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Abstract

Neuroscientists have long been interested in how efficiently we solve probabilistic sensory
problems. In order to explore analogous questions in the motor domain, we observed the eye
movements of human subjects attempting to track a visual target which moved stochastically
across a computer screen. The subjects’ behavior was then compared to a mathematically-
derived bound on the best performance possible in such a task. The subjects were able to
perform surprisingly near the optimum under the conditions examined. These results constitute
an important step in determining the efficiency of the nervous system in the context of ongoing
behavior. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Much of our fascination with the nervous system is based on the feeling that brains
seem to efficiently solve difficult statistical problems in real time. How good, in fact,
are we? Quantitative answers to this simple question, even in the most specialized of
experimental preparations, can lead to deep insight into the mechanisms underlying

*This work was supported by NIH Grant R0O1 EY 08300. LP is supported by a predoctoral fellowship
from the Howard Hughes Medical Institute. We thank S. Geman, N. Hatsopoulos, and P. Glimcher for
many thought-provoking discussions.

Lhttp://www.cns.nyu.edu/ ~ liam.

* Corresponding author.

E-mail address: liam@cns.nyu.edu (L. Paninski).

0925-2312/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0925-2312(01)00541-0



1512 L. Paninski, M. J. Hawken | Neurocomputing 38—40 (2001) 1511-1517

the behavior of nervous systems in general (see e.g. [1]). This idea has been pursued
quite successfully in the sensory domain, but has received less attention from
the motor psychophysics community. This is unfortunate, as motor systems
face a subclass of problems with some fascinating special characteristics; these
“motor problems” are inherently sequential, involving feedback with the
environment. What we decide to do now often affects what we will be able to do
(and, often, what we will perceive) in the future, and this constant interaction
with the external world has important consequences for the design of behavioral
systems.

Thus, we were led to study a well-understood, experimentally accessible test
system—the human oculomotor system—in the context of a simple probabilistic
visual tracking task. This experimental setting has obvious ethological relevance and
permits a rigorous definition of the upper bounds on the performance we can expect of
the system. In other words, we can provide a well-defined answer to the question of
how well this system can perform this task, and this, we can hope, will lead to a deeper
understanding of the computational efficiency of motor systems in general. While the
oculomotor system has been modeled from an optimal control point of view before
(see [2] for a review), the approach of rigorously comparing the performance of the
system to a well-defined, statistically-derived upper bound, as in the perceptual
setting, seems to be new.

2. Experimental methods

Two subjects were instructed to track a visual stimulus in such a way that an
average error was minimized (see below). The stimulus consisted of a small black
dot on a uniform gray field, presented on a television monitor under computer
control. The horizontal position of the target as a function of time was given
by a Markov chain on position and velocity, while the vertical position was
constant. In some experimental conditions, the target moved in a continuous
fashion, perhaps with a few jumps in any given trial; in others, the motion of the
target was of a completely discrete nature. (The data shown here was taken from the
former “smooth” experimental condition.) As the subject tracked the target, we
recorded the horizontal position of one eye using a dual-Purkinje-image infrared
eyetracker [3].

An instantaneous error signal was defined by comparing this eye position signal to
the simultaneous position of the visual target; the total error over the whole trial was
defined as a weighted average of this instantaneous error. We delivered auditory
feedback (a tone whose instantaneous pitch was proportional to the error computed
up to that time step) in real time, as well as visual feedback (a numerical representation
of the error) after every trial, to allow subjects to purposefully adjust their tracking
strategy. To give the subject ample opportunity to learn the error metric and the
statistical properties of the stimulus for a given experimental condition, we presented
the subjects with at least 200 practice trials (each about three seconds long) before any
data were analyzed.
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3. Analysis and results

The goal of the series of experiments described here is to compare human behavior
to a well-defined, theoretically derived optimum. The initial task, then, is to find this
optimum, to find the best possible tracking strategy, if it exists, and to compute its
average error; later we will discuss in more depth exactly how the comparison to the
optimum was made. Any optimal tracking strategy must depend on three items: first,
the (Markov) probability distribution from which we draw the dot paths; second, the
error metric used for the given experiment; and third, our model of the biological
constraints on the oculomotor system. Of these items, only the third requires further
discussion. For our purposes, the eye moves in two ways: in “pursuit” and “saccade”
mode [4]. Pursuit behavior is characterized by smooth motion, with speeds not
exceeding about 100°/s; saccades, on the other hand, are large, brief jumps of gaze
direction. The important point is that the eye cannot move or change speed too
quickly without making a saccade, and the oculomotor system is not typically capable
of making more than about six saccades per second. This effectively places an upper
bound on the average velocity of the eye over the course of a behavioral trial
Moreover, the eye does not respond to visual stimuli instantaneously but rather lags
by some positive reaction time. These constraints, coupled with the probabilistic
nature of the stimulus, bound the best achievable average tracking error away from
zero in general, and thus provide us with the upper bound on performance we are
looking for.

