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We discuss an idea for collecting data in a relatively efficient manner. Our
point of view is Bayesian and information-theoretic: on any given trial,
we want to adaptively choose the input in such a way that the mutual in-
formation between the (unknown) state of the system and the (stochastic)
output is maximal, given any prior information (including data collected
on any previous trials). We prove a theorem that quantifies the effective-
ness of this strategy and give a few illustrative examples comparing the
performance of this adaptive technique to that of the more usual non-
adaptive experimental design. In particular, we calculate the asymptotic
efficiency of the information-maximization strategy and demonstrate that
this method is in a well-defined sense never less efficient—and is gener-
ically more efficient—than the nonadaptive strategy. For example, we are
able to explicitly calculate the asymptotic relative efficiency of the stair-
case method widely employed in psychophysics research and to demon-
strate the dependence of this efficiency on the form of the psychometric
function underlying the output responses.

1 Introduction

Many experiments are undertaken with the hope of elucidating some kind
of “input-output” relationship: the experimenter presents some stimulus to
the system under study and records the response. More generally, the exper-
imenter places some observational apparatus in some state—for example,
by pointing a microscope to a given location or selecting some subfield in
a database stream—and records the subsequent observation. If the system
is simple enough and a sufficient number of observations are made, the re-
sulting collection of data should provide an acceptably precise description
of the system’s overall behavior.

Given this basic paradigm, in which the experimenter has some kind of
control over what stimulus is chosen or what kind of data are collected, how
do we design experiments to be as efficient as possible? How can we learn
the most about the system under study in the least amount of time? This
question becomes especially pressing in the context of high-dimensional,
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complex systems, where each input-output pair typically provides a small
amount of information about the behavior of the system as a whole and
opportunities to record responses are rare or expensive (or both). In such
cases, good experimental design can play an essential role in making the
benefits of the experiment worth the cost.

How can we precisely define this intuitive concept of the efficiency of an
experiment? First, we have to define what exactly we mean by experiment.
We use the following simple model of experimental design here (we have
neurophysiological experiments in mind, but our results are all general with
respect to the identity of the system under study). The basic idea is that we
have some set of models ®, where each model 6 indexes a given proba-
bilistic input-output relationship. More precisely, a model is a set of regular
conditional probability distributions p(y|x, 8) on Y, the set of possible out-
put responses, given any input stimulus x in some space X. Therefore, if
we know the identity of the model 8, we know the probability of observing
any output y given any input x. Of course, we do not know 6 exactly (oth-
erwise we would not need to perform any experiments); our knowledge of
the system is summarized in the form of a prior probability measure, py(9),
on ©, and our goal is to reduce the uncertainty of this distribution as much
as possible. To put everything together, the joint probability of 6, x, and y is
given by the following simple equation:

p(x, y,0) = po(0) p(x) p(y|x, 6).

Now we can define the “design” of our experiment in a straightforward
way: on any given trial, the design is specified completely by the choice
of the input probability p(x), the only piece of the above equation over
which we have control. One common approach is to fix some p(x) at the
beginning of the experiment and then sample from this distribution in an
independent and identically distributed (i.i.d.) manner for all subsequent
trials, independently of which input-output pairs might have been observed
onany previous trial. Alternatively, we could try to design our experiment—
choose p(x)—optimally in some sense, updating p(x) online, on each trial, as
more input-output data are collected and our understanding of the system
increases. (The simplest special case of this would be to choose p(x) to put
all probability mass on a single x, where x is optimized on each new trial.)
One natural idea would be to choose p(x) in such a way that we learn
as much as possible about the underlying model, on average. Information
theory (Cover & Thomas, 1991) thus suggests we choose p(x) to optimize
the following objective function,

I({x, y}; 6), (1.1)
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where I(.; .) denotes mutual information. In other words, we want to choose
p(x) adaptively to maximize the information provided about 6 by the pair
{x, y}, given our current knowledge of the model as summarized in the
posterior distribution given N samples of data:

pn©) = pO{xi, yihi<i<n).

We will take this information-theoretic concept of efficiency as our start-
ing point. We note, however, that similar ideas have seen application in a
wide and somewhat scattered literature: in statistics (Lindley, 1956), com-
puter vision (Denzler & Brown, 2000; Lee & Yu, 1999), machine learning
(Luttrell, 1985; Mackay, 1992; Cohn, Ghahramani, & Jordan, 1996; Sollich,
1996; Freund, Seung, Shamir, & Tishby, 1997; Axelrod, Fine, Gilad-Bachrach,
Mendelson, & Tishby, 2001), conceptual psychology (Nelson & Movellan,
2000), psychophysics (Watson & Pelli, 1983; Pelli, 1987; Watson & Fitzhugh,
1990; Kontsevich & Tyler, 1999), medical applications (Parmigiani, 1998;
Parmigiani & Berry, 1994), and neuroscience (Sahani, 1997). These refer-
ences all discuss, to some degree, the motivation behind various different
design criteria, of which the information-theoretic criterion is well moti-
vated but certainly not unique. For more general reviews of the theory of
experimental design, see, for example, Chaloner and Verdinelli (1995) and
Fedorov (1972). In addition, several attempts have been made to devise al-
gorithms to find the “optimal stimulus” of a neuron, where optimality is
defined in terms of firing rate (Tzanakou, Michalak, & Harth, 1979; Nelken,
Prut, Vaadia, & Abeles, 1994; Foldiak, 2001), but we should emphasize that
the two concepts of optimality are not related in general and turn out to be
typically at odds (maximizing the firing rate of a cell does not maximize—
and in fact often minimizes—the amount we can expect to learn about the
cell; see sections 3 and 4). Most recently, Machens (2002) proposed the max-
imization of the mutual information between the stimulus x and response
y; again, though, this procedure does not directly maximize the amount of
information we gain about the underlying system 6.

Somewhat surprisingly, we have not seen any applications of the
information-theoretic objective function, equation 1.1, to the design of
neurophysiological experiments (although see the abstract by Mascaro &
Bradley, 2002, who seem to have independently implemented the same
idea in a simulation study). One major reason for this might be the com-
putational demands of this kind of design (particularly for real-time appli-
cations), although these problems certainly do not appear to be intractable
given modern computing power (see, e.g., Kontsevich & Tyler, 1999, for a
real-time application in which © is two-dimensional). We hope to address
these important computational questions elsewhere.

The primary goal of this letter is to elucidate the asymptotic behavior
of the a posteriori density py when we choose x according to the recipe
outlined above; in particular, we want to compare the adaptive case to
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the more usual (i.i.d. x) case. Our main result (in section 2) states that un-
der acceptably weak conditions on the models p(y|x, 6), the information-
maximization strategy leads to consistent and efficient estimates of the
true underlying model, in a natural sense. In particular, the information-
maximization strategy is never less efficient, in a well-defined sense—and
is generically more efficient—than the simpler, nonadaptive, i.i.d. x strategy.
We also give a few examples to illustrate the applicability of our results (see
sections 3 and 4), including a couple of surprising negative examples that
demonstrate the nontriviality of our mathematical results (see section 5).
We close by briefly noting the relevance of our results to noninformation-
theoretic (e.g., mean-square-error based) design and describing a few open
avenues for further research.

