstein distances for multi-path Path�nder with� = 20.

and maximum increase of 6.4%. Increasing� from 5 to over20 eliminates the extreme outcomes for
thebball_drive_event_0-hmm_drive_0 example, which we further investigate in the next
section.

3.3 Path�nder for posteriors with challenging geometry

In this section, we consider four problems that challenge optimizers and MCMC samplers and thus
might be expected to challenge Path�nder.

Neal's funnel. Neal (2003) presents a model with funnel-like posterior geometry, de�ned by

?¹g– V1– • • • – V# º = normal¹g j 0–3º �
#Ö

==1

normal¹V= j 0–exp¹g•2ºº• (8)

For values ofg ¡ 0, theV= are relatively free (the “mouth” of the funnel), whereas forg Ÿ 0, they
are constrained to be near 0 (the “neck” of the funnel). This density is problematic for at least two
reasons. First, the density grows without bound (i.e., has no maximum) asg ! �1 andV= ! 0.
Second, the condition number of the inverse Hessian (ratio of largest to smallest eigenvalue) grows
quickly asg moves away from 0, which bounds the ef�cacy of gradient-based updates. Furthermore,
there is no way to globally precondition this distribution, as the curvature changes direction asg
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(a) optimization paths,
uniform¹� 2–2º inits

(b) approximate draws from
multi-path Path�nder

(c) optimization paths,
uniform¹� 15–15º inits

(d) approximate draws from
multi-path Path�nder

Figure 10:Results of multi-path Path�nder with varying initial distribution for the eight-schools
model with a centered parameterization. Optimization paths (left column) are displayed next to the
points points selected by path�nder (right column), withuniform¹� 2–2º initialization (top row) and
uniform¹� 15–15º initialization (bottom row). Multi-path Path�nder used all 20 optimization paths.
The density plots use lighter color for higher density. The optimization paths are plotted in the left
panels using white for initial points and orange for later points in the optimization trajectories; later
points dive into the neck of the funnel where density increases without bound but volume and hence
probability mass is low.

moves away from 0 to the positive and negative side. The poor conditioning is endemic to hierarchical
models, even with data (Betancourt and Girolami, 2015). Theposteriordb package includes
the eight schools model of Rubin (1981), in both a centered and non-centered parameterization; see
Papaspiliopoulos et al. (2003); Stan Development Team (2021b); Betancourt and Girolami (2015)
for more information on these parameterizations.

In Figure 10, we plot the behavior of the centered parameterization of the eight schools model
as an example of funnel-like behavior, where the optimization paths and approximate draws by
multi-path Path�nder when initials of Path�nder are randomly generated fromuniform¹� 2–2º (our
default) oruniform¹� 15–15º distributions in the unconstrained parameter space. We observe that
even though the optimization paths correctly follow an optimization trajectory down the neck of the

26



PATHFINDER: QUASI-NEWTON POSTERIOR APPROXIMATION

(a) optimization paths with
uniform¹� 2–2º initialization

(b) approximate draws from
multi-path Path�nder

(c) optimization paths with
uniform¹� 10–10º initialization

(d) approximate draws from
multi-path Path�nder

Figure 11:Results of multi-path Path�nder with varying initial distribution for the 100-dimensional
Neal's funnel model. The optimization paths (left column) are displayed next to the points
points selected by path�nder (right column), withuniform¹� 2–2º initialization (top row) and
uniform¹� 10–10º initialization (bottom row). Multi-path Path�nder used all 20 optimization paths.
The density plots illustrate region with higher probability with lighter color. The optimization paths
are plotted in the left panels using white for initial points and orange for later points in the optimiza-
tion trajectories. The reference samples for density plots are generated by 4 MCMC chains �tted
with cmdstanr , with an adaptation period of 100,000 iterations, 850,000 saved iterations, and a
thinning rate of 300.

funnel, Path�nder successfully identi�es points in the high probability mass (not high density) region,
which is evenly split above and belowg = 0. The �gure also shows that Path�nder is sensitive to the
choice of initial distributionc0. When the initial distribution is concentrated in a region of high target
density, the optimization paths may not pass through all regions of high probability mass, resulting
in approximate draws clustered in a relatively small region as shown in the right-hand side plot in
Figure 10. Meanwhile, ADVI tends to be less sensitive to the initials in this example, outperforming
Path�nder in both 1-Wasserstein distance and ELBO, as shown in Appendix D.

We will next consider a medium-dimensional instance of Neal's funnel. Letting# in (8) be99,
we �t the 100-dimensional Neal's funnel model with multi-path Path�nder using our proposed default
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(a) optimization paths (b) draws from multi-path Path�nder

Figure 12:(a) 20 optimization paths and (b) the 100 approximate draws of multi-path Path�nder,
overlaid on the density plot of two selected parameters for thegp_pois_regr-gp_pois_regr
example. Multi-path Path�nder used all 20 optimization paths. Lighter color in the density plot
indicates higher density. The optimization paths are shaded from white (initial) to orange (�nal).

settings. As in the eight-schools example, Path�nder successfully locates the high probability mass
region along the optimization paths as illustrated in Figure 11. With Path�nder's default initialization,
the approximate draws are underdispersed when Path�nder is started at the region of high posterior
density, and the approximation can be greatly improved with a more diffuse initialization distribution.

