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Abstract

Nonstationarity in extracellular recordings can present a major problem during in vivo
experiments. In this paper we present automatic methods for tracking time-varying spike
shapes. Our algorithm is based on a computationally efficient Kalman filter model; the
recursive nature of this model allows for on-line implementation of the method. The model
parameters can be estimated using a standard expectation-maximization approach. In
addition, refractory effects may be incorporated via closely-related hidden Markov model
techniques. We present an analysis of the algorithm’s performance on both simulated and
real data.

Keywords: Spike sorting; non-stationarity; Kalman filter; hidden Markov model; mixture
model; EM algorithm.



1 Introduction

Despite decades of effort, spike sorting remains one of the frustratingly unsolved (or more ac-
curately, half-solved) problems in statistical neuroscience: many spike sorting algorithms work
quite well in some cases, but we still lack computationally efficient and robust methods that
perform well in all desired settings. The difficulties here are well-known and include issues of
nonstationarity, non-Gaussianity, temporal dependencies between spikes (e.g., refractoriness),
and overlapping spike shapes due to synchronous activity in nearby neurons (spike “colli-
sions”); see, e.g., [Quian Quiroga, 2007] for a brief overview, and [Lewicki, 1998, Sahani, 1999
for two in-depth reviews which remain fairly current over a decade after their original publi-
cation.

In this brief note we do not attempt anything so ambitious as a full solution of the spike
sorting problem; instead, we focus on developing computationally efficient methods for the
somewhat more tractable subproblem of automatically tracking time-varying (nonstationary)
spike waveform shapes'. These nonstationarities are quite common in long experiments in
vivo, and are most often due to drifts in the position of the recording electrode relative to
the cell body, but can also be due to changes in the health of the cell over the course of the
experiment, for example.

These nonstationarity issues have been addressed previously, and in fact with models that
are more powerful in some respects than the approach we propose here [Pouzat et al., 2004,
Bar-Hillel et al., 2006, Gasthaus et al., 2009]. Our approach has some advantages in terms
of simplicity and computational efficiency; we will discuss these issues at more length below.
To summarize briefly, we introduce a simple Kalman-filter model of the nonstationary spike
sorting problem; given this model, it is straightforward to adapt efficient recursive algorithms
to perform inference and clustering. Indeed, the recursive nature of the Kalman-based algo-
rithms make it easy to implement these techniques in an on-line manner. In addition, we can
adapt conceptually similar hidden Markov methods to incorporate simple refractory effects
in the model, which can enhance clustering accuracy in the case of low-SNR, high firing rate
recordings.

We begin by briefly reviewing the classic mixture-of-Gaussians (MoG) model for spike
sorting (section 2.1), along with the associated expectation-maximization (EM) algorithms
for parameter inference in this model. We then extend this basic MoG approach to include
nonstationary behavior in section 2.2, and discuss online implementations of the parameter
estimation algorithm in section 2.2.1. Finally, we incorporate Markovian refractory effects in
section 2.3, and demonstrate the application of the methods to simulated and real data in
section 3.

2 Methods

2.1 The Gaussian Mixture model and the EM algorithm

In this section we will briefly introduce our setting, along with some basic ideas and no-
tation which will be useful in the remainder of the paper. Let us first review a few basic

!Note that we will not address the important case of temporary changes in spike shape due to par-
tial inactivation of sodium channels during the relative refractory period [Fee et al., 1996, Lewicki, 1998,
Quirk and Wilson, 1999, Pouzat et al., 2004]; instead, we have longer-lasting, slower nonstationarities in mind
here.



steps which are common to almost all spike-sorting approaches: we assume first that the the
continuous raw extracellular voltage data has been band-pass filtered, to discard both slow
fluctuations in the voltage signal as well as high-frequency noise. Second, putative spikes are
detected, usually using simple threshold-crossing methods, but perhaps via more sophisticated
spike-by-spike “peeling” methods capable of resolving multiple overlapping spike waveforms
[Lewicki, 1998, Segev et al., 2004]. Third, relevant features of the spike shapes are extracted,
often via principal components or factor analysis or some other dimensionality reduction
method. Finally, these features are the input of a clustering algorithm that performs the
classification of the spike waveforms. Our emphasis in this paper will be almost entirely on
this final clustering step, although we should note that one frequently alternates between the
spike detection and clustering phases of these algorithms (using the inferred mean cluster
parameters to improve the spike detector), and the nonstationary methods we focus on here
could certainly be employed in an identical iterative manner.

Perhaps the simplest and most common probabilistic model underlying the clustering
process is the Mixture-of-Gaussians (MoG) model, in which each observed voltage waveform
snippet V is a sample from a mixture distribution

J
p(V) = Zazpz(v)a
z=1

with J denoting the number of distinct units present in the recording, z indexing the different
units, and the individual distributions given by the multivariate Gaussian

p=(V) = Ny.c.(V) (1)

with mean p, and covariance matrix C,. The mixture probabilities «, satisfy Y . a, =1
and a, > 0 for all z. Thus the parameter vector # summarizing this model includes our
information about the underlying mixture components and weights:

0= {(MZ? Cz7 az)lgng}-

If the identities z of the mixture components were observed, in order to estimate the model
parameters we would begin by writing down the likelihood p(V'|0, z) of the observed spike
data V given the model parameters 6 and the observed identities z, and then we could employ
standard likelihood optimization methods to obtain the maximum likelihood (ML) solutions
for . However, we do not observe z directly, and our likelihood is of the marginalized form

p(V10) =Y p(V,2]0),

with the mixture identities z treated as unobserved (“latent,” or “hidden”) data. Note that a
direct approach towards maximizing this likelihood requires that we marginalize out z, and a
direct optimization of this marginal probability may be difficult in general. The Expectation-
Maximization (EM) algorithm [Dempster et al., 1977] was developed as a method for estimat-
ing 0 without having to compute this integral. For brevity, we will not review the derivation
of the EM algorithm for the MoG model here (see, e.g., [Bilmes, 1997] for a highly legible
tutorial); however, we will build on these basic ideas as we develop our nonstationary model
below.
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Figure 1: A schematic illustration of the mixture-of-Kalman filters clustering approach. Time-
varying cluster means are generated by Eq. 2, which in turn are combined with noise (Eq. 4,
as indicated by the ellipses in the figure) to give rise to the observed data (indicated by the
grayscaled dots on the two-dimensional feature plane); from the combined (unlabeled) data
we would like to recover the time-varying cluster means and other model parameters (M step)
and correctly assign labels to each spike (E step).