2 Results

First, we note that the problem as posed in section 1 turns out to be slightly
simpler than one might have expected, because I({x, y}; 0) is linear in p(x):

pix, y.6)
I{x,y}: 0) = ///p(x v log o ® pCx, Y)pn(6)

p(x) pn @) p(ylx, )
= ,Y,0)1
/ / / R R )

plylx, 6)
I
/ / / plx.y.O)log = oo
p(ylx. 6)

_ 9 O)log — VBT
fX px) /y fo pN@PlIx. Olog T oy btyix. B)

This, in turn, implies that the optimal p(x) must be degenerate, concentrated
on the points x where I is maximal. Thus, instead of finding optimal distri-
butions p(x), we need only find optimal inputs x, in the sense of maximizing
the conditional information between 6 and y, given a single input x:

p(ylx, 6)
I(y; 012) = Orlx. Ol T O pyir. 6
(y: 0]x) /y/@pN( )p(ylx, 0) log fo Pn@ plylx, 6)

(We will assume throughout the article that this function attains its supre-
mum in X—a condition guaranteeing that this is so will be given below—
and that some reasonable, though possibly nondeterministic, tie-breaking
stategy exists when this maximum is not unique.)

Our main result is a Bernstein—von Mises type of theorem (van der Vaart,
1998). The classical form of this kind of result says, basically, that if the
posterior distributions are consistent (in the sense that px(U) — 1 for any
neighborhood U of the true parameter 6y) and the likelihood ratios are
sufficiently smooth on average, then the posterior distributions pn(0) are
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asymptotically normal, with easily calculable asymptotic mean and vari-
ance. In particular, it is well known that a result of this type holds in the
iid. x case: under the smoothness conditions stated below, the posterior
distribution py is asymptotically normal, with covariance matrix o,/N,

-1
Gz%d = </ dp(X)Ieo(x)> ’
X

and a mean that itself is a normal random variable with mean 6, and co-
variance al%d /N. Here we have denoted the Fisher information matrices,

. t, .
1) =/ (p(ylx, 9)) (p(y|x’0))dp(y|x,9),
y \ p(ylx, 0) plylx, 6)

where the differential p is taken with respect to 6. In other words, the asymp-
totic variance decays as 1/N, with the exact rate ol%d defined as the inverse
of the average Fisher information, where the average is taken over p(x).

We adapt this result to the present case, where x is chosen according
to the information-maximization recipe. Our main result will allow us to
compute the asymptotic variance o2 ,/N and in particular will demon-
strate that |al%lfa| < |al%d |, with |.| denoting the determinant of a matrix; that
is, the information-maximization strategy is more efficient in general than
iid. sampling, at least in the sense measured by the determinant |.|. It turns
out that the hard part is proving consistency (see section 5); we give the
basic consistency lemma (interesting in its own right) first, from which the
main theorem follows fairly easily. The proofs appear in appendix A.

Lemma 1 (Consistency). Assume the following conditions:

1. The parameter space ® is a compact metric space.

2. The log likelihood log p(y|x, 0) is uniformly Lipschitz in 6 with respect to
some dominating measure on Y.

3. The prior measure py assigns positive measure to any neighborhood of 6.
4. The maximal Kullback-Leibler divergence,

up Dict (6 61%) = xp/ydp(ylxﬁo)"’g p(ylx, 6)

is positive for all 6 # 6.
Finally, assume that the set of log likelihood functions log p(y|x, 0), indexed by
X, is compact in the sup-norm topology on 6-continuous functionson Y x ©. Then

the posteriors are consistent: py(U) — 1 in probability for any neighborhood U
Of 9().
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Theorem 1 (Asymptotic normality). Assume the conditions of lemma 1,
strengthened as follows:

1. ® has a smooth, finite-dimensional manifold structure in a neighborhood of
.

2. Thelog likelihood log p(y|x, 0) is uniformly C? in 6. In particular, the Fisher
information matrices Io(x) are well defined and continuous in 6, uniformly
in (x, 6) in some neighborhood of 6.

3. The prior measure py is absolutely continuous in some neighborhood of 0y,
with a continuous positive density at 6.

4. mazceco(ly, xn|Cl > 0,

where co (Iy,(x)) denotes the convex closure of the set of Fisher information
matrices Ig, (x).

Then

llpn = N (un, o)l = 0

in probability, where ||.|| denotes variation distance, N (un, o3;) denotes the normal
density with mean pn and covariance oy, and y is asymptotically normally
distributed, with mean 6y and variance of\,. Here

-1
2
NGN - Gmfo (argmaxCeco(Iog(‘c))|C|> :

The maximum in the above expression is well defined and unique.

Corollary 1. If, in addition, the prior py is absolutely continuous, with density
bounded on the parameter space ©, then the maximum a posteriori (MAP) estimator
is consistent almost surely, with asymptotic distribution N'(0p, o'&).

Thus, under these conditions, the information- maximization strategy
works; moreover, since the asymptotic i.i.d. variance o7, is inversely related
to an average over x and the information- rnax1mlzat1on variance am , toa
maximum over co(I,(x)), we have by the definition of co(Iy,(x))—the clo-
sure of the set of all possible averages over Iy, (x) with respect to arbitrary
p(x)—that |am ,| is never larger than |o; d| For one-dimensional 6, amfo is
strictly smaller than o7, except in the somewhat exceptional case that Iy, (x)
is constant almost surely in p(x). Thus, information maximization is in a rig-
orous sense asymptotically more efficient than the i.i.d. sampling strategy.

A few words about the assumptions are in order. Most should be fairly
self-explanatory: the conditions on the priors, as usual, are there to ensure
that no matter how mistaken our original prior beliefs are, in the face of

sufficient posterior evidence, we will come around to agreeing that the data
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are in fact generated by the true underlying model 6. The smoothness as-
sumptions on the likelihood permit the local expansion that is the source of
asymptotic normality, and the condition on the maximal divergence func-
tion sup, Dz (6o; 0]x) ensures that distinct models 6y and 6 are identifiable
(that is, for any 6 # 6y, there is some input x that will reliably distinguish
between 6 and 6, given enough output samples y;). The assumption that the
set of log likelihood functions log p(y|x, 6) is compact will guarantee that
the objective function I(y, 6|x) always attains its maximum in x. Finally,
some form of monotonicity or compactness on © is necessary, mostly to
bound the maximal divergence function sup, Dkg(6; #]x) and its inverse
away from zero (the lower bound, again, is to uniformly ensure identifi-
ability; the necessity of the upper bound will become clear in section 5).
Also, compactness is useful (though not necessary) for adapting certain
Glivenko-Cantelli bounds (van der Vaart, 1998) for the consistency proof.

It should also be clear that we have not stated the results as generally
as possible. We have chosen instead to use assumptions that are simple
to understand and verify and to leave the technical generalizations to the
interested reader. Our assumptions should be weak enough for most neu-
rophysiological and psychophysical situations, for example, by assuming
that parameters take values in bounded (though possibly large) sets and
that tuning curves are not infinitely steep.

3 Applications

3.1 Psychometric Model. As noted in section 1, psychophysicists have
employed versions of the information-maximization procedure for some
years (Watson & Pelli, 1983; Pelli, 1987; Watson & Fitzhugh, 1990; Kontsevich
& Tyler, 1999). References in Watson and Fitzhugh (1990), for example, go
back four decades, and while these earlier investigators usually couched
their discussion in terms of variance instead of entropy, the basic idea is the
same (note, for example, that in the one-dimensional 6 case, minimizing
entropy is asymptotically equivalent to minimizing variance, by our main
theorem). Our results above allow us to quantify the effectiveness of this
stategy precisely.

