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Abstract

We develop a family of upper and lower bounds on the worst-eas
pected KL loss for estimating a discrete distribution on &dinumbem

of points, givenN i.i.d. samples. Our upper bounds are approximation-
theoretic, similar to recent bounds for estimating diserattropy; the
lower bounds are based on Bayesian averages of the KL lossr und
Dirichlet distributions. The upper bounds are convex irirtharameters
and thus can be minimized by descent methods to provideastigwith
low worst-case error; the lower bounds are indexed by a imestsional
parameter and are thus easily maximized. Asymptotic aisabfsthe
bounds demonstrates the uniform KL-consistency of a widescof es-
timators asc = N/m — oo (no matter how slowly), and shows that
no estimator is consistent ferbounded (in contrast to entropy estima-
tion). Moreover, the bounds are asymptotically tightcas> 0 or oo,
and are shown numerically to be tight within a factor of two &t c.
Finally, in the sparse-data limit — 0, we find that the Dirichlet-Bayes
(add-constant) estimator with parameter scalingHikéog(c) optimizes
both the upper and lower bounds, suggesting an optimal etajithe
“add-constant” parameter in this regime.

I ntroduction

The estimation of discrete distributions given finite datahistogram smoothing” — is a
canonical problem in statistics and is of fundamental intgooe in applications to language
modeling, informatics, and safari organizatidn2). In particular, estimation of discrete
distributions under Kullback-Leibler (KL) loss is of basiterest in the coding commu-
nity, in the context of two-step universal cod&s4). The problem has received signicant
attention from a variety of statistical viewpoints (seq. () and references therein); in
this work, we will focus on the “minimax” approach, that is) developing estimators
which work well even in the worst case, with the performanfcaoestimator measured by
the average KL loss. The recent work 6} @nd (7) has answered many of the important
asymptotic questions in the heavily-sampled limit, whére number of data sampl@é

is much larger than the number of support poimnts,of the unknown distribution; in par-
ticular, the optimal (minimax) error rate has been iderdifieclosed form in the case that



m is fixed andNV — oo, and a simple estimator that asymptotically achieves thigram
has been described. Our goal here is to analyze further thesdp case, wheiV/m is
bounded or even small (the sparse data case). It will turthatithe estimators which are
asymptotically optimal a&'/m — oo are far from optimal in this sparse data case, which
may be considered more important for applications to madedf large dictionaries.

Much of our approach is influenced by the similarities to theapy estimation problem
(8-10, where the sparse data regime is also important for apjaitaand of independent
mathematical interest: how do we decide how much probghditissign to bins for which
no samples, or very few samples, are observed? We will erigghtiee similarities (and
important differences) between these two problems through

Upper bounds

The basic idea is to find a simple upper bound on the worst-egsected loss, and then to
minimize this upper bound over some tractable class of plessstimators; the resulting
optimized estimator will then be guaranteed to possess woost-case properties. Clearly
we want this upper bound to be as tight as possible, and thee gfaallowed estimators
to be as large as possible, while still allowing easy mination. The approach taken here
is to develop bounds which are convex in the estimator, aralltov the estimators to
range over a large convex space; this implies that the miaitioin problem is tractable by
descent methods, since no non-global local minima exist.

We begin by defining the class of estimators we will be miningaover: p of the form
A g(ni)
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with n; defined as the number of samples observed in: l@nd the constants; = g(j)
taking values in thé N + 1)—dimensional convex spage > 0; note that normalization
of the estimated distribution is automatically enforcedhe T'add-constant” estimators,

g9j = I\ﬂ:fja « > 0, are an important special cas®.(

After some rearrangement, the expected KL loss for thegma&tstrs satisfies
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we have abbrewated the entropy function
H(t) = —tlogt,

B s0) = () )i -

the binomial functions

and

F() = - 4+Z ~ tlog g;) B (1).



Equality holds iff )", g(ni) is constant almost surely (as is the case, e.qg., for any add-
constant estimator).

We have two distinct simple bounds on the above: first, theéonisv

) <
; f(pi) <m max f(2),
which generalizes the bound consideredan({vhere a similar bound was derived asymp-
totically asN — oo for m fixed, and applied only to the add-constant estimators), or

f(t)
) < L7
;f(pz) < (mogrpgaﬁmf(t)) + (1/533221 =)
which follows easily from) . p; = 1; see (0) for a proof. The above maxima are always
achieved, by the compactness of the intervals and the aotytiof the binomial and entropy

functions. Again, the key point is that these bounds areoumifover all possible underlying
p (that is, they bound the worst-case error).