2.2 Kalman filter Mixture model for spike sorting

Consider now the situation in which the mean voltage waveforms f; are non-stationary: for
each cluster j, instead of taking u; to be constant in time, we model this parameter with a
random drift

pitt = pl €l €~ N(0,C0). (2)

Here € represents additive Gaussian noise, and the discrete sequence of time stepst =1,...,T
corresponds to the experiment time index. We assume that only one observation Y occurs
per time step t:
vt _ 1% %f a spilfe occurs att (3)
() if no spike occurs at t,

and we retain the Gaussian model (Eq. 1) for the observations V! given z! and '“;':
Vi =l 0l i~ N(0,C2). (4)

Thus, given the sequence of cluster identities z¢, Egs. 2 and 4 correspond to a classical Kalman
filter [Roweis and Ghahramani, 1999, Durbin and Koopman, 2001], if we identify the vector
of time-varying means p! as our hidden Markov state variable and the voltage data V* as our
observations. Of course, in practice, z; are unobserved (these are exactly the variables we are
trying to infer), and so we need to marginalize over these latent variables; thus we are left
with a mixture-of-Kalman filters (MoK), instead of the simpler mixture-of-fixed-Gaussians



model?. Finally, in order to exploit the computational efficiency of Kalman filters methods,
we make the approximation that the observation covariances C’;ﬁ do not change in time (see
below and Discussion for a brief description of related approaches that take into account
non-stationarities in the observation covariances). See Fig. 1 for an illustration.

To perform inference in this model, we need to adapt the familiar EM method from the
MoG model for this MoK case. Let’s begin by more explicitly casting this inference problem
in terms of the EM framework. The parameters we want to infer are 6 = {(u}, C¥, C’V i)}
We have incorporated a Gaussian prior p(u) on the vector of means “E’ from Eq 2 note
that this prior is improper (does not integrate to one), since we have not constrained the
initial value of p;. In addition, we should emphasize that even though the prior over the y’s
corresponds to a random walk, more generally it can be interpreted as a term that penalizes
big changes in p; from one time step to the next. In particular, we show later in Section 3.1
that even when p;(t) changes more systematically than a random walk, the method works
well (see Fig. 5). Finally, for now, assume that our prior on the remaining elements of @ is
flat, though of course this may be generalized if we have additional prior information that
constrains the structure of the model. Now we want to optimize the marginal log-posterior

logp(A]Y") = log p(6) + log p(Y']6) = log p(s) +log > _ p(Y z|6).

The first step in the derivation of any EM algorithm is to write out the complete log-posterior.
In this case, we have:

log p(Y, z|6) + log p(11) = log p(z]0) + log p(Y|z,0) + log p(u)
T T J T
= logp(2'16) + Y logp(Y*[z',60) + > > log p(us|ui™),
=1 =1 =1 =2

t

where p(z']0) = o' corresponds to the mixture weights and the observation density p(Y*|2t, 9)

is given by
No O
p(YU 0 =4 5
Ny 0 )
0 1

the first column corresponds to the case Y = V* and the second column handles the case that
no data were observed at this time point, Y* = (J; we have set p(V*|z! = j,6) = N (where N
denotes the Gaussian observation density as defined in Eqs. 1 and 4), p(V|z! = J+1,0) =0
p(0]zt = j,0) = 0 and p(0|z* = J + 1,0) = 1. Note that we have added an additional
“background model” Gaussian (ANp) to the mixture. During the EM process only the weight
and covariance of this Gaussian will be allowed to change, in order to model variable degrees
of background noise; we will fix the mean pg, for simplicity.

2This model may be seen as a special case of the “switching Kalman filter” model [Wu et al., 2004], which
models an observed time series whose dynamics and observation processes change randomly according to a
Markov process; here we have J + 1 processes with fixed dynamics, and our observation is switching between
these in an i.i.d. manner (which is a special case of a Markov process). It turns out that inference in the
general switching Kalman model is significantly more difficult than in the special mixture-of-Kalmans model
discussed here.



Thus the complete log-posterior can be written as

T T J T
logp(Y, 2|6) + log p(p) = Zlogazz + ZIOgN#iwCV )+ Z Zlogp u]\,u
t=1 t=1

j=1t=2

T
-3 <10g o — Y(log |CY| + (V! — k)T (CY) (V! — u;»)

t=1

J T
Z Z C’]’-ﬁ)*l(uﬁ — pb 1) + const.

7j=11t=2

M\»—A

The next step is to write out the expected complete log-posterior; computing this expecta-
tion over the conditional distribution of the latent variable z constitutes the E-step of the EM
algorithm, while the maximization of the resulting terms (considered as a function of the pa-

rameters 6 = {a;, CJV, ué}) corresponds to the M-step. The expected complete log-posterior
here is

E,.jv4) logp(V. 2|0) + log p(k)

T T J T
= Ey(|vo) (Zlogp(th) +) " log p(V'|z, 0) ) +) 0 log p(ub|uk !
= t=1

j=1t=2

J T
> ot =4IV, )(logaj — 5(log |G [+ (V* — uf) " (€] ) (V! = u§->>>

j=0 t=1
J T
S T )+ o,
7j=1t=2
with
A Jlog ;— 3 (1og[CY [+(VE—it)T(CY); (Vi-it))
p(z' =V, 0) = : (6)

S8 6505 (log [CY [+(VE=4t, )T (CY)~1(VI—t,)

Thus the E-step turns out to be exactly the same as in the standard MoG model [Bilmes, 1997]

and corresponds to a probabilistic assignment of cluster identity to each sample, given the
parameters 6 from the previous iteration.