One general psychometric model is as follows. The response space Y
is binary, corresponding to subjective yes or no detection responses. Let f
be sigmoidal: a uniformly smooth, monotonically increasing function on
the line, such that f(0) =1/2, limy_,_o f(t) =0 and lim;_, f(t) =1 (this
function represents the detection probability when the subject is presented
with a stimulus of strength t). Let f, 9 = f((t —6)/a); 6 here serves as a
location (“threshold”) parameter, while a sets the scale (we assume a is
known for now, although this can be relaxed; (Kontsevich & Tyler, 1999).
Finally, let p(x) and po(0) be some fixed sampling and prior distributions,
respectively, both equivalent to Lebesgue measure on some interval ©.
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Now, for any fixed scale a, we want to compare the performance of the
information-maximization strategy to that of the i.i.d. p(x) procedure. We
have by theorem 1 that the most efficient estimator of 6 is asymptotically
unbiased with asymptotic variance crﬁlfo /N, with

2 -1
Ovinfo = (sup 190(.’)()) ?
X

while the usual calculations show that the asymptotic variance of any effi-
cient estimator based on i.i.d. samples from p(x) is given by 02,/N, with

-1
or = (/ dp(x)lgo(x)> :
X

The Fisher information is easily calculated here to be

I = (fa,&)z
T e = fue)

We can immediately derive two easy but important conclusions. First,
there is just one function f* satisying the assumptions stated above for
which the ii.d. sampling strategy is as asymptotically efficient as the
information-maximization strategy; for all other f, information maximiza-
tion is strictly more efficient. This extremal function f* is the unique solu-
tion of the following differential equation, derived by setting Iy to a constant
(and therefore making the expected Fisher information equal to the maximal
Fisher information),

af*
dt

1/2
= C<f*(t)(1 - f*(t))> ,

where the auxiliary constant ¢ = +/T, uniquely fixes the scale a. After some
calculus, we obtain

() = sin(ct) + 1
2

on the interval [—m/2c, 7/2c] (and defined uniquely, by monotonicity, as 0
or 1 outside this interval). Since the support of the derivative of this function
is compact, this result is not independent of the sampling density p(x); if
p(x) places any of its mass outside the interval [—m/2c, /2c], then o2, is
always strictly greater than o2 (since f, and therefore Iy (x), is zero out-
side this interval). This recapitulates a basic theme from the psychophysical
literature comparing adaptive and nonadaptive techniques. When the scale
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of the nonlinearity f is either unknown or smaller than the scale of the
ii.d. sampling density p(x), adaptive techniques are generally preferable.

Second, a crude analysis shows that as the scale of the nonlinearity a
shrinks, the ratio o,/ Uiifo grows approximately as 1/a. This gives quantita-
tive support to the intuition that the sharper the nonlinearity with respect
to the scale of the sampling distribution p(x), the more we can expect the
information-maximization strategy to help. In fact, in the limit as a — 0,
samples from the model become perfectly deterministic (with the response
curve fp ¢ changing discontinuously from 0 to 1 at 0), and the information-
maximization strategy becomes infinitely more efficient thani.i.d. sampling.
Information-maximal sampling is a version of the “twenty questions” game
here, with each query x decreasing the entropy of pn(6) by one bit, which
in turn leads to exponential convergence in N instead of the N~'/ rate
guaranteed in the smoothly varying f case.

3.2 Linear-Nonlinear Cascade Model. We now consider a model that
has received growing attention from the neurophysiology community (see,
e.g., Simoncelli, Paninski, Pillow, & Schwartz, 2004, for a recent review).
The model is of cascade form, with a linear stage followed by a nonlinear
stage: the input space X is a compact subset of d-dimensional Euclidean
space (take X to be the unit sphere, for concreteness), and the firing rate of
the model cell, given input X € X, has the simple form

E(yl%,0) = f((6, %))

Here the linear filter 6 is some unit vector in X', the dual space of X (thus,
© is isomorphic to X, as in the previous example), while the nonlinearity f
is some nonconstant, nonnegative function on [—1, 1]. We assume that f is
uniformly smooth, to satisfy the conditions of theorem 1; we also assume
f is known, although, again, this can be relaxed. The response space Y—
the space of possible spike counts, given the stimulus X—can be taken to
be some large, bounded set of the nonnegative integers. For simplicity, let
the conditional probabilities p(y|¥, 6) be parameterized uniquely by the
mean firing rate f((6, X)); the most convenient model, as usual, is to assume
that p(y|%, 6) is Poisson with mean f((6, ¥)). Finally, we assume that the
sampling density p(x) is uniform on the unit sphere (this choice is natural for
several reasons, mainly involving symmetry; see, e.g., (Chichilnisky, 2001;
Simoncelli et al., 2004), and that the prior py(6) is positive and continuous
(and is therefore bounded above and away from zero by the compactness
of ®).
The Fisher information for this model is easily calculated as

Tp(x) =

21332
(fé Ji)) Pe,
X))

(6. %)
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where f is the usual derivative of the real function f and P; ¢ is the pro-
jection operator corresponding to X, restricted to the (d — 1)-dimensional
tangent space to the unit sphere at 6. (We have assumed that the bounded
set Y of allowed spike counts has been taken sufficiently large to ignore the
deviations from exact Poisson behavior due to the finite spike count cutoff.)
Theorem 1 now implies that

- f‘(t)zg(t))1
o= max T2

while

b D ]
L= ([ a0 fOS0)
Oid (/[‘1,1] p(t) f(t) ’

where g(t) =1 —t?, p(t) denotes the one-dimensional marginal measure
induced on the interval by the uniform measure p(x) on the unit sphere,
and o2 in each of these two expressions multiplies (d — 1)1;_1, with I;_4
denoting the (d — 1)-dimensional identity matrix.

Clearly, the arguments of section 3.1 apply here as well: the ratio 02, /02 fo

grows roughly linearly in the inverse of the scale of the nonlinearity. The
more interesting asymptotics here, though, are in d. This is because the
unit sphere has a measure concentration property (Milman & Schechtman,
1986; Talagrand, 1995): as d — oo, the measure p(t) becomes exponentially
concentrated around 0. In fact, it is easy to show directly that in this limit,
p(t) converges in distribution to the normal measure with mean zero and
variance d ~2. The most surprising implication of this result is seen for non-
linearities f such that f (0) =0, f(0) > 0; we have in mind, for example,
symmetric nonlinearities like those often used to model complex cells in
visual cortex. For these nonlinearities,

2
O

"= 0@
Clid

that is, in this case, the information-maximization strategy becomes in-
finitely more efficient than the usual i.i.d. approach as the dimensionality
of the spaces X and ® grows.

4 Tllustrations

Next we give some illustrations of the behavior of the information-
optimization strategy, as compared to the nonadaptive i.i.d. case.
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Figure 1: Snapshot of behavior of information-maximizing and i.i.d. experi-
mental designs. (a) True underlying conditional response probabilities given
input x. Model space ® includes all translates of firing rate curve shown here.
(b) Fisher information Iy, (x) as a function of x. (c) Mutual information between
the response y and the underlying location parameter 6, as a function of x, after
100 samples. (d) Posterior distributions pn(6) after N = 100 samples. The as-
terisk indicates the location of true model parameter 6,. The dashed lines give
gaussian approximations to true observed posteriors, though the dashed curves
are obscured by the quality of the fit.