Given these three ingredients, an “optimal control” is defined as a function, a rule
that will look at the past behavior of the dot and of the eye and decide where to put the
eye on the next time step (time is measured in steps of 14 ms, at the frame update rate
of the monitor). Eye paths are then generated by applying this rule recursively,
updating our representation of the past behavior of the dot and the eye on each time
step. We say this rule is optimal only if it minimizes, on average, the error function we
defined above. Choosing this best rule is a nontrivial task; to optimally decide what to
do at any time 0, we theoretically have to look many time steps ahead, since our
actions at the present time step determine what we’ll be able to do in the future.
Obviously, we cannot look infinitely far into the future to decide what to do now, so
we have to introduce a “horizon,” or “depth” parameter—the number of time steps
we’ll allow ourselves to look ahead as we decide what to do at the present step. When
we choose a fixed, finite value for this foresight parameter, we finally arrive at
a well-defined optimization problem whose solutions are our optimal controls. Due to
space limitations, we cannot describe here how we actually computed these optimal
rules: full details are available at http://www.cns.nyu.edu/~ liam.

In general, the optimal control is not uniquely defined; this means that we cannot
directly compare what the subjects did to what the optimal control would have done
in the same situation on a trial-by-trial basis, because “what the optimal control
would have done” is not necessarily well-defined. However, we can always compare
the subjects’ performance to the optimum “in the mean”; that is, we’ll compare the
distribution of errors for an optimal control and subjects over a large ensemble of trials.
At the same time, we have a natural null hypothesis to test against, corresponding to
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Fig. 1. General experimental strategy. Top: an example stimulus trace (horizontal stimulus target position
vs. time). We compared our subjects’ behavior to that predicted by the two models described in the text:
“naive” and optimal. The comparison was done qualitatively by examining sample paths (middle row), or
more quantitatively, by examining the distributions of error incurred by the subjects and the models over
several hundred trials (bottom row).

what we may call the “naive” strategy: the eye merely follows the stimulus, going
wherever the target was observed last. Between the upper bounds provided by the
optimal model and the null point provided by this “naive” model, we have a well-
defined scale by which we can judge the performance of our subjects. (See
Figs. 1 and 3.)

After all this discussion, what did we find? The data shows a clear trend away from
the null hypothesis represented by the “naive” strategy. Subjects performed about as
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Fig. 2. Example data trace (subject LP) and corresponding optimal model predictions. (Dark line: stimulus;
lighter line: action of subject or model.) The top path was generated with the depth, or horizon, variable for
details) set to 1, while the middle path had a depth of 4; subject LP’s eye path appears in the bottom panel.
Note the greater “foresight” displayed by the depth = 4 model and subject LP at the large jump in the
middle of the trial; the subject appears to anticipate the jump and plan for it accordingly.

well as the optimal (depth = 1) model predicted. Eye position traces consistently
showed predictive behavior of the type seen in Fig. 2.
4. Discussion

The “ideal observer” idea is therefore useful in examining time-varying behavior; we
believe that the optimal stochastic control approach presented unifies previous work
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Fig. 3. Summary error distributions for the experiment shown in Fig. 2. Here we can perform the
comparison of the subjects’ performance to that predicted by the optimal and “naive” models. It is clearly
easy to reject the “naive” null hypothesis (bottom histogram); the data (top two histograms) seem to agree
best with the optimal (depth = 1) model.

examining predictive vs. reactive components of the oculomotor system (and indeed,
of motor systems in general, which tend to face similar problems). We have provided
some hints that humans perform difficult, real-time, probabilistic tasks with surprising
efficiency, and this is in nice qualitative agreement with the large body of work that
exists on the sensory side of this problem. Our results also provide upper bounds on
the processing noise in the oculomotor system, in the sense that any reasonable neural
model of the oculomotor system must be capable of this kind of near-optimal
behavior.
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