Now, in the M-step we have to optimize E,(.|v,g)logp(V, z|0) as a function of 6:

arg max {Ep(zmg) log p(V, 2]9)}

J T
= arg max { ZZp = 410" [logaj — 2(log |C’j‘-/| + (VP - M?)T(C;/)_l(vt _ ,u;)) -

=0 t=1

J T
N5 ST IRI
2 j Hj = Hj
j=11t=2

Since this objective function is a sum of simpler functions, we may optimize each piece in
turn: we have one optimization involving «, J optimizations involving j; (since we have fixed
po = 0), and finally J + 1 optimizations involving C]V .



The optimization of
J T

S5 pl = jlf) loga,

§=0 t=1

as a function of o (under the constraint that « forms a proper probability mass function)
leads to the intuitive solution

new _ =1 Pzt = 410)
af = S (8)

i.e., the updated mixture probability is just the average fraction of samples assigned to index
j under the parameter setting 0; again, this is exactly as in the MoG case.
Next we need to optimize

T A T
—%(ZP(?«%=j\9)(Vt—u§)T(C}/) P )+ () Cf)_l(ﬂz-—/ﬁ;_l))
t=1 =2

with respect to pu;, for each j between 1 and J (again, each optimization can be computed
separately). Here, for the first time, we exploit the Kalman nature of our model, and note
that each of these optimizations are quadratic in pj, with only nearest-neighbor dependence
between ,ué- and ;L;_l, and may be computed directly via a straightforward forward-backward
Kalman recursion. For the forward step, the mean and covariance of the forward distribution
p(pt|Y'Et) are given by

(C]H_l)F - COU(M?H ’Y1:t+1)

. -1
= ([(Cﬁ)F + C]“] + p(z :j‘Ytaé)(C]"/)_l)

(M§+1)F - E(M§_+1|Y1:t+1)
-1
_ <c;“>F([<c§>F+c;] <u§->F+p<zt=j|Yt,é><cy>—1Yt), (9)

with p(z! = j|Yt = @) = 0,V1 < j < J. These recursions can be derived by the usual
complete-the-squares argument, as in the standard Kalman filter setting; see, e.g.,
[Durbin and Koopman, 2001] for details.

The backward recursion is exactly the same as in the standard Kalman filter model, since
the backward step does not depend on the observed data except through the sufficient forward
statistics E(u¢|Y1?) and Cov (| Y H):

(W) = BUAYT) = (uh)" + 7} [ () = ()" |
(CDS = Cov(ut[y™T) = (CHF + I} [(CF)T = (CF + )] ()T

7= e fenr e (10)



Initialization: initialize a mixture-of-Gaussians (using e.g. J-means to determine centers
[1, -, pbg of J components. (Predetermine or cross-validate over J.) Use the output of the
mixture-of-Gaussians algorithm to initialize the mixture-of-Kalman filters model.

Repeat
E Step
Update memberships z;; (Eq. 6)
M Step
Forj=0:1J
Update o (Eq. 8)
End For
Forj=1:1]
Update pf; (forward-backward method)
End For
Forj=0:1J
Update C]V (Eq. 11)
End For

Until convergence

Table 1: MoK Algorithm

The idea then is to run the forward algorithm to obtain (uz«)F, (C’]t-)F for 1 <t < T, then
initialize the recursion

(17)% = (1)
(c)® =)
and propagate backwards for t = 7,7 — 1,...,1. When the backwards recursion concludes

at t = 1, update MJT — (,uJT)S, and we are done with the update for p;.
Finally, optimizing

Sl = 1) [1og CY |+ (V! =t YT(CY )y (Vi
t=1

D=

with respect to Cj‘-/, leads to the following update rule for Cj‘-/:

St Pzt = §O)(VE— )T (VE— b
Zthl p(zt = ]‘é)

again echoing the solution in the MoG case.

To summarize, the full MoK algorithm (Table 1) consists of the standard MoG E-step to
obtain the probabilistic assignments p(z! = j|V?, é), followed by the standard MoG M-step to
update the mixture parameters « then a slightly modified Kalman forward-backward sweep
for maximizing Eq. 7, and finally a standard MoG-like update for the covariance parameters
cv.

We should note before continuing that it is straightforward in principle to also allow the
mixture weights to vary with time by introducing a state-space model for these parameters,

(C) e = ; (11)



and applying an approximate EM approach along the lines of [Smith and Brown, 2003] to iter-
atively update these parameters. For that matter, we could also introduce a state-space model
for the observation covariances CJV, although this is somewhat more complicated (since we
must maintain the positive definiteness of C]V ). We do not pursue this direction further here;
again, see [Bar-Hillel et al., 2006, Gasthaus et al., 2009] for some related approaches. Finally,
we should note that our algorithm does not include an EM update rule for the dynamics noise
Cj’.‘ (recall from Eq. 2 that this parameter determines how much the mean waveform shape
pj may change from one timestep to the next). Instead, we assume a fixed value for Cf ,
and show later (see Section 3.2) that varying this parameter over several orders of magnitude
has only a weak effect on spike classification for two different real data sets. Even though
we do not pursue this direction further here, it is possible to derive an EM update for C*
directly from the output of the forward-backward algorithm; see [Shumway and Stoffer, 2006]
for details.