4.1 One-Dimensional Example. For clarity, we start with a simple ex-
ample, for which the stimulus and model spaces X and ® are both one-
dimensional and the outputs are again binary. We illustrate the model in
Figure 1. The system responds positively with high probability when the
stimulus x and model preference 6 agree; this probability decays smoothly
and symmetrically as the difference |x — 0] increases. (We could think of this
response probability curve as a sensory neuron’s receptive field for some
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one-dimensional stimulus, for example, or as the place field of a cell in the
hippocampus of a rat constrained to run along a one-dimensional track.)
The experimenter’s goal is to determine the optimal 6y, given the response
curves p(y = 1|x, 6). We begin with no knowledge of the true 6 except that
0 < 6p < 1; thus, we take the prior py(f) to be uniform on [0, 1]. In the bottom
panel of Figure 1, we show the results of an experiment in which we draw
100 input samples ii.d. from the uniform distribution p(x) =1 on [0, 1],
and then compare to the results given 100 samples drawn adaptively, fol-
lowing the information-maximization strategy. After 100 samples, we find
that the mutual information curve I(y; 6|x), as a function of the input x
(see Figure 1c), closely resembles the Fisher information curve Iy (x) (see
Figure 1b); in particular, the two curves reach their maxima for the same
values of x, indicating that after 100 samples, the information-maximizing
strategy is indeed sampling from the x that maximizes the Fisher informa-
tion Iy, (x), as predicted by theorem 1. Note that sampling from the x that
maximizes the firing rate, x = 6y = 0.2, asymptotically minimizes the in-
formation gain I(y; 6|x), as emphasized in section 1. Also as predicted, the
posterior distributions pn(6) are quite well approximated as gaussian, with
means near 6y and with the posterior under the information-maximization
strategy more concentrated near ) than in the i.i.d. x case.

We look more quantitatively at the evolution of the posteriors in Figure 2.
The top two panels show the posteriors pn(6) as a function of N, while
the bottom three panels show the posterior mean, standard deviation, and
probability mass in a small neighborhood of the true parameter 6, respec-
tively. In each case, we again see that the posterior under the information-
maximization strategy converges more rapidly than under thei.i.d. strategy,
as predicted. Moreover, the predicted standard deviations of the posterior
density and of the posterior mean, o;;; N~/? and 4, N~!/2, accurately match
the true observed behavior.

4.2 A'V1Simple-Cell Example. Oursecond example is somewhat more
realistic in that the neuron we are simulating responds to stimuli that have
many degrees of freedom; that is, the parameter and input spaces ©® and
X are multidimensional. We take what is perhaps the standard model of
the response properties of a simple cell in primary visual cortex (a version
of the cascade model discussed in the last section; Dayan & Abbott, 2001):
p(spike|X, 0) = f((l_éo, X)), where the true receptive field Ko is taken to be a
Gabor function (the product of a two-dimensional sinusoid and a gaussian
whose mean determines the location of the receptive field in space; see
Figure 3, top left), and the monotonic nonlinear function f enforces the
positivity of the firing rate and can also model the cell’s saturation properties
(see Figure 3, bottom left). For simplicity, we assume the nonlinearity f and
the spatial frequency of the Gabor 6y = ko to be known; thus, the model space
© is three-dimensional (two dimensions for the location of the receptive field
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Figure 2: Evolution of posterior densities in model from Figure 1, as a function
of trial number N. (a, b) Evolution of posteriors under information-optimizing
and i.i.d. strategy, respectively. White level indicates height of probability den-
sity. Recall from Figure 1 that the true parameter is located at 6, = 0.2. (c) Evo-
lution of the posterior mean. The dotted line indicates true parameter location
(6p = 0.2). The solid black and gray indicate mean given information-optimizing
and i.i.d. strategies, respectively. Dashed lines show predicted 95% confidence
intervals, 6y +/ — 20j,,,N""/? and +/ — 20;,gN~"/2. (d) Evolution of posterior
standard deviation. Solid traces are observed standard deviations; dashed traces
are predicted, 0j,, N~'/> and 0;;s N~'/2. (e) Evolution of posterior mass contained
in a small neighborhood of true parameter, pn([6y — 0.05, 6, + 0.05]).

and one for the orientation). As in the previous example, we start with no
knowledge of the true parameter other than the fact that the center of the
receptive field lies within the square shown in Figure 3, so our prior py(k)
is uniform over orientation and spatial location. The series of panels on the
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Figure3: Evolution of posteriorsinasimulated V1 simple cell experiment (Left)
True model: the simulated 51mp1e cell responds to the stimulus image X accord-
ing to p(spikelX, ko) = f((ko, %)), with (ko, ¥) indicating the dot product with the
Gabor kernel k) shown in the top-left panel and f the nonlinear rectification
function shown in the bottom-left panel. (Right) Evolution of posteriors as a
function of trial number N. Each panel shows the posterior mean | kdpn(K).

right displays the evolution of the posteriors pn(k) via the posterior mean
f kdpn(k); as pn(k) becomes concentrated around the true receptive field
ko, the image of the posterior mean resembles k) more and more closely. We
took the stimuli ¥ here to be Gabors of varying orientations and locations,
but similar results are seen if white- or colored-noise stimuli are used instead
(data not shown). As before, the information-optimizing strategy leads to
more rapid convergence than i.i.d. sampling from x.

5 Negative Examples

Our next two examples are more negative and perhaps more surprising:
they show how the information-maximation strategy can fail, in a certain
sense, if the conditions of the consistency lemma are not met. (Note that as
emphasized above, these consistency conditions are fairly weak; therefore,
the fact that they fail in the following examples implies that these examples
might be interesting from a mathematical point of view but might have
less practical negative relevance for psychophysical or neurophysiological
situations.) In each case, the method can be fixed using ad hoc methods; it is
unclear at present whether a generally applicable modification of the basic
information-maximization strategy exists.
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5.1 Two-Threshold Model. Let ® be multidimensional, with coordi-
nates that are “independent” in the sense that the responses of the model
given one coordinate do not depend on the value of the other coordinate,
and assume the expected information obtained from one coordinate remains
bounded strictly away from the expected information obtained from one of
the other coordinates. For instance, consider the following binary model:

5 -1 <x<6_,
f_1 01 <x<0,
1|x,0) =
PARRO =15 o _r<a.
fi Hh<x=<1,

where0 < f_q, f1 <1,

[f-1— 51> 1fi— .5,

are knownand —1 < 6_; < 0and 0 < 6; < 1 are the parameters we want to
learn.

Let the initial prior po(6) be absolutely continuous with respect to the
Lebesgue measure; this implies that all posteriors py will have the same
property. Then, using the inverse cumulative probability transform and the
fact that mutual information is invariant with respect to invertible map-
pings, it is easy to show that the maximal information we can obtain by
sampling from the left is strictly greater than the maximal information ob-
tainable from the right, uniformly in N. Thus, the information-maximization
strategy will sample from the left side forever, leading to a linear infor-
mation growth rate (and easily proven consistency) for the left parameter
and nonconvergence on the right. Compare the performance of the usual
iid. approach for choosing x (using any Lebesgue-dominating measure
on the parameter space), which leads to the standard algebraic convergence
rate for both parameters (i.e., is strongly consistent in posterior probability).

Note that this kind of inconsistency problem does not occur in the case of
sufficiently smooth p(y|x, 0), by our main theorem. Thus, one way of avoid-
ing this problem would be to fix a finite sampling scale for each coordinate
(i.e., discretizing). Below this scale, no information can be extracted; there-
fore, when the algorithm hits this “floor” for one coordinate, it will switch
to the other. However, the next example shows that the lack of consistency is
not necessarily tied to the discontinuous nature of the conditional densities.