Why two bounds? The first is nearly tight &/m — oo (it is actually asymptotically
possible to replace: with m — 1 in this limit, due to the fact thap; must sum to one;
see 6, 7)), but grows linearly withm and thus cannot be tight fon comparable to or
larger than/NV. In particular, the optimizer doesn’t depend oon only N (and hence the
bound can't help but behave linearlysn). The second bound is much more useful (and,
as we show below, tight) in the data-sparse regifne < m.

The resulting minimization problems have a polynomial agpnation flavor: we are try-
ing to find an optimal set of weightg; such that the sum in the definition ¢f¢) (a
polynomial int) will be as close toH () + t as possible. In this sense our approach is
nearly identical to that recently followed for bounding thi@s in the entropy estimation
case 10, 1). There are three key differences, however: the term panglihe variance

in the entropy case is missing here, the approximation oadytb be good from above, not
from below as well (both making the problem easier), and ffgr@imation is nonlinear,
instead of linear, iry; (making the problem harder). Indeed, we will see below theen-
tropy estimation problem is qualitatively easier than thgneation of the full distribution,
despite the entropic form of the KL loss.

Smooth minimization algorithm

In the next subsections, we develop methods for minimizigé bounds as a function of
g; (that is, for choosing estimators with good worst-case ertgs). The first key point is
that the bounds involve maxima over a collection of convexctions ing;, and hence the
bounds are convex igy;; since the coefficientg; take values in a convex set, no non-global
local minima exist, and the global mimimum can be found bypdémescent procedures.

One complicating factor is that the bounds are nondifféabie in g;: while methods for
direct minimization of this type of.., error exist (2), they require that we track the
location of the maximal error; since this argmax can jumgalginuously as a function of
the g;, this interior maximization loop can be time-consuming. Amnefficient solution
is given by approximating this nondifferentiable objeetifunction by smooth functions
which retain the convexity of the original objective. We daypa Laplace approximation
(albeit in a different direction than usual): use the faet th

max h(t) = lim llog/ e (®)
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for continuoush(t) and compact; thus, lettingh(t) = f(¢), we can minimize

1
Uq(gj)z/o et



or

1/m 1 6
Vy(g;) = log / et | + log / el dt |,
0 1/m

for ¢ increasing; these new objective functions are smooth, @aslily-computable gradi-
ents, and are still convex, singgt) is convex ing;, convex functions are preserved under
convey, increasing maps (i.e., the exponential), and sdrosrwex functions are convex.
(In fact, sinceU, is strictly convex ing for any ¢, the minima are unique, which to our
knowledge is not necessarily the case for the original maxiproblem.) It is easy to show
that any limit point of the sequence of minimizers of the abpvoblems converges to a
minimizer of the original problem; applying conjugate gead descent for eaajy with the
previous minimizer as the seed for the minimization in thet ergestq, worked well in
practice.

Initialization; connection to L aplace estimator

It is now useful to look for suitable starting points for thénimization. For example, for
the first bound, approximate the maximum by an integral,ithdind g; to minimize

m/ dt | —H(t) —t+ Y (g; — tlogg;)Bn,;(t)
0 J

(Note that this can be thought of as the limit of the abbyeninimization problem ag —
0, as can be seen by expanding the exponential.)gT tigat minimizes this approximation
to the upper bound is trivially derived as

g _ Jo tBNsOdt _ BG+2N-j+1) 41
T [ Byt BGHLN—j+1) N+2

with 3(a,b) = j;)l ta=1(1 — )~ 1dt defined as usual. The resulting estimataagrees
exactly with “Laplace’s estimator,” the addestimator withoe = 1. Note, though, that to
derive thisg;, we completely ignore the first two terms [ (¢) — t) in the upper bound,
and the resulting estimator can therefore be expected talimpgmal (basically since the
g; Will be chosen too large, sinceH (t) — ¢ is strictly decreasing fot < 1). Indeed,
we find that addx» estimators withae < 1 provide a much better starting point for the
optimization, as expected give®, ). (Of course, fortV/m large enough an asymptotically
optimal estimator is given by the perturbed add-constaimator of (7), and none of this
numerical optimization is necessary.) In the limitaas> 0, we will see below that a better
initialization point is the addr estimator with parameter ~ —clog c.