2.2.1 Online clustering

In many applications of spike sorting, spike sorting must be carried out in close to real time.
In neuronal prosthetic applications, for example, neuronal activity simultaneously recorded
from hundreds of electrodes needs to be transformed into a “motor” action on a time scale
of hundreds of miliseconds [Donoghue, 2002, Zumsteg et al., 2005]. To satisfy such demands,
a spike sorting algorithm must be able to estimate the model parameters in an “on-line”
fashion.

One major advantage of the MoK is that the forward-backward method introduced above
for updating the cluster means f; permits a direct on-line implementation: as each new spike
is observed at a given time t,, we may update the required quantities online in the following
manner. First, compute the weight p(z;, = j|V?°, é), then run the filter backwards from time
t, (incorporating this new piece of information V') to time ¢, — s, where s is the number of
time steps required for the updated values of ! to effectively settle back down to the values
obtained before the data at time t, were observed. Finally, update the weights p(z; = j|V?, é)
for t, —s <t <'t,. Each of these steps requires a fixed amount of computation time (i.e., the
computation time does not scale as a function of ¢,, or more generally T'), and therefore we
may in principle repeat these partial EM updates once or a few times per observed spike, to
ensure accurate online assimilation of each new data point.

It is also possible to update the estimate for the observation noise C'V in an online manner.
Recall that our estimate for the noise variance in the offline version of the algorithm is given
by Eq. 11. To apply this equation online, we just need to note that, for time indices t < s,
the means p} and the responsibilities p; = p(z = j[V*, 6) do not change, so we just need to
keep track of the sufficient statistics

Ag = (V= p)T(V — b
1<s

B,j = Z Dtj

1<s
and then update our estimate as

Agj 4 Yy s (VE—= )T (V! — pib)
Bgj + 2 55 Ptj

Yy = (12)
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Figure 2: (A) A simple hidden Markov model for spike trains. The spike-generation process
is modeled as a random (hidden) variable with a ring structure. The hidden state labeled
spk is the state in which the neuron fires. After one time step the hidden variable leaves
the spiking state and jumps into the refractory state (ref), in which the neuron is unable to
produce a spike. From this state the hidden variable transitions with rate ags to the rest (rst)
state, and after some time to the spk state with rate as;, in which the cell fires again. The
sum of the mean times the system will spend in the refractory and rest states corresponds
to the mean ISI for the cell. (B) Full model of the data generation process. The complete
model has the architecture of a slightly extended hidden Markov model: the hidden states
q' are coupled to the observed spike data Y* only via their connection to the hidden cluster
identities z¢. Once the hidden identities z! are marginalized out, ¢' and Y together form a
hidden Markov model (bottom).

=

—

2.3 Including Markovian refractory effects

In the model discussed in Section 2.2, each spike waveform is generated independently of all
others. One simple feature that has not been accounted for in our model is the ocurrence of the
refractory period, a short period after each action potential during which the cell will not fire
again. In this section, we account for this effect by introducing a simple hidden Markov model
(HMM) for neural refractoriness. Again, related approaches have been employed previously
[Sahani, 1999, Herbst et al., 2008], as we will discuss at more length below.

As before, we model each observed voltage waveform snippet V' as a sample from a mixture
distribution, where the individual distributions are given by multivariate Gaussians with mean
,u§~ and covariance C’]V, and z denotes the hidden cluster identity of the observed snippet. In
order to account for refractory effects, we now introduce an additional hidden variable q;- for
each neuron, which represents the potential of the cell to generate a spike at time ¢. For
clarity, we first introduce a one-variable HMM for single cell recordings. We then generalize
to the multi-neuron case in subsection 2.3.2.

2.3.1 Single neuron model

We assume a simple three-state Markov model for clarity (see Fig. 2); as will become clear
below, this can be generalized easily. Our model associates an observation Y with a spike
(Yt = V) when the hidden random variable ¢ equals one at that time, ¢' = 1. We will refer

10



to this state as the spiking state, and we assume that the system spends just one timestep
in this state; i.e., g; transitions deterministically away from the spiking state into ¢'T' = 2,
the refractory state. The neuron is unable to spike in this state (i.e., this state represents an
absolute refractoriness); from here, ¢; transitions with some rate to the rest state. The sum
of the mean times the system will spend in the refractory and rest states is precisely equal
to the mean inter-spike interval (ISI) for the cell. The state space of ¢ has a ring structure:
a spike is generated in state 1, and then ¢ must jump through both remaining states before
jumping back into the spiking state.

State transitions are determined by the state transition probability distribution A = {a;},
where a;, = p(qt = kl¢t=t =14), 1 < i,k < 3:

0 1 0
A= 0 1-— ass ass s (13)
asy 0 1—as

where as mentioned above the neuron’s mean ISI is given by 1/as3 + 1/as;.
We can now write down an expression for the assignment of cluster identity to each sample
(E-step):

p(ze YT = sz ¢y = quw” (2'l¢", Y*T)
= qulYlT (2", Y")
= ZPQIYlT (lgp(Y2") /p(Vila).  (14)

The third term in Eq. 14 is given by Eq. 5. The second term is determined by the generative
model and can be summarized as:

01 0
pZlg)y=|p» 0 1—-p |, (15)
p 0 1-p

where the first column corresponds to z = 0 and the second column to z = 1, and the third
column to z = (), and where p represents the probability of the background model Gaussian,
No, emitting an observation. The term in the denominator is just

p(Yilgr) = ZthIZ (2'|q"). (16)

Thus to compute the assignments p(z;|Y1'T) the only nontrivial part is to compute the
conditional state probabilities p(¢‘|Y'?). To handle these, note that once we marginalize
out z; via Eq. 16, ¢; and Y; together form a hidden Markov model, as summarized in Fig. 2.
Thus we may employ the standard HMM forward-backward algorithm (as summarized, e.g.,
n [Rabiner, 1989]) to obtain p(¢‘|[Y'"). Once the assignments p(z|Y"”) are in hand, the
remainder of the parameter updates (M-step) are straightforward: the Kalman terms re-
main the same as discussed above, while the M-step for the transition probabilities p(q*|¢‘~!)
(specifically as3 and as;) is standard [Rabiner, 1989]. We will refer to this combined mixture-
of-Kalmans HMM model by the abbreviation MoKHMM below.