5.2 White Noise Models. We present two models of a slightly differ-
ent flavor: the basic mechanism of inconsistency is the same in each case.
The samples x take values on the positive integers. The models live on
the positive integers as well: 6 is given by a standard discrete (1) normal
and (2) binary white noise process (that is, p(f) is generated by an infinite
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sequence of standard normals and independent fair coins, respectively).
The conditionals are defined as follows. For the first model, the observa-
tions y are gaussian-contaminated versions of 6(x), that is, y ~ N (6(x), 1).
For the second model, let y be drawn randomly from g4(y), where g9 and g4
are nonidentical measures on some arbitrary space.

Then it is not hard to show, for either model, that an experimenter us-
ing the information-maximization strategy will never sample from any x
infinitely often. As soon as we learn something about 6; (by sampling
from x;), 6;11 will become more interesting, and we will begin to sam-
ple from x;;; instead. (For the second model, in fact, if the densities of
go and g1 with respect to some dominating measure are unequal almost
surely, and I(y, (1)) reaches its unique maximum in p(6(1)) at the mid-
point p(0(1) = 0) = p(6(1) = 1), then we will sample from each x just once,
almost surely.) This again implies a lack of consistency of the posterior (al-
though, as above, we have a linear growth of information). The basic idea
is that there will always be a more informative part of the sample space X
to measure from, and the experimenter will never spend enough time in
one place x to sufficiently characterize 6(x). This emphasizes the necessity
of something like the compactness condition we imposed in the statement
of lemma 1.

As in the last section, the standard i.i.d. approach (using any measure
p(x) that does not assign zero mass to any of the integers) is consistent here.
Note that in contrast to the last example, the smoothness of the condition-
als p(y|x, 0) (in the gaussian model) does not rescue consistency. Nor is
the inconsistency due to some pathology of differential entropy (the mea-
sures q; can be discrete, even binary). The “floor” trick suggested for the
last example can be modified here by sequentially restricting our search
for optimal x over compacta that are allowed to grow slowly toward in-
finity. More generally, we can probably salvage consistency in general by
not sampling exclusively from information-maximizing points (perhaps by
sampling “passively” with a frequency that decreasesas N — oo; thiswould
restore consistency in many cases without a sacrifice in the asymptotic in-
formation growth rate). We leave the general formulation of such a result
to the reader.

6 Directions

We have presented a rigorous theoretical framework for adaptive design of
experiments using the information-theoretic objective function (see equa-
tion 1.1). Most important, we have offered some asymptotic results that
clarify the effectiveness of this information-maximizing strategy; in addi-
tion, we expect that our results should find applications in approximative
computational schemes for optimizing stimulus choice during this type of
online experiment. For example, our theorem 1 might suggest the use of a
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mixture-of-gaussians representation as an efficient approximation for the
posteriors pn(0) (Deignan, Meckl, Franchek, Abraham, & Jaliwala, 2000).
We briefly describe a few more open research directions.

6.1 Nuisance Parameters and Hypothesis Testing. Perhaps the most
obvious such open question concerns the use of noninformation-theoretic
objective functions. Concerning the question of which objective function is
“best” in general, our results should be useful in clarifying the exact form
of the asymptotic covariance matrix o2 : for the information-maximization
case, this matrix asymptotically minimizes the log-determinant function on
the class of feasible asymptotic covariance matrices (co(Iy,(x))) ' However,
we are typically interested in some parameters more than others; as has
been noted elsewhere (Mackay, 1992), mutual information as an objective
function (and, by extension, its log-determinant asymptotic form) leaves
little flexiblity for focusing our resources on these more interesting param-
eters. Alternative objective functions include weighted sums of entropies
or Bayes mean-square errors. It turns out that many of our results apply
with only modest changes if the experiment is instead designed to optimize
these alternative objective functions: in this case, the results in sections 3
and 4.1 remain completely unchanged, while the statement of our main
theorem requires only slight changes in the asymptotic covariance formula
(see appendix A). The task of choosing a good objective function on input
distributions p(x) in the multidimensional 6 case is thus reduced asymp-
totically to the simpler problem of choosing a suitable objective function on
covariance matrices; in the one-dimensional 6 case, the asymptotic variance
does not depend on whether we choose to minimize entropy or variance.

An alternative approach that has received less attention involves map-
ping irrelevant “nuisance” parameters out of ®. In a sense, this is a special
case of the weighted sum of entropies idea, for which some of the weights
are set to zero, but can be defined in a slightly more general setting. We
define our new objective function in a simple way as

I({x, y}: TO)),

where T is a surjective map from © to some new, reduced parameter space
(obviously this new definition corresponds to the original equation 1.1 if
T is bijective). This approach thus integrates over nuisance parameters in
a completely direct way. Clearly, much of our asymptotic theory will go
through under some continuity on T, as long as the assumptions on the
maximal divergence sup, Dk (f; #]x) and on the positivity of the Fisher
information matrices are unharmed.

Itis worth addressing an extreme specialization of the above idea: the case
for which T maps © to the two points {0, 1} corresponds to compound hy-
pothesis testing. Again, as long as the gap on sup, Dk1 (6y; 01x) is respected
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by T, consistency will go through, but asymptotic normality stops making
sense: the more relevant concept now becomes the large deviations behav-
ior of pn(0) and pn(1), as described by the Chernoff information (Cover and
Thomas, 1991; Dembo & Zeitouni, 1993). We have not addressed the optimal
rates of convergence in this case, but note only that even simple hypothesis
testing (i.e., the case that ® = {0, 1}) is aided by adaptive stimulus design,
in the sense that a given x that optimizes I(y, 6|x) for one value of pn(0)
is not necessarily optimal for all other pn(0); thus, as before, the optimal
sampling strategy varies in general with N.

6.2 “Batch Mode” and Stimulus Dependencies. Perhaps our strongest
assumption here is that the experimenter will be able to freely choose the
stimuli on each trial. This might be inaccurate for a number of reasons: for
example, computational demands might require that experiments be run in
batch mode, with stimulus optimization taking place not after every trial,
but perhaps only after each batch of k stimuli, all chosen according to some
fixed distribution p(x). Another common situation involves stimuli that
vary temporally, for which the system is commonly modeled as responding
not just to a given stimulus x(t), but also to some or all of its time-translates
x(t — 7). Finally, if there is some cost C(xp, x1) associated with changing
the state of the observational apparatus from the current state xq to x;, the
experimenter may wish to optimize an objective function that incorporates
this cost: I(y; 6]x1) — C(xo, x1), for example.

Each of these situations is clearly ripe for further study. Here we restrict
ourselves to the first setting and give a simple conjecture, based on the
asymptotic results presented above and inspired by results like those of
Berger, Bernardo, and Mendoza (1989), Clarke and Barron (1994), and Scholl
(1998). First, we state more precisely the optimization problem inherent in
designing a batch experiment: we wish to choose some sequence, {x;}1<i<,
to maximize

I{xi, vihizi<k; 6).

