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Abstract We recently introduced likelihood-based
methods for fitting stochastic integrate-and-fire mod-
els to spike train data. The key component of this
method involves the likelihood that the model will emit
a spike at a given time ¢. Computing this likelihood is
equivalent to computing a Markov first passage time
density (the probability that the model voltage crosses
threshold for the first time at time ¢). Here we detail an
improved method for computing this likelihood, based
on solving a certain integral equation. This integral
equation method has several advantages over the tech-
niques discussed in our previous work: in particular, the
new method has fewer free parameters and is easily
differentiable (for gradient computations). The new
method is also easily adaptable for the case in which the
model conductance, not just the input current, is time-
varying. Finally, we describe how to incorporate large
deviations approximations to very small likelihoods.
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1 Introduction

A classic and recurring problem in theoretical neuro-
science is to estimate the probability that an integrate-
and-fire-type neuronal model, driven by white Gaussian
noise, that has fired at time ¢ = 0 will not fire again until
time ¢t = 7. This problem appears in a number of con-
texts, including firing rate computations (Plesser and
Gerstner 2000; Plesser and Tanaka 1997), statistical
model fitting (Iyengar and Liao 1997; Paninski et al.
2004b), and decoding (Pillow et al. 2005). In particular,
Paninski et al. (2004b) recently introduced likelihood-
based methods for fitting stochastic integrate-and-fire
models to spike train data; these techniques rely on the
numerical computation of these interspike interval (ISI)
densities. Computing this likelihood is equivalent to
computing a Markov first passage time density, the
probability that the model voltage (a Markov process)
crosses threshold for the first time at time ¢ = 7, given
that the voltage was reset to some fixed subthreshold
value at time ¢ = 0. The main motivation for this paper
is to develop efficient, robust techniques for computing
this likelihood in the model-fitting framework, to facil-
itate the application of these models to real in vivo and
in vitro data (Paninski et al. 2004a,b; Pillow et al. 2005).

Here we detail an improved numerical method for
computing this likelihood, based on techniques intro-
duced by Plesser and Tanaka (1997) and DiNardo
et al. (2001). We begin by noting that the ISI den-
sity uniquely solves a certain linear Volterra integral
equation, then provide details on approximating this
integral equation by a lower-triangular matrix equa-
tion, which may be solved efficiently on a computer. In
addition, the gradient of this solution with respect to
the model parameters may be efficiently computed via
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straightforward matrix perturbation techniques. This
semi-analytic computation of the gradient speeds nu-
merical optimization of the model parameters in a
maximum-likelihood setting and therefore enables con-
sideration of models with many more parameters than
has previously been feasible.

This integral equation method has several advan-
tages over the techniques discussed in our previous
work (Paninski et al. 2004b) (where we discussed two
methods: one based on Gaussian integrals over “boxes”
in a high-dimensional space, and the other on the nu-
merical solution to a Fokker—Planck partial differential
equation): the new method has fewer free parameters
and (as mentioned above) is much more easily differ-
entiable. The new method is also easily adaptable for
the case in which the model conductance, not just the
input current, is allowed to vary as a function of time.

Finally, since the likelihood of a given spike train
may be decomposed into a product over the likelihoods
of each individual IS1, it is convenient to work with log-
likelihoods. However, numerical errors in computing
these small likelihoods can have a large deleterious
effect on the overall likelihood computation in the log
domain. (For example, numerical instabilities may oc-
casionally convert very small probabilities into negative
numbers, which is a disaster when taking logarithms.)
Thus the computation of these very low-probability
events must be handled carefully, both in the initializa-
tion stage of any maximization routine but also even
near convergence to the maximum likelihood solu-
tion (since real data inevitably contains some outliers,
when the neuron may have spiked at a highly unlikely
time). In order to deal with this issue, we introduce a
technique, based on the probabilistic theory of large
deviations, which permits us to approximate these very
small likelihoods on a logarithmic scale (Paninski 2006).
Once again, this large deviation approximation (along
with its gradient) may be computed efficiently using
simple linear-algebraic techniques.

2 Previous approaches

We begin by reviewing two very different methods
that have been proposed for the computation of the
likelihood.

2.1 Gaussian integral method

The first method is based on a path-integral represen-
tation of the likelihood: the probability that a noisy

LIF neuron spikes at some time ¢ but at not at any
previous times 0 < s < ¢t may be computed formally as
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the fraction of all possible voltage paths V' (¢) which lie
in some constraint set C:

P(spike attime t) = P(V(s) < Vy, s <t; V() = Vy)
= / dP({V));
{(VinieC

here the constraint set C is defined as the set of all paths
which cross the threshold for the first time at ¢