11



2.3.2 Full model — many neurons case

To sort the spikes from many simultaneously recorded neurons, we may in principle proceed as
in the simpler single-neuron case. We introduce a hidden variable ¢; for each neuron; assuming
J neurons, the states of the hidden variables can be summarized by the vector ¢* = (¢} ... ¢%),
where q§ is a number between 1 and 3, representing the state of the j—th hidden variable
associated with data at time t. The EM iteration for the full model is completely analogous
to the single neuron case if we replace the state transition probability distribution and the
observation symbol probability distribution by the corresponding elements of the joint HMM
for J cells. The state transition probability distribution A = {a;;} for the joint process may
be written most simply in terms of the Kronecker product of the individual transition matrices
A = {aj }:
A=A A’®...0 47,

due to the independence of each ¢'. Note that this joint transition matrix A is fairly sparse,
which enhances the efficiency of the forward-backward procedure, in which the computational
time is dominated by repeated matrix-vector multiplications involving the transition matrix.

The joint observation probability distribution may be defined similarly. The conditional
mixture identities p(z|q!) are constructed in the natural way: neurons for which the corre-
sponding elements of ¢; are in the spiking state are assigned as spiking in this time bin with
probability one, and if no neurons are in the spiking state then we assign probability p to
the background model and the remainder, 1 — p, to the null observation, just as in Eq. 15.
For the observation density p(Y?|z!), if one or fewer neurons are in the spiking state, then we
revert to the single-neuron observation and plug in the Gaussian formulas discussed above.
Conversely, if more than one element of 2! is labeled “on,” then we have a simultaneous spike
in this time bin, and we can modify the mean and covariance of our observation Gaussian
accordingly, e.g. by summing the means of the spiking neurons. (The simulations and data
considered in the Results section below deal largely with the case where the expected number
of spike coincidences is negligible, and so we did not pursue this aspect of the model in great
depth.)

This completes the specification of our algorithm. Of course the attentive reader will have
noticed a problem: the dimensionality of the effective state variable ¢ here scales exponentially
with .J 3. Thus this exact approach is restricted to the setting of fairly small J in high-firing
regimes. (To be clear, this concern only applies to the Markov refractory model described
in this section; the computational complexity of the basic MoK discussed in section 2.2 is
not subject to any such exponential dependence on J.) Approximations to the exact E-step
such as Gibbs sampling or variational mean field algorithms have been developed elsewhere
[Jordan, 1999, Herbst et al., 2008]; further exporation of these methods here remains a topic
for further research.

3More precisely, the state dimensionality scales exponentially with the number of cells for which we im-
plement a Markovian refractory model; for many low-firing cells, it will be simpler to just revert back to the
original MoK model, to avoid such an explosion in computational complexity.
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3 Results

3.1 Clustering of synthetic data

We began by testing the algorithm (a MATLAB version of the code, as well as several example
synthetic data sets is publicly available at http://www.columbia.edu/~amc2257/ana/Code.html)
on simulated data; this allowed us to quantify the performance in cases where ground truth
information was available over a variety of noise levels and degrees of nonstationarity. As
discussed in e.g. [Quian Quiroga, 2007], a complete spike sorting system includes modules
for spike detection, feature representation, and clustering. The focus of our work is in the
clustering stage, and we will use pre-existing methods for spike detection and representation
(see section 3.2 for details). We therefore restrict our attention here to simulations in which
we model dynamic mixtures in a simple two-dimensional setting; we have in mind the com-
mon approach of projecting putative spike waveforms onto a plane spanned by the first two
principal components of the observed voltage segment data (the choice of a two-dimensional
representation here is merely for visualization purposes. Both the MoK and MoKHMM can
handle higher-dimensional representations of the data; see online for an example). To test
the complete model (MoKHMM), we further restricted the analysis to mixture models with
just J = 2 components. However, if the Markov refractory model is ignored (as would be
appropriate in low firing rate settings, where refractory violations are less of a concern), the
number of component units can be easily generalized to an arbitrary J (see Section 2.3.2 for
further details).

We test our model on two different scenarios. In Section 3.1.1 we assess the performance
of the algorithm on synthetic data that was generated according to the model described in
Section 2.3.2. In Section 3.1.2 we relax some of the assumptions of the MoK model (namely
the Gaussian model for the observations Y* in Eq 1 and the Gaussian random drift of x; in
Eq 2) and test the performance of our model on a more challenging data set that deviates
from these assumptions.

3.1.1 Synthetic data set 1: dynamic mixture of Gaussians

This data set mimics two nonstationary clusters corresponding to two different cells. Initially,
the clusters are well-separated but after some time the movements in the cluster centers induce
overlaps. The data were generated according to the model described in Section 2.3.2. Figure
3A (right panel) shows the resulting synthetic data set. We compared the performance of
our MoK with a Markov model for neural refractoriness (MoKHMM) against a standard
mixture-of-Gaussians model (MoG). Both methods were applied to the same spike data, and
were supplied with the correct number of clusters .J.

The clustering solutions for the MoG and MoKHMM are shown in Figure 3A (left and
center panels, respectively). As can be seen clearly from the figure, in this scenario it is very
difficult to estimate the correct clustering based on a “stationary” view of the data (in which
temporal information is discarded). The MoG, which assumes stationarity of the data, fails
to provide an accurate estimate of the true underlying labels. The MoK approach, on the
other hand, allows us to successfully track the clusters’ centers over time (see Figure 3B),
and produces a solution that is much closer to the underlying ground truth (fraction of spikes
correctly classified was 0.9 for the MoKHMM, versus 0.72 for the MoG).