The main difference here is that {x;}1<;<x must be chosen nonadaptively,
that is, without sequential knowledge of the responses {y;} ;. Clearly, the
order of any sequence of optimal {x;};<j< is irrelevant to the above ob-
jective function; in addition, it should be apparent that if no given datum
(x, y) is too strong (for example, under Lipschitz conditions like those in
lemma 1), any given elements of such an optimal sequence {x; }1<;j<x should
be asymptotically independent in some sense. (Without such a smoothness
condition—for example, if some input x could definitively decide between
some given 6y and 6;—then no such asymptotic independence statement can
hold, since no more than one sample from such an x would be necessary.)
Thus, we can hope that we should be able to asymptotically approximate
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this optimal experiment by sampling in an ii.d. manner from some well-
chosen p(x). Moreover, we can make a guess as to the identity of this putative
p(x):

Conjecture (Batch mode). Under suitable conditions on the topology of X, the

empirical distribution corresponding to any optimal sequence {x;}1<i<k,

plx) =

k
25(9@'),
im1

o=

converges weakly as k — oo to S, the convex set of maximizers in p(x) of

) , ©.1)

Thus, instead of a very difficult (in particular, nonconvex in general) op-
timization over the sequence space X¥, we can optimize over distributions
p(x) to find good experiments (assuming k is large enough). In particular,
this latter optimization is tractable by the concavity of equation 6.1 in p(x)
(this follows from the concavity of the function log |C| as a function of the
matrix C; Cover & Thomas, 1991; Lewis, 1996): simple ascent methods will
find the global maximum without fear of becoming trapped in local optima.
Expression 6.1 is an average over p(0) of terms proportional to the negative
entropy of the asymptotic gaussian posterior distribution corresponding to
each 6, and thus should be maximized by any optimal approximant dis-
tribution p(x). In fact, it is not difficult, using the results of Clarke and
Barron (1990), to prove the above conjecture under conditions like those of
theorem 1, assuming that X is finite (in which case, weak convergence is
equivalent to pointwise convergence). We leave generalizations (in particu-
lar, the formulation of suitable conditions on the topology of more general
X) for future work.

We should note that maximization of terms like expression 6.1 has been
previously studied not only in the context of experimental design (where
designs that maximize that equation are commonly called “D-optimal”;
(Fedorov, 1972; Clyde & Chaloner, 1996), but also elsewhere. For example,
when 0 is one-dimensional (and thus the information matrices are simply
scalar weights), equation 6.1 is mathematically equivalent to the criterion
for weighted log optimality in the theory of optimal financial portfolio se-
lection (Cover & Thomas, 1991). In this case, the Kuhn-Tucker conditions
for optimality of p(x) are well known and can be generalized easily to the
multidimensional case once the directional derivatives of equation 6.1 with
respect to p(x) have been identified. We leave the details for appendix B.

Eylog <‘ / dp0I(x)
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Appendix A: Proofs

We sketch proofs for the main results here.

A.1Posterior Consistency. We follow the basic technique of Wald (van der
Vaart, 1998). The main idea is that Dg; (6p; 0|{x;}i<N) increases in N for all
0 # 0y, and this expected log likelihood provides a suitable approximation
to the observed posterior log likelihood log pn(6y/6). In the i.i.d. p(x) case,
this Dk;, term increases linearly with N, and this is by itself enough to prove
consistency under weaker conditions than those stated here (Schwartz, 1967;
van der Vaart, 1998; Barron, Schervish, & Wasserman, 1999). In the non-
iid. case, this linear growth does not necessarily hold, and we have to
make sure that this function actually increases quickly enough off any given
neighborhood U of 6 (i.e., that the sampler’s attention does not get absorbed
by some proper subset of ©).
We need to prove that

Joru: 4po©) fn(6)
11, A0 ()

for any neighborhood U, where fx(0) denotes the (random) likelihood ratio,

1—[ p(yilxi, )
P(}/z |xl’ 90)

The first step is to demonstrate that fu dpo(©) fn(0) decreases at a slower-
than-exponential rate, that is,

o]
hrr}\]mfﬁlog/;[dpo(@)fN(G) > —€

almost surely for any e > 0. This follows by exactly the usual proof
(Schwartz, 1967; van der Vaart, 1998; Barron et al., 1999). The key step is
to approximate

log fn(6) ~ ) Dii(6o; 61x))

by a uniform law of the large numbers argument (van der Vaart, 1998) (the
term on the right is the expectation of that on the left, where the expectation
is taken under the true parameter 6p). Once this is done, the statement is
proven by using the fact that

Dxz.(6p; 0]x) = 0
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as @ — 6y, uniformly in x (by assumption 2 of lemma 1), and that po(U) > 0
for any neighborhood U (assumption 3).

The next step in the usual proof is to demonstrate that [, ;.. dpo(®) fn(6)
decreases at an exponential rate, that is,

lim sup L log/ dp,(0) fn) < —e(U) <0
N N enue

almost surely for some positive € that depends on U. Unfortunately, this ex-
ponential decay of pn(® N U°) does not necessarily hold in the information-
maximization case. An example of this nonexponential decay is given after
the proof.

To deal with this, first note that the set of functions Dk; (6p; 6|x) is compact
in the sup-norm topology on functions on ®. This follows from the Arzela-
Ascoli theorem (Rudin, 1973), given the equicontinuity of the log likelihoods
log p(y|x, 6) in 6 and the assumption that the set of these likelihoods is closed
in the sup-norm topology. (A similar compactness argument guarantees that
the maximum of I(y, 6|x) in x is always attained in X.) Thus, the full set of
stimuli X may be replaced by a finite subset, X' = {x;}o<j<t<cc C X, which
satisfies the assumptions of lemma 1 and approximates X arbitrarily well.
For any € > 0, we may choose X’ such that

sup min sup | Dk (6; 6|x) — Dxr(6; 01x)| < e.

xeX Y€X geo

The lemma will follow if we can prove the result for any such finite approx-
imating set X'.

Thus, we may restrict our attention below to finite X'. We can immedi-
ately dispose of any set

Z.5 =1{0: Dxr(6o; 0|x) > 8V x € X'}

for any 8§ > 0, since the posterior mass of such a set decays exponentially,
by the standard proof. This leaves us with the compact subset

ZO = {9 : min DKL(Q(); 9|X) = 0}7
xeX

the set of & where Dx; (6p; 6]x) = 0 for at least one x € X'. Clearly, 6y € Zy. If
Zy = 6y, the proof is complete; thus, assume otherwise.

To complete the proof, we just need to show that the information-
maximizing sampler does not asymptotically “ignore” any set Z within
Zo N ® N U° such that py(Z°) > 0 (with Z¢ an arbitrary e-neighborhood of
Z); that is, it does not sample so frequently from x with Dgz (6p; 6]x) = O for
0 € Zthatqn(Z) = [, e~ i PKL@:95) 4 10(9) does not decrease more quickly
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than gn(U) = f;; e~ 2 PKL®01%) 4 po(9). The main idea preventing this is the
smoothness condition on the log likelihood functions log p(y|x, 6); this con-
dition guarantees that the information gain associated with increasing the
concentration of py at 6y (the only point at which Dgg,(6p; 8]x) = 0 for all x,
by assumption) will decrease to zero, roughly as

gn(U) ~ gnU) — gnpU)
gn+1(U) gnU)

Meanwhile, the gain associated with testing between 6y € U and the alterna-
tive hypothesis will remain large whenever the posterior mass on Z remains
comparable to that on U, falling as qn(Z)/qn(U). Thus, the information-
maximizing sampler will prefer to increase the concentration at 6, over
attempting to distinguish between the hypotheses 6y € U and 6y € Z ac-
cordingly as gn(Z) < gn(U) — gn41(U) or otherwise, respectively. The def-
inition of the information-maximization strategy now implies that either
gn(Z) decays exponentially (which would again complete the proof) or,
alternatively,

aNnU) —qna W) gn(2)
gn(U) gn(U)’

that is, gn(U) — g1 (L) ~ qn(Z). Since the posterior mass on Z falls expo-
nentially with the number of samples devoted to this hypothesis test and
the posterior mass on U cannot fall exponentially (as discussed above), the
posterior mass on Z must therefore decrease to zero relative to gn(U), be-
cause gn(U) — gn+1(U) = o(gn(UD)) for any sequence qx(U) that decays at a
subexponential rate.