={V:V(s) <V, 0<s<t; V) =V},

(i.e., the set of all voltage paths consistent with the
observed spiking data) and the probability measure
dP({V(t)}) is the Gaussian measure induced by the
linear stochastic differential equation

dV (1) = (—=gV(t) + 1(0)dt + adN,, (1)

where V(¢) is driven by some time-varying input /()
and standard Gaussian white noise dN,, scaled by o.
(We emphasize that d N, is current noise here, not con-
ductance noise; the latter case is more difficult, and will
not be treated here.) Note that the “sides” of the box C
are linear in {V(¢)}, and that the mean and covariance
of the Gaussian are easily-computed functions of the
parameters 6 = {g, o, I(t)} (see Egs. (3) and (4) below).
This representation suggests a simple direct ap-
proach to computing the likelihood: we discretize the
time interval [0, ¢] into d points (sy, Sz, ...S4—1, 1) and
compute the finite-dimensional Gaussian integral

/C AP((V(s1), V(s2). ... V(D))

Vin Vin

dV(Sl) dV(Sz)

/V AV P{V(s)), V(s2),..., V().
th

Efficient algorithms are available to compute in-
tegrals of this type (Genz 1992), for discretization
depths d up to about 10. However, finer discretizations
(d > 10) rapidly become numerically intractable; thus
this direct approach can provide only a rough approxi-
mation of the true likelihood (and unfortunately no es-
timates of the approximation error are easily available).

The appendix of Paninski et al. (2004b) describes a
method for computing the gradient of this integral with
respect to the parameters /() which requires the com-
putation of d separate (d — 1)-dimensional Gaussian
integrals (this is more efficient than simple finite differ-
ences when the dimensionality of {/(¢)} is less than d);
gradients with respect to o and g must be computed by
finite differences.
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In summary, this direct Gaussian integral method
provides a fairly crude approximation to the true like-
lihood and requires significant numerical effort to com-
pute gradients.

2.2 Forward equation (Fokker—Planck) method

A more accurate approach may be developed using
Fokker—Planck techniques (Haskell et al. 2001; Karlin
and Taylor 1981; Knight et al. 2000; Paninski et al.
2004b). If we define

PV, y=PVO)NV() < VyuVs<ib)
then it is well-known that the first-passage time density,

the likelihood of observing the first spike at time ¢, is
given by

0
pm=—5/PWﬁMC

and P(V,1) satisfies the partial differential (Fokker-
Planck, or “forward”) equation

IP(V. 1) o_2 2PV, ) gV —I1E) PV, 1]
a2 V2 F1% ’

under boundary conditions

PV, 1) =0
and
P(V, 0) == 8(V - Vreset)a

where 0, without loss of generality, denotes the time of
the last observed spike, where the voltage V is reset
deterministically to Vese-

This linear advection—diffusion PDE for P(V, ) may
be solved efficiently, to any desired level of precision,
via the usual numerical methods (e.g. Crank—Nicholson)
(Press et al. 1992): P(V, 1) is discretized in time and
voltage (the time discretization is between 0 and ¢; the
voltage discretization is between the upper bound Vy,
and some sufficiently hyperpolarized lower bound V),
and the discretized PDE is solved by iteratively solving
the corresponding set of tridiagonal linear equations.
The likelihood —% [ P(V,t)dV may then be computed
via standard methods (e.g. Euler or trapezoidal inte-
gration in V' and finite differences in 7). Arbitrarily ac-
curate solutions are obtained by letting the time and
voltage discretizations become arbitrarily fine, and
simultaneously letting the voltage lower bound

Viy — —oo. Computing the likelihood takes O(dyd;)
steps, where dy and d, are the number of bins in the
voltage and time discretization grids, respectively.
Methods for semi-analytically computing the gradi-
ent of the likelihood via this PDE technique are some-
what more involved and will be described elsewhere.

3 Integral equation approach

Now we turn to the main topic of this paper. A third
method for computing the first-passage time density
p(t) may be derived by noting another well-known
fact (Burkitt and Clark 1999; Plesser and Tanaka 1997;
Ricciardi 1977; Siegert 1951): p(¢) solves the Volterra
integral equation

t
@wwmmm=/Gmw%mwmm @)
0

under the initial condition p(0) = 0, for y > V. Here
we have abbreviated

Go(y. tlx,s) = P(V(1) = y|V(s) = x,0),

the conditional probability that the voltage V, evolving
under Eq. (1) given the model parameters 6, will be at
level y at time ¢ given that V has been observed to be
equal to x at time s. As noted above, these conditional
probability densities are Gaussian, and the relevant
means and variances may be computed easily (see, e.g.
Karlin and Taylor 1981, for details):

t
o(tls) = Var(V(1)|V(s)) = o / e 2 sy gy (3)

N

pt|x,s) = ECV(OIV(s) = x)

t
— xe s 8Wadv 4 / I(we™ Jug)dv gy, %)

N

Here we are allowing g(¢) to vary with time, for in-
creased generality and biophysical accuracy (Jolivet
et al. 2004; Stevens and Zador 1998). Equation (2)
is true for any y > Vy,, but we will take y =V,
when solving numerically since that gives rise to the
best-conditioned linear system and therefore the most
accurate solution.

It will be useful in the following to use the para-
meterization Vy, = 1, V,.e: = 0. Note that this entails
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no loss of generality (since the voltage paths V(7)
are unobserved and therefore have a free offset and
scale term).