With this data set we intended to simulate the case of high firing rate neurons, where
refractory period violations (i.e., the occurrence of two spike observations in a time window
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Figure 3: Clustering results obtained for an example synthetic dataset. Simulated spikes
in a two-dimensional feature space were sampled from a mixture of two bivariate Gaussian
distributions. In addition, both cluster centers (each associated with a different neuron)
move constantly according to Eq. 2, and for both clusters the spike-generation process follows
the three-state model described in Section 2.3.1 (see Fig. 2A). (A) Clustering solution for a
Gaussian mixture model (left), clustering solution for the Kalman-filter mixture model with an
HMM for neural refractoriness (center), and true underlying mixtures (right). (B) Estimated
and true underlying 2D movement of the centers of the clusters (u1 and u2) as a function of
time. Error bars represent posterior s.d. for u (computed by taking the square root of the
diagonal elements of the forward-backward covariance (C;)S from Eq. 10). The position of
the center of the clusters as estimated by the MoG has been plotted for comparison (dashed
lines), with the errorbars in this case indicating the s.d. of the observation noise C'JV . We
found that the MoKHMM significantly outperforms an MoG and, is able to accurately track
the clusters over time when applied to this example synthetic dynamic mixture-of-Gaussians
with substantial cluster overlap.

of length 1 ms) are often observed in the data. There are 41 refractory period violations
in this data set, out of which our model is able to detect 40. Figure 4 shows the true and
estimated hidden state sequence for a subset of the data. While the tracking of the complete
sequence is not perfect (we find that correctly estimating the hidden states becomes more
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Figure 4: True (black) and estimated (gray) hidden states for a subset of the synthetic dataset
of Fig. 3. The inset shows an expanded version of a small portion of the sequence of hidden
states for cluster 1 to facilitate visualization of the transitions. While the tracking of the
complete state sequence is not perfect, the MoKHMM is able to detect most of the refractory
period violations in the example synthetic data set of Fig. 3

difficult when the clusters overlap stongly) the model is able to detect most of the refractory
period violations, and taking these refractory effects into account improves the performance
of our model. When we try to sort the same data with a model that does not include the
Markov model for refractoriness (MoK) we find that the fraction of spikes correctly classified
drops to 0.86 (as opposed to 0.9 for the full model). These results were replicated consistently
over many similar numerical experiments (data not shown).

3.1.2 Synthetic data set 2: Robustness with respect to relaxation of the model
assumptions

We next tested the robustness of our algorithm by relaxing some of the underlying assumptions
of the model. How well does the model sort data that was not generated according to a
Gaussian model? How accurately is the model able to track cluster movements that do not
correspond to a simple Kalman filter?

To answer these questions we generated synthetic data for which spikes (again, as repre-
sented in a two-dimensional plane for simplicity of visualization) were sampled from a mixture
of two bivariate ¢ distributions (with four degrees of freedom) as opposed to a mixture of Gaus-
sians [Shoham et al., 2003]. In this data set, one of the clusters (associated with a neuron)
moves with a constant, deterministic velocity towards the other cluster (which is stationary
and associated with noise). Note that this scenario is different from the one described in
Section 3.1.1, where both clusters in the mixture were associated with neurons and both had
Gaussian temporal dynamics. In addition, the center of cluster 1 (neuron) experiences a large
discontinuous jump about halfway through the simulated experiment (Figure 5A, right panel,
black line). The spike-generation process for cluster 1 is given by the model described in
Section 2.3.1 (see also Fig. 2A). For cluster 0 (noise), spikes were generated at random with
a fixed probability p = 0.15.

Figure 5A shows the clustering solution for a MoG and the MoKHMM, together with the
posterior standard deviation for the estimates of the center of each cluster at different times
through the length of the simulation. As with the previous data set, our method outperforms
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Figure 5: Robustness of the MoK to relaxation of the model assumptions. Spikes in a two-
dimensional feature space were sampled from a mixture of two bivariate t distributions, as
opposed to a mixture of Gaussians. In addition, cluster 1 (associated with a neuron, red)
moves deterministically and with constant velocity towards cluster 0 (associated with noise,
black), but experiencing a discontinuous jump about halfway through the experiment (panel
A, right panel, black line). The spike-generation process for cluster 1 is given by the three-state
model described in Section 2.3.1 (see Fig. 2A). (A) Left: MoG clustering solution. Dashed
lines represent noise covariance ellipses computed from CJV for each cluster. Center: clustering
solution for the MoKHMM. Full lines represent estimated observation noise covariance ellipses
centered at the inferred cluster means at a few representative times through the length of the
simulation. Covariance ellipses for the observation noise CJV in the MoG model are replotted
for comparison. Right: true underlying mixtures and trajectory of cluster 1 (red). (B)
Estimated and true underlying 2D movement of the center of cluster 1 (41) as a function of
time. Error bars represent the posterior s.d. of u, computed as in Fig. 3. The position of the
center of cluster 1 as estimated by the MoG has been plotted for comparison (dashed lines +
estimated observation noise s.d.). Even in a case in which the data set deviates significantly
from the model assumptions (See Section 3.1.2 for details), we found that the Mok has a
higher clustering performance than the MoG and is able to accurately track the position of
the centers as a function of time.

a simple MoG (fraction of spikes correctly classified was 0.96 for the MoKHMM and 0.88
for the MoG). Even though the underlying 2D movement of the center of cluster 1 (u1)
deviates significantly from a random walk, our model is still capable of accurately tracking
its trajectory (Figure 5B). Note that towards the end of the simulation, when both clusters
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overlap, it becomes harder to accurately estimate the position of cluster 1 (Figure 5B, left
panel). We observe a similar effect for the estimation of the hidden state ¢ (not shown).