The above logic is further illustrated in the example below. We should
also note that a similar result can be stated in the case that 6y ¢ ®, that is,
when the data are not generated by a member of the hypothesized parameter
space. Here, as usual, the posterior may be approximated as

PN(Q) ~ e—Z, DKL(Go;Hlxz)po(e).

In the i.i.d. setting, this posterior will asymptotically concentrate around 6,
which are closest to the true 6 in the sense of average Dk, distance; however,
in the information-maximization case, this notion of closeness to the true
6o depends strongly on the stimuli x, and it is not clear that e~ i PkL®0o:01%)
will even have a well-defined limit in general. Thus, to generalize lemma 1
to this out-of-© case, we would have to impose further conditions on the
functions Dk; (6; 6]x). For example, the above proof holds if we stipulate
some fixed “closest” element 6* such that 6* is in the set of minimizers of
Dk (6p; 6]x) for all x and is the only such member of ® (just as in the setting
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Figure4: Anexample of amodel in which the posterior mass off neighborhoods
of the true parameter 6, does not decay exponentially. §, = 0 here, as marked
by an asterisk.

of lemma 2, 6 is the unique member of ® that minimizes Dk (6p; 6]x) for
all x). In this case, py will asymptotically concentrate on 6*.

A.2 An Example of Subexponential Decay. As discussed above, one
major difference between the asymptotic behavior of the posteriors in the
information-maximization and i.i.d. sampling cases is that the posterior
mass py(® N U°) generically decays exponentially in thei.i.d. setting (where
U, again, is any neighborhood of the true parameter 6y); however, in the
information-maximization case, this exponential decay does not necessar-
ily hold. We give a simple example of this phenomenon here.

We choose both X and Y to be binary; the conditional distributions
p(y = 1|x1,0) and p(y = 1|x;, 0) are shown in Figure 4. The main impor-
tant features to note are that p(y|xi, 6p) = p(y|x1, 0 = 1), and p(y|xz, 6p) =
p(ylxz, 6 € U), with U a sufficiently small neighborhood of 8y = 0. Thus, x;
cannot distinguish between # = 0 and 1, and x;, gives no information when
p(6) is sufficiently concentrated about 6y. This in turn implies that asymp-
totically, the information-maximization strategy will be to sample preferen-
tially from x1, as indicated by theorem 1. However, if all our samples are
drawn from x;, then significant posterior mass will remain on 6 = 1.

More precisely, the posterior pn(0) may be asymptotically approximated
by a mixture of gaussians, one with mean at 6 = 0 and the other with mean at
6 = 1. (This approximation will hold asymptotically, by the usual argument,
whenever the prior po(f) has a positive, continuous density with respect to
the Lebesgue measure on the ® shown.) Both gaussians have variance of
order 1/n, where n = n(N) is the number of samples from x; in the first
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N samples; the asymptotic ratio of masses between the two gaussians, on
the other hand, behaves as e “N="  with ¢ = Dky(fp; 0|x2). This implies that
I(y; 0|x1) scalesas 1/n, while I (y; 6|x,) scales as e~¢N=" This, in turn, means
that n(N) satisfies the scaling

n(N)—l ~ e—c(N—n(N)),

leading to the conclusion that N — n(N), the number of samples from x;,
grows sublinearly in N, and therefore that the posterior mass off neighbor-
hoods of the true parameter 6, does not decay exponentially in N. Con-
versely, it is easy to demonstrate exponential decay for any i.i.d. sampling
strategy that places positive mass p(x) on both x; and x,.

A.3 Asymptotic Normality. The proof of asymptotic normality is fairly
standard, and is therefore omitted (see, e.g., Schervish, 1995; van der Vaart,
1998). The only new part is the computation of the asymptotic variance o3.
The classical result tells us that

_ 1 &
(NoZ) ™' — N O ).
i=1

To obtain our result, we need to understand the tail behavior of this sum.
We proceed by analyzing the dynamical system

1
A1 — An = KI((N_ 1) An—1 + Bn),

with Ay denoting the negative Hessian of a suitable gaussian approximation
to the posterior likelihood after N trials at 0y, its maximizer; By denotes
the negative Hessian of log p(yn|xn, 6) at 6n. This map gives a rough (but
asymptotically accurate) approximation of the effect of the Nth sample on
the (near-gaussian) posterior, after a suitable variance stabilizing. It is clear
that the range of this map is asymptotically contained in co(lg,(x)), which
we have defined as the closure of all convex combinations of the available
Fisher information matrices, I (x), with x ranging over the full sample
space X. It is equally clear, when we examine the above dynamical system
over multiple trials (thus, roughly, averaging over multiple By), that the
information-maximization strategy is asymptotically doing something like
gradient ascent on log | Ay| (the asymptotic negative entropy of the gaussian
posterior, up to anirrelevant scale factor), with the allowed ascent directions
taking values within co(ly, (x)), which in turn, by the consistency lemma
and the continuity of Iy(x), converges to co(Iy, (x)). Our asymptotic variance
formula now follows from the strict concavity of the function log|C| in
C, where C ranges over the symmetric, positive semidefinite (covariance)
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matrices (Cover & Thomas, 1991; Lewis, 1996), the fact that |C| and log |C]|
have identical maximizers, and the compactness and convexity of co(Ig, (x)).

It is worth noting that this proof goes through essentially unchanged if
we sample to optimize something like a weighted mean-square error instead
of mutual information. In this case, the sampler will asymptotically attempt
to minimize a matrix function of the form

tr(Vloj V) ~ tr(VI A V),

where V is some weight matrix. Since the above function is convex in Ay
(Lewis, 1996), the only change we need to make is in the final form of the
asymptotic variance formula: for this problem,

2 : t=T17y) "1
NUN - (argmlnCeco(Ieo(x))tr(V C V)) ’

where once again the optimum is well defined (and unique when V is of
full rank). When © is one-dimensional, these two approaches clearly lead
to the same asymptotic result.

Appendix B: Kuhn-Tucker Optimality for Bayesian
D-Optimal Design

We briefly describe the necessary and sufficient conditions for optimality
in the batch experiment setting discussed in section 6.2. We follow Cover
and Thomas (1991). We are trying to maximize the function 6.1, which is
concave in p(x) (implying that the maximizers we seek form a nonempty
convex set). We need to compute the derivative of this function along convex
lines through p(x), as follows:

)

-1
:EQ%(Iog 1-nI +t</19(x)dp(x)> /Ie(x)dq(x)

d
Vip,g)= §<Ee log /Ie(x)d(tq(x) + (1 - Hpx)

t=0

= Ee%(log /Ie(x)d(tq(x) + (1 = Hpx)

t=0

)

t=0
1

=FEy (tr((/lg(x)dp(x)>_ /Ig(x)dq(x)>> —dim©.

The interchange of derivative and expectation can be justified by dominated
convergence under the conditions of theorem 1.
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In the discrete X case, Kuhn-Tucker now implies that for optimal p(x)
(and only optimal p(x)),

1 ! =1 if pkx)>0
dim®E0<tr<</ IQ(x)dp(”) Mx))){fl if p(x)=0.

Similar results can be derived for more general X by the usual approxima-
tion techniques. (For further discussion, see, e.g., Bell & Cover, 1980; Cover
& Thomas, 1991; Clyde & Chaloner, 1996.)