Fixed-point algorithm

On examining the gradient of the above problems with redpegt a fixed-point algorithm
may be derived. We have, for example, that

oU ! t
= _ di (1= 2 ) et®O B (1)
dyg; /0 ( 9j> ‘ .5 (1)

thus, analogously to the— 0 case above, a simple update is given by
1 fol tleU(t)BN,j (t)dt
g; = )
T [l eaf O By (t)dt
which effectively corresponds to taking the mean of the biiab function By ;, weighted

by the “importance” terme?/ ()| which in turn is controlled by the proximity afto the
maximum of f°(¢) for q large. While this is an attractive strategy, conjugate gnaidi
descent proved to be a more stable algorithm in our hands.




L ower bounds

Once we have found an estimator with good worst-case errerwant to compare its
performance to some well-defined optimum. To do this, weinbtaver bounds on the
worst-case performance afy estimator (not just the class pfwe minimized over in the
last section). Once again, we will derive a family of bountlieixed by some parameter
and then optimize ovet.

Our lower bounds are based on the well-known fact that, fgrpaoper prior distribution,
the average (Bayesian) loss is less than or equal to the maxifworst-case) loss. The
most convenient class of priors to use here are the Dirighilets. Thus we will compute
the average KL error under any Dirichlet distribution (irat&ting in its own right), then
maximize over the possible Dirichlet priors (that is, fine teast favorable” Dirichlet
prior) to obtain the tightest lower bound on the worst-casergimportantly, the resulting
bounds will be nonasymptotic (that is, valid for &l andm). This approach therefore
generalizes the asymptotic lower bound usedin \Wwho examined the KL loss under the
special case of the uniform Dirichlet prior. See al8pfor direct application of this idea
to bound the average code length, ah8(who derived a lower bound on the average KL
loss, again in the uniform Dirichlet case.

We compute the Bayes error as follows. First, it is well-knde.g., 8, 13) that the KL-
Bayes estimate gf given#i (under any prior, not just the Dirichlet) is the posteriorane
(interestingly, the KL loss shares this property with theiaagd error); for the Dirichlet
prior with parameteg, this conditional mean has the particularly simple form

a+n
Zi a; +n; ’
with Dir(&|7) denoting theDir (&) density conditioned on dafa Second, it is straight-
forward to show 13) that the conditional average KL error, given this estimatzs the
appealing form of the entropy at the conditional mean mihescbnditional mean entropy

(one can easily check the strict positivity of this averagereria the concavity of the vector
entropy functionf (p) = — ). p; log p;). Thus we can write the average loss as

a+n Q; +n;
Eoue) (Hlss o)~ B H)) = 3 Eoue) (B 0) = Epuarm H) )

Epir@amp =

Do Qi N+3>a

where the inner averages oveare under the Dirichlet distribution and the outer averages
over 7 andn; are under the corresponding Dirichlet-multinomial or Bliet-binomial
mixtures (i.e., multinomials whose paramegérs itself Dirichlet distributed); we have
used linearity of the expectatiod,, n; = N, andDir(d|it) = Dir(d + 7). Evaluating

the right-hand side of the above, in turn, requires the féamu

Q;
_EDir(a)H(pi) = Z . (1/)(041 + 1 1 + Zaz > P

with ¢ () = 4 1ogT'(t); recall thaty(t + 1) = (t) + 1. All of the above may thus

be computed easily for any¥, m, and@; to simplify, however, we will restrict to be
constant@ = (o, «,...,«). This symmetrizes the above formulae; we can replace the
outer sum with multiplication by, and substitut® ", «; = ma. Finally, we have that the
worst-case error is bounded below by:

nLa+j) a+j . 1 1
o,m, 1 v y - . N - xr . )
Zp NG N+ma< 08 N1 e T @)+ o V(N o) -
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with p,,m.n (j) the beta-binomial distribution

N) T'(ma)l(j + a)L'(N —j+ (m —1)a)

pa,m,N(j) = (] I‘(N + ma)F(a)F((m — 1)04)

This lower bound is valid for allV, m, andc«, and can be optimized numerically inin a
straightforward manner.

Asymptotic analysis

In this section, we aim to understand some of the implicatiohthe rather complicated
expressions above, by analyzing them in some simplifyimii$. Due to space constraints,
we can only sketch the proof of each of the following statetsien

Proposition 1. Any adde estimatora > 0, is uniformly KL-consistent iV /m — oc.