3.2 Clustering of real data

Finally, we tested our method on two different real data sets. The first data set, for which the
“ground-truth” labels are partially known, consists of simultaneous intracellular and extracel-
lular (tetrode) recordings of cells in the hippocampus of anesthetized rats (see [Harris et al., 2000]
for a detailed description of this data set). The second data set, for which the “ground-truth”
labels are unknown, corresponds to extracellular (single electrode) recordings of cells in the
midbrain of awake songbirds. In each case, the MoK appears to qualitatively outperform the
MoG in tracking the non-stationarity visible in this data.

3.2.1 Data set with known “ground truth” labels

We used a four-minute subset of the data set here (in particular, we used data set d533101 at
http://crens.org/data-sets/hc/he-1/about), in which recordings from an extracellular tetrode
and an intracellular (IC) electrode were made simultaneously. Action potentials detected on
the extracellular channels may include the action potentials generated by the intracellularly
recorded cell (which are recorded with sufficiently high SNR to be treated as ground truth
here), but typically include spiking activity from other cells as well. The data were recorded
at 10 kHz and bandpass filtered (300Hz - 3kHz), and spikes on the intracellular channel
were detected as the local maxima near which the first derivative of the voltage exceeded a
threshold. Putative spikes on the extracellular channels were determined as the local maxima
near voltage excursions exceeding 6 median absolute deviations in magnitude. We extracted
40-dimensional spike waveforms from around each spike (19 samples before and 20 samples
after the peak). The positions of the spike waveforms were aligned by upsampling, shifting
and then down-sampling the waveforms. The extracellular spikes corresponding to action
potentials from the identified neuron were determined as the spikes occurring within 0.1 ms
of the IC spike. PCA dimensionality reduction was performed on the spike waveforms from
one of the four tetrode channels. The first two principal components were used as the input
to our spike sorting algorithm. The dataset consists of 2491 putative spikes, 786 of which
were also detected on the IC channel.

As shown in Figure 6A, there is a clearly visible change in waveform shape of the identified
neuron over time. This can also be seen from the non-Gaussian shape of the clusters on
the right panel of Figure 6B (in particular, see cluster 1, red), which shows the underlying
labeling of the identified cell (red) and presumably additional cells and background noise
(black), for one channel of the tetrode. The inferred labels are illustrated on the left panel
of Figure 6B. For comparison, the same data set was also sorted using the MoG (which
does not make use of any information about the occurrence times of the spikes). We found
that our algorithm outperforms the MoG on this data set (fraction of correctly classified
spikes £+ binomial proportion confidence interval for MoK was 0.91 + 0.006 as opposed to
0.89 4+ 0.006 for MoG); this difference is modest here, largely because the clusters remain
fairly well separated even if temporal information is discarded. Note that here we use the
MoK model instead of the full MoKHM model to sort this data, since this data set does not
contain any refractory period violations and sorting the data with the full model leads to the
same classification performance. Turning off the HMM for neural refractoriness here has an
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additional advantage in terms of computational efficiency: instead of taking the time index
t to be the experimental time, we may take ¢ to be the spike number. This straightforward
modification makes the algorithm significantly faster (time for a single EM iteration in the
MoK setting is ~ 1.4 secs as opposed to ~ 90 secs for the full MoKHM model).

The positions of the clusters’ centers (u1 and p2) as a function of time are shown in Figure
6C. In agreement with Figure 6A, we found that the center of cluster 1 (identified cell) drifts
considerably with time, whereas the center of cluster 2 is mostly static. Our results did not
depend strongly on the value of CJ“ used; recall that this quantity controls the variability in
the drift of the cluster means p;. We experimented with settings of CJ‘.‘ over several orders of
magnitude; classification performance remained at 90% over this range.

In an attempt to improve the overall performance of both algorithms, we tried sorting the
data by combining the signals from the four tetrode channels. We appended the 4 voltage
snippets extracted from each of the channels into a single vector, and then performed PCA
dimensionality reduction on the combined data. This procedure led to a slight (~ 2%) increase
in the performance of the algorithms. Adding more dimensions to the spike representation
(e.g., three PC instead of two) had an even smaller effect. Increasing the number of clusters
in the mixture (e.g, J = 3), did not increase the number of spikes of the labeled cell that were
correctly classified.

3.2.2 Data set with unknown “ground truth” labels

We used a twenty-minute data set, in which recordings from a single extracellular electrode
were made from the auditory midbrain of an awake, restrained zebra finch, during playback of
different types of auditory stimuli. The data were recorded at 24 kHz, amplified (x1000), and
filtered (300-5000 Hz; A-M Systems). Spike times were detected online using a spike threshold
discriminator and spike waveforms were saved for off-line sorting. Waveforms consisted of
293-dimentional vectors, and we used the first two principal components of each vector as the
input to our algorithm. The data set consists of 14713 putative action potentials.

Figure 7A shows the first two PCs of the extracted voltage snippets color-coded according
to occurrence order. While one of the clusters (cluster 1) stays mostly static throughout the
recording session, the other one (cluster 2) drifts considerably over time. The inferred labels
using a mixture-of-Gaussians are shown in Figure 7B, and those assigned by our algorithm
are illustrated in Figures 7C and D, for two different values of the dynamics noise parameter
(C’f ), respectively. Note that even though this new data set contains substantial drift, the
two cells still remain fairly well separated, which leads to similar clustering assignments for
the MoK and MoG. Since the true labels of the data are not known, we compare the MoG
and the MoK in terms of their associated observation error ellipses, which are a measure of
the uncertainty in the observations. Smaller error ellipses mean decreased uncertainty and in
this sense we found that the MoK outperforms the MoG.