Acknowledgments

We thank E. Simoncelli, C. Machens, and D. Pelli for helpful conversations.
This work was partially supported by a predoctoral fellowship from HHMI
and by funding from the Gatsby Charitable Trust. A brief account of this
work appeared in the conference proceedings of the 16th Annual NIPS
meeting, Vancouver, B.C., 2003.

References

Axelrod, S., Fine, S., Gilad-Bachrach, R., Mendelson, S., & Tishby, N. (2001). The in-
formation of observations and application for active learning with uncertainty (Tech.
Rep.). Jerusalem: Leibniz Center, Hebrew University. Available online: cite-
seer.nj.nec.com/axelrod0linformation.html.

Barron, A., Schervish, M., & Wasserman, L. (1999). The consistency of posterior dis-
tributions in nonparametric problems. Annals of Statistics, 27, 536-561.

Bell, R., & Cover, T. (1980). Competitive optimality of logarithmic investment. Math-
ematics of Operations Research, 5, 161-166.

Berger, J., Bernardo, J., & Mendoza, M. (1989). On priors that maximize expected
information. In J. Klein & H. ]. Lee (Eds.), Recent developments of statistics and its
applications (pp. 1-20). Seoul: Freedom Academy.

Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design: A review. Statis-
tical Science, 10, 273-304.

Chichilnisky, E. (2001). A simple white noise analysis of neuronal light responses.
Network: Computation in Neural Systems, 12, 199-213.

Clarke, B., & Barron, A. (1990). Information-theoretic asymptotics of Bayes methods.
IEEE Transactions on Information Theory, 36, 453—-471.

Clarke, B., & Barron, A. (1994). Jeffreys’ prior is asymptotically least favorable under
entropy risk. Journal of Statistical Planning Inference, 41, 37-60.

Clyde, M., & Chaloner, K. (1996). The equivalence of constrained and weighted
designs in multiple objective design problems. Journal of the American Statistical
Association, 91, 1236-1244.

Cohn, D., Ghahramani, Z., & Jordan, M. (1996). Active learning with statistical mod-
els. Journal of Artificial Intelligence Research, 4, 129-145.

Cover, T., & Thomas, J. (1991). Elements of information theory. New York: Wiley.



1506 L. Paninski

Dayan, P., & Abbott, L. (2001). Theoretical neuroscience. Cambridge, MA: MIT Press.

Deignan, P.,, Meck], P.,, Franchek, M., Abraham, J., & Jaliwala, S. (2000). Using mu-
tual information to pre-process input data for a virtual sensor. Paper presented at the
American Control Conference 2000, Chicago.

Dembo, A., & Zeitouni, O. (1993). Large deviations techniques and applications. New
York: Springer.

Denzler, J., & Brown, C. (2000). Optimal selection of camera parameters for state
estimation of static systems: An information theoretic approach. (University of
Rochester Tech. Rep. 732). Rochester, NY: University of Rochester.

Fedorov, V. (1972). Theory of optimal experiments. New York: Academic Press.

Foldiak, P. (2001). Stimulus optimisation in primary visual cortex. Neurocomputing,
38-40,1217-1222.

Freund, Y., Seung, H. S., Shamir, E., & Tishby, N. (1997). Selective sampling using the
query by committee algorithm. Machine Learning, 28(2-3), 133-168.

Kontsevich, L., & Tyler, C. (1999). Bayesian adaptive estimation of psychometric slope
and threshold. Vision Research, 39, 2729-2737.

Lee, T, & Yu, S. (1998). An information-theoretic framework for understanding sac-
cadicbehaviors. InS. A. Solla, T. K. Leen, & K.-R. Muller (Eds.), Advances in neural
information processing, 12. Cambridge, MA: MIT Press.

Lewis, A. (1996). Convex analysis on the Hermitian matrices. SIAM Journal on Opti-
mization, 6, 164-177.

Lindley, D. (1956). On a measure of information provided by an experiment. Annals
of Mathematical Statistics, 29, 986-1005.

Luttrell, S. (1985). The use of transinformation in the design of data sampling schemes
for inverse problems. Inverse Problems, 1, 199-218.

Machens, C. (2002). Adaptive sampling by information maximization. Physical Re-
view Letters, 88,228104-228107.

Mackay, D. (1992). Information-based objective functions for active data selection.
Neural Computation, 4, 589-603.

Mascaro, M., & Bradley, D. (2002). Optimized neuronal tuning algorithm for multi-
channel recording. Unpublished abstract. Available online: http://www.
compscipreprints.com/.

Milman, V., & Schechtman, G. (1986). Asymptotic theory of finite dimensional normed
spaces. Berlin: Springer-Verlag.

Nelken, 1., Prut, Y., Vaadia, E., & Abeles, M. (1994). In search of the best stimulus:
An optimization procedure for finding efficient stimuli in the cat auditory cortex.
Hearing Research, 72, 237-253.

Nelson, J., & Movellan, J. (2000). Active inference in concept learning. In T. K. Leen,
T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing, 13.
Cambridge, MA: MIT Press.

Parmigiani, G. (1998). Designing observation times for interval censored data.
Sankhya A, 60, 446-458.

Parmigiani, G., & Berry, D. (1994). Applications of Lindley information measure to
the design of clinical experiments. In A. F. M. Smith & P. Freeman (Eds.), Aspects
of uncertainty: A tribute to D. V. Lindley (pp. 333-352). New York: Wiley.

Pelli, D. (1987). The ideal psychometric procedure. Investigative Ophthalmology and
Visual Science (Suppl.), 28, 366.



Asymptotic Theory of Information-Theoretic Experimental Design 1507

Rudin, W. (1973). Functional analysis. New York: McGraw-Hill.

Sahani, M. (1997). Interactively exploring a neural code by active learning. Poster session
presented at NIC97 meeting, Snowbird, Utah. Available online: http://www.
gatsby.ucl.ac.uk/~maneesh/conferences/nic97 / poster/home.html.

Schervish, M. (1995). Theory of statistics. New York: Springer-Verlag.

Scholl, H. R. (1998, June). Shannon optimal priors on iid. statistical exper-
iments converge weakly to Jeffreys’ prior. Test, 7(no. 1). Available online:
citeseer.nj.nec.com/104699.html.

Schwartz, L. (1967). On Bayes procedures. Z. Wahrsch. Verw. Gabiete, 4, 10-26.

Simoncelli, E., Paninski, L., Pillow, J., & Schwartz, O. (2004). Characterization of
neural responses with stochastic stimuli. In M. Gazzaniga (Ed.), The cognitive
neurosciences. (3rd ed.). Cambridge, MA: MIT Press.

Sollich, P. (1996). Learning from minimum entropy queries in a large committee
machine. Physical Review E, 53, R2060-R2063.

Talagrand, M. (1995). Concentration of measure and isoperimetric inequalities in
product spaces. Publ. Math. IHES, 81, 73-205.

Tzanakou, E., Michalak, R., & Harth, E. (1979). The alopex process: Visual receptive
fields by response feedback. Biological Cybernetics, 35, 161-174.

van der Vaart, A. (1998). Asymptotic statistics. Cambridge: Cambridge University
Press.

Watson, A., & Fitzhugh, A. (1990). The method of constant stimuli is inefficient.
Perception and Psychophysics, 47, 87-91.

Watson, A., & Pelli, D. (1983). QUEST: A Bayesian adaptive psychophysical method.
Perception and Psychophysics, 33, 113-120.

Received June 2, 2003; accepted January 5, 2005.