Non-normal posteriors. Given that Path�nder and ADVI rely on normal approximations to gen-
erate approximate draws, we are interested in the behavior of Path�nder for posteriors that are far from
normal. We focus here on the Gaussian process Poisson regression modelgp_pois_regr-gp_pois_regr
to explore the performance of Path�nder in approximating non-Gaussian posteriors. As shown in
Figure 12, the high probability mass region for this model projected down to two selected dimensions
has the shape of a waning moon. The approximate draws generated by Path�nder concentrate in
a relatively small region within the high probability mass region. This phenomenon is expected,
because Path�nder selects an approximate normal distribution based on minimizing KL divergence
to the target density, which favors more concentrated approximations that fall within the bulk of
the target probability mass. Therefore, Path�nder tends to make a conservative guess on the high
probability region when the posterior cannot be well approximated by a normal distribution.

Multimodality. Multimodal posteriors have more than one local optimum. In some cases, such as
high-dimensional mixture models or neural networks, the multimodality can be so extreme that it
defeats Monte Carlo methods. In other cases, the posterior has one, or maybe a few major modes,
with other modes having negligible probability mass. Off-the-shelf MCMC sampling can work in
these cases if it's possible to move among the modes, but this is usually too dif�cult, and specialized
samplers for multimodal problems need to be employed, such as bridge sampling (Meng and Wong,
1996). If there is only one major mode, MCMC will succeed if it's initialized near that mode or if
chains initialized near minor modes can escape.

We observed severely biased MCMC sampling due to the existence of minor modes for 4 of the 49
test models inposteriordb . In Figure 13 we illustrate 100 approximate draws generated by Stan
phase I sampler, optimization paths for 20 runs of Path�nder, and 100 approximate draws by multi-
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(a) 100 draws from Stan phase I
warmup

(b) 20 optimization paths (c) 100 approximate draws from
multi-path Path�nder

Figure 13:(a) 100 initializations generated by Stan phase I warmup, (b) 20 optimization paths,
and, and (c) the 100 approximate draws of multi-path Path�nder, overlaid on the density plot of
two selected parameters for thebball_drive_event_0-hmm_drive_0 example. The density
plot illustrates the region with higher probability with lighter color. In (b), the optimization paths are
plotted from white (initialization) to orange (later iterations).

path Path�nder using all 20 runs of Path�nder for thebball_drive_event_0-hmm_drive_0
example inposteriordb . This posterior has multiple modes as shown in Figure 13b. Figure 13a
reveals how Stan's phase I adaptation can get stuck near this minor mode. The importance resampling
step of multi-path Path�nder is able to �lter out points around minor modes as shown in Figure 13c.
Of course, when all optimization paths are trapped in minor modes, importance resampling cannot
recover. As a result, multi-path Path�nder is more robust with more single-path Path�nder runs from
which to importance resample.

We now turn toovarian-logistic_regression_rhs , a challenging high-dimensional
example fromposteriordb . The example works on ovarian cancer data containing gene expres-
sion measurements of tissues. The example �ts a hierarchical logistic regression for the purpose of
discriminating between tissues from different classes (e.g., tumor and normal samples). The model
has 3075 parameters and a horseshoe prior that performs soft variable selection (Piironen and Vehtari,
2017). The prior induces multiple major modes, one of which corresponds to all unconstrained
coef�cients being very close to zero. Piironen and Vehtari (2017, Section 4.2) provide a detailed
discussion about the challenging features in this example. This interesting example is not included in
the tests in Sections 3.1 and 3.2 because the reference samples are not available inposteriordb .
We produce a reference posterior sample by running 4 adaptive HMC chains incmdstanr with
10,000 warmup iterations, 25,000 saved iterations, and a thinning rate of 10. Figure 14 provides a
three dimensional scatterplot illustrating the multimodality of the reference draws.

We �t multi-path Path�nder with varying initial distributions and illustrate the results in Figure 15.
The starting points of Path�nder determine the optimization paths and, therefore, the performance
of Path�nder. Meanwhile, we observe a small number of distinct samples returned by multi-path
Path�nder even when the optimization paths succeed in �nding the high probability mass region.
The small number of distinct samples shows that importance resampling fails to select appropriately
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Figure 14:Illustration of multimodality for theovarian-logistic_regression_rhs exam-
ple. The 3-d scatterplot illustrates the reference posterior samples for three selected parameters.
We can see at least four major modes in this 3-d marginal posterior. Overall, we estimate the joint
posterior to have hundreds of modes with non-negligible masses.

diffuse samples, which provides evidence that the approximation found by Path�nder is not good
enough.