This is a simple generalization of a result 6),(who proved consistency for the special
case ofm fixed andN — oo; the main point here is thdt/m is allowed to tend to infinity
arbitarily slowly. The result follows on utilizing our firsipper bound (the main difference
between our analysis and that @) (s that our bound holds for al,, N, whereas §)
focuses on the asymptotic case) and notingutitaty<,<1 f(t) = O(1/N) for f(¢) defined
by any add-constant estimator; hence our upper bound isramif O(m/N). To obtain
theO(1/N) bound, we plug in the add-constant= (j + «)/N:

f&)=a/N+t|logt— Z(log ‘HTO()BNJ(t)

J

Fort fixed, an application of the delta method implies that the koks likelog(t + &) —

ﬁ; an expansion of the logarithm, in turn, implies that théatigand side converges to

7 (1 —t), for any fixeda > 0. On al/N scale, on the other hand, we have

t . t
Nf(ﬁ):oa—i—t logt—zjjlog(j+a)BN,j(N) )
which can be uniformly bounded above. In fact, as demorestray 6), the binomial sum

on the right-hand side converges to the corresponding &tomsm; interestingly, a similar
Poisson sum plays a key role in the analysis of the entrofyatbn case in11). O

A converse follows easily from the lower bounds developeal/ab
Proposition 2. No estimator is uniformly KL-consistentlifn inf N/m > 0.

Of course, it is intuitively clear that we need many more tharsamples to estimate a
distribution onm bins; our contribution here is a quantitative asymptotigdobound on
the error in the data-sparse regime. (A simpler but sligiviker asymptotic bound may
be developed from the lower bound given I18).) Once again, we contrast with the entropy
estimation case, where consistent estimators do existimagime (1).

We let N,m — oo, N/m — ¢,0 < ¢ < oco. The beta-binomial distribution has mean

N/m and converges to a non-degenerate limit, which we’ll depatg, in this regime.
Using(t) = log(t) — 5 + O (t72) , t — oo, we obtain the asymptotic lower bound

oo

1 : , . ) 1
C+a;m,a(1)(aﬂ) (log(a+3)+w(a+3)+ m) >0. O




Also interestingly, it is easy to see that our lower boundaves as=!(1 + o(1)) as
N/m — oo for any fixed positivex (since in this casgjzo Pa,m,n(j) — 0 for any fixed
finite k). Thus, comparing to the upper bound on the minimax erroi7jnwe have the
somewhat surprising fact that:

Proposition 3. Any fixede Dirichlet prior is asymptotically least-favorable dﬁ% — 00.

This generalizes Theorem 2 d)((and in fact, an alternate proof can be constructed on
close examination of Krichevskiy’s proof of that result).

Finally, we examine the optimizers of the bounds in the dat@rse limitc = N/m — 0.

Proposition 4. The least-favorable Dirichlet parameter is given By(c) asc — 0; the
corresponding Bayes estimator also asymptotically mimésithe upper bound. Moreover,
both bounds are asymptotically tight in this limit, growiag—log(c)(1 + o(1)),c — 0.

This is our most important asymptotic result. It suggestsrgple and interesting rule of
thumb for estimating distributions in this data-sparseitlimse the addx estimator with
a = H(c). When the data are very sparses(fficiently small) this estimator is optimal;
see Fig. 1 for an illustration. The proof, which is longerrttthose of the above results but
still fairly straightforward, has been omitted due to spegestraints.

Discussion

We have omitted a detailed discussion of the form of the edgtins which numerically
minimize the upper bounds developed here; these estimatne empirically found to
be perturbed add-constant estimators, withlgrowing linearly for largej but perturbed
downward in the approximate range< 10. Interestingly, in the heavily-sampled limit
N >> m, the minimizing estimator provided by’Y again turns out to be a perturbed
add-constant estimator. Further details will be providsdwhere.

We note an interesting connection to the result8pfyho find thatl /m scaling of the add-
constant parameter is empirically optimal for largen. This1/m scaling resembles the
optimal H (c) scaling that we find here, at least on a logarithmic scale. (Fag however,

it is easy to see that the extralog(c) term included here is useful. As argued 2),(tis a
good idea, in the data-sparse limit << m, to assign substantial probability mass to bins
which have not seen any data samples. Since the total pfibpalsigned to these bins by
any adde estimator scales in this limit aB(unseen) = ma/(N + ma), it is clear that
the choicex ~ 1/m decays too quickly.

Finally, we note an important direction for future researtte upper bounds developed
here turn out to be least tight in the ranjex~ m, when the optimum in the bound occurs
neart = 1/m; in this case, our bounds can be loose by roughly a factor of(exactly
the degree of looseness we found in Fig. 1c). Thus it woulduite gvorthwhile to explore
upper bounds which are tight in th’é ~ m range.
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