As before, we found that the clustering assignments for the MoK did not depend strongly
on the value of Cf used (c.f. Figures 7C and 7D), as expected. Varying the dynamics noise
parameter has a more visible effect on the estimation of the clusters’ position over time. This
can be seen clearly from Figure 8: smaller values of Cf lead to decreased variability when
tracking the position of the clusters’ centers as a function of time (c.f. panels A and B of
Figure 8). In agreement with Figure 7A, we found that the center of cluster 1 stays relatively
stationary, while the center of cluster 2 drifts considerably over time. The MoK seems to do
a good job overall of tracking the nonstationarity evident in Figure 7A.
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Figure 6: Clustering results and mean-tracking for data for which the ground truth labelling
of one neuron is known (see Section 3.2.1 for details). (A) Subset of the extracted voltage
snippets from a single extracellular electrode for the identified cell (cluster 1 in panel B).
Different levels of gray represent different occurrence times (dark gray corresponds to the
beginning of the recording session and light gray to the end). The amplitude of the detected
waveforms changes visibly with time (see also panel C). (B) Left: clustering solution for the
MoK. Full lines represent the estimates of the center of each cluster at diferent times through
the length of the experiment. The corresponding observation noise covariance ellipses for C]V
in the MoG are plotted for comparison. Right: true underlying labels of the recoded data, as
determined by intracellular recording. (C) Estimated cluster centers (u; and p2) as a function
of time, + posterior s.d., as in Figs. 3 and 5. Estimated MoG means, + estimated observation
noise s.d., plotted for comparison (dashed). Gray circles represent the occurrence time of the
waveforms plotted in panel A. The use of a MoK on this data set allows us to successfully
track nonstationarities in the clusters’ positions.

4 Discussion

We have introduced a simple Bayesian method for tracking non-stationary spike shapes in
extracellular recordings. The basic model we employ can be seen as an extension of the
usual mixture-of-Gaussians model for spike sorting to the case that the cluster means are
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Figure 7: Clustering results for a data set for which the ground truth labeling is not known(see
Sec. 3.2.2 for details). (A) Extracted voltage snippets in a two-dimensional feature space color
coded according to occurrence order (dark gray corresponds to the beginning of the recording
session and light gray to the end). (B) Clustering assignments for a MoG model. Dashed lines
represent the covariance ellipses for the observation noise C’]V . (C) Clustering assignments for
the MoK, for C]‘.L = 1. Noise covariance ellipses for the MoK (full lines) and MoG (dashed
lines) as in Fig. 5. (D) Clustering assignments for the MoK, for C;»‘ = 0.1. Noise covariance
ellipses for the MoK and MoG as in panel C. Even though the labeling of the data produced
by the two methods is similar, the use of a MoK rather than a MoG results in decreased
uncertainty in the observations as measured by the associated observation noise covariance
ellipses.

allowed to vary with time. The Gaussian nature of the model leads to efficient computation
based on standard Kalman filter methods; in particular, the required forward and backward
recursions can be adapted for on-line implementation, as discussed in section 2.2.1. Despite
the simplicity and constrained nature of the model, we have found that these methods are
effective and fairly robust when applied to simulated and real data. In addition, it is possible
to incorporate refractory effects into the model via closely-related hidden Markov model
techniques.

As emphasized in the introduction, our work is far from the first to address these is-
sues. For example, Monte Carlo-based methods for incorporating non-stationarity have
been proposed which are more powerful and flexible but more computationally expensive
[Pouzat et al., 2004, Gasthaus et al., 2009]. In addition, more powerful nonparametric Bayesian
methods can be employed to perform automatic model selection and averaging (i.e., a proper
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Figure 8: Estimated cluster centers (y1 and pg) for the data set in Fig. 7 as a function of
time, £ posterior s.d., as in Figs. 3, 5 and 6. Estimated MoG means, + estimated observation
noise s.d., plotted for comparison (dashed). (A) C]’.L =1, (B) C]’.L = 0.1. A smaller value of
C;.‘ leads to decreased variability in the estimate of 1; as a function of time (compare panels
A and B). In both cases, while cluster 1 stays mostly stationary over time, cluster 2 drifts
considerably (c.f. Fig 7).

quantification of our uncertainty about the number of cells present), a topic we do not ad-
dress at all here?; see, e.g., [Wood and Black, 2008, Gasthaus et al., 2009] for further details.
[Bar-Hillel et al., 2006] took a similar approach to nonstationarity tracking as ours; in fact
their model for nonstationarity was more general, in that [Bar-Hillel et al., 2006] allow both
the covariance and the mean of the distribution of spike shapes to change with time. We
make the approximation that only the cluster mean varies significantly in time, in order
to exploit the more computationally efficient Kalman filter methods emphasized here. Fi-
nally, [Wolf et al., 2009] recently employed an online Gaussian-based iterative tracking scheme
which is similar in spirit to the forward recursion of the Kalman filter; these authors went
further, implementing online hardware control of the electrode position to stabilize the record-
ing quality. It would be interesting to explore whether the online expectation-maximization-
Kalman approach we have presented here for tracking multiple clusters could lead to a more
accurate and robust method for electrode stabilization.

Related approaches to incorporating refractory effects in spike sorting algorithms have
also been pursued. [Sahani, 1999] discusses a number of these approaches. At one end of the
spectrum we can simply discard spike pairs which cause a “refractory violation”; this is done
semi-manually in many experimental labs, though more principled expectation-maximization-
based approaches are available [Sahani, 1999]. On the other hand a number of works have
pursued more intricate hidden Markov models, in which the observed voltage depends on the
precise submillisecond spiking state of the neuron, or on the cell’s longer-term spike history
[Sahani, 1999, Fee et al., 1996, Pouzat et al., 2004, Herbst et al., 2008]. Our work represents
a computationally-efficient compromise position between these two extremes. As emphasized

4Standard methods, such as cross-validation, can be readily applied to the Kalman setting to determine
the number of clusters J. The development of more powerful model selection methods remains a subject of
future work.
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in section 2.3.2, an important direction for future work will be to develop more efficient and
scalable methods in the setting of large numbers of isolable units.
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