Due to the high dimensionality and the shape of the posterior, the optimization from random
initial values tends to �nd the major mode around the origin, which is consistent with all coef�cients
being close to zero. This concentration around the origin leads to poor predictive performance as
shown in Figure 15c. On the other hand, if Path�nder could somehow be initialized within or near
the minor modes, optimization will �nd them as shown in Figure 15b. Thus, even though Path�nder
is �nding a single region of high probability, in high dimensions it can fail to �nd other relevant high
probability modes.

Weak identi�ability. Unlike multimodal priors, which have multiple modes, non-identi�able
posteriors do not have any modes. For example, auniform¹0–1º distribution is �at and does not
have a mode. Flat regions in densities must be compact, because �atness in unbounded spaces leads
to unnormalizable distributions. In Stan and this paper, we work with unconstrained distributions,
where a variableU with a uniform¹0–1º distribution is transformed tologit¹Uº = log U

1� U, which has
a logistic¹0–1º distribution. Although we cannot have properly �at unbounded posteriors, they can
be nearly �at over large regions, which can cause the same computational problems. For example, we
see such behavior with collinear predictors in regressions, which produces high posterior variability
and high correlation between their regression coef�cients. Such �at regions correspond to plateaus in
the density and cause dif�culties with convergence for adaptive HMC, ADVI, and Path�nder.

We observe pathological �atness in the posterior of modelmcycle_gp-accel_gp from
posteriordb , which is one of the most expensive models inposteriordb according to the
cost evaluation presented in Figure 5. This example models measurements of head acceleration in a
simulated motorcycle accident. Speci�cally, the observationHis modeled with a normal distribution
having Gaussian process prior on mean function5 and log standard deviation function6,

H� normal¹ 5 –exp¹6ºº– 5� GP¹` 5–  1º– 6� GP¹` 6–  2º–
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(a) uniform¹� 2–2º initialization of
multi-path Path�nder

(b) random initialization from
reference draws of multi-path

Path�nder

(c) predictive performance with
uniform¹� 2–2º initialization

(d) predictive performance with
reference initialization

Figure 15: Results of multi-path Path�nder with varying initial distribution for the
ovarian-logistic_regression_rhs example. Withuniform¹� 2–2º initialization (top left),
multi-path Path�nder does not explore both modes and predictive performance is poor (bottom left).
When initialized with draws from the reference sample (top right), multi-path Path�nder explores
both modes and performance improves (bottom right), but is still poor compared to the reference
draws. The density plots illustrate region with higher probability with lighter color. The optimization
paths are plotted from white (initialization) to orange (later iterations). The approximate draws of
Path�nder are indicated by red dots. The density plots show two major modes for the two selected
parameters (top row, background). Predictive performance is the estimated probability of a tumor,
with theG-axis de�ned by the reference draws (bottom row).

where 1 and 2 denote covariance functions, and` 5 and` 6 model the mean of the priors of5 and
6. Both Gaussian processes5 and6 are modeled with Hilbert-space approximate basis functions
(Solin and Särkkä, 2020; Riutort-Mayol et al., 2020). There are in total 66 parameters. In Figure 16,
we illustrate 100 draws from multi-path Path�nder, which are based on resampling 20 optimization
paths, for two selected dimensions ofmcycle_gp-accel_gp . Figures 16a and 16b show that
the optimization paths are almost parallel to each other when passing the high probability region.
The gradients of the log density along theG-axis fail to guide optimization paths toward the high
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(a) default behavior of multi-path
Path�nder

(b) central region of plot (a) (c) result of multi-path Path�nder with
specialized initials

(d) Stan phase I sampler draws (e) reproduce (b) with� = 100 (f) compare expectation of5 of 133
observations

Figure 16: Illustration of weakly identi�ed posteriors for two parameters in the
mcycle_gp-accel_gp example. In (a), we see the result of Path�nder with default initial-
izations inuniform¹� 2–2º; in (b), we zoom in theG-axis of plot (a). The optimization paths are
plotted from initialization in white to later iterations in orange. In (c), we initialize parameters on
theGaxis between� 40and20, resulting in L-BFGS declaring convergence at various points along
theGaxis as a result of the weak identi�cation. Due to the poor approximations from Path�nder,
the importance resampling step in multi-path Path�nder only picks 4 distinct draws (recall that
sampling is with replacement). Short runs of adaptive HMC perform better than Path�nder (d), but
are expensive in terms of density and gradient evaluations. Figure (e) shows that a large history size
(� = 100as opposed to our default� = 5) improves the local Hessian approximations in optimization.
Figure (f) compares posterior expectations of parameters` 5, the mean of the Gaussian process for
5, in the reference draws (horizontal axis) and draws from multi-path Path�nder with history length
of � = 100(vertical axis).

probability region of the posterior. Figure 16c illustrates that with specialized initials, the positions
of the maxima found by L-BFGS span from� 40 to 20on theG-axis, a strong sign of weak posterior
identi�ability. Since Path�nder relies on estimating curvature along optimization paths to estimate
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