3.1 Second-kind integral equation

The Volterra integral equation given above is of the
“first kind.” A related integral equation of the “second
kind” is

t
PO ==29[Vin, t|Vreser, 012 Y[V, |V, s1p(s)ds
0

)
where v is defined by

a Y / /
¥ly, tlx, s] = E/ Go(y', tlx, s)dy".

This can be derived straightforwardly from Eq. (2) by
integrating both sides with respect to y from Vy, to
oo, and then taking the derivative with respect to ¢
(Buoncore et al. 1987).

Note that [ Y ~ Go(y', t|x, s)dy" is the cumulative dis-
tribution of the voltage at time ¢ (conditional on the
voltage being equal to x at time s). ¥ represents the
rate of change of this quantity and is equivalent to a
probability current (or flux) across y at time t. The
integral equation as a whole, therefore, states that the
first-passage time density p(¢) is proportional to the dif-
ference between the total probability current through
Vi, at time ¢ (the first term) and the contribution to this
current from processes which have already hit V,, at
some time prior to ¢ (the second term).

Writing (7 Gj as 1 [1 + Erf { yjz‘;(fg‘f)) ]] (since Gy

is Gaussian), and using the derivative of the error
function

d 2 2
—FE — _— _p %
Z rf(z) «/_e y

and the time derivatives of the mean and variance
(derived from Egs. (3) and (4) above)

a
5 X, 5) = —gDultlx, $) + I(n

a—tazms) = 02 — 2g(a(1s),

we can show that
2

202(1)s)

Y (Vin, tlx, 8) = Go(V, tlx, 5) [g(t)Vth —-1(n —

x(Vin — n(tlx, S))}-

@ Springer

3.2 Adjustment to remove singularity

In both the first and second-kind integral equa-
tions, there is a singularity in the kernel due to
Go(Vi, t| Vi, s) diverging as s — ¢t. Although not too
drastic a problem, this will cause difficulties when solv-
ing numerically (see numerical solution of the first
kind equation; Section 4). However, as described in
Buoncore et al. (1987), it is possible to remove this
singularity. Note that any function of the form

(p(V[h’ t|x’ S) = W(Vlhv t|-x7 S) + )‘-(I)GO(VI}H tl-xv S)

will also satisfy Eq. (5) in place of ¢ since the resulting
extra terms will sum to zero, according to the first-kind
equation (2). We can set A so that the singularities in
Y and Gy cancel one another out exactly, resulting in a
non-singular ¢. The appropriate value is given by

M0) = ~lim [g(l)Vzh—I(f)—%j—;s)(Vzh—M(tlx, s>>}
= S GOVa—10).
We will therefore set
1 o?
oV tlx,9)= 3 [g(r) V=10~ s (V=i s))]

X GF)(V[ha t|Vlh7 S)

as the kernel for numerical solution of the second-kind
integral equation.

An additional benefit of using ¢ rather than v is that
in the nonleaky, constant-current case (i.e., g(t) =0
and I(t) = I for some constant 1), o(Viy, {|Vi,s) =0
for all s and ¢ (Buoncore et al. 1987). The integral
term vanishes and we are left with the exact analytical
solution for p(f) (Karatzas and Shreve 1997; Tuckwell
1989):

Vin=Vr o ((Va=V)=107?/20%t

f) =
P V2mwo?

In this case then, the second-kind equation gives the ex-
act density, no matter what the discretization level used.

4 Numerical solution of the integral equation

Standard methods exist for numerically solving
Volterra equations (Press et al. 1992); the basic idea
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is to use the fact that the integral on the right-hand-
side of both the first- and second-kind equation only
includes information about p(f) up to time ¢; thus, just
as in the numerical solution of an ordinary differential
equation, we may begin with the initial condition
p(0) = 0, then recursively compute p(t + dt) given the
value of p(s) for 0 <s <t, by computing the integral
on the right-hand-side.

We implement a simple trapezoidal rule for comput-
ing this integral here. A good summary of one solution
(for the first-kind equation) is given in Plesser and
Tanaka (1997), borrowing a method from Press et al.
(1992); an alternate approach is given in DiNardo et al.
(2001) and Haith (2004) (see also references therein).
We begin by following Plesser and Tanaka (1997) here,
filling in some additional computational details along
the way, but end up taking a slightly different approach
which will permit us to differentiate the solution much
more easily (Section 6).

To compute the necessary functions Gy(y,f|x,s),
we represent /(f) and g(¢) as piecewise constant, with
d — 1 equally-spaced discontinuities on [0, T]. Set the
discretization width A = T/d.

The means and variances of these Gaussian func-
tions may be computed exactly and recursively, allow-
ing computation in O(d?) time (instead of the O(d*)
which would be required of a naive implementation).
Computing the exponential function turns out to be
the most time-consuming step here; using the recursive
approach, only d exponentials need be computed to
obtain the means u(tf|x,s) and variances o2(t|s). For
example, to compute the first term in the expression for
u(tlx, s) above,

t/A-1
xe~ hswdv _ 1—[ e~ 8iMA
i=s/A

(remembering that g(¢) is piecewise constant on inter-
vals of size A), which may be computed via an obvious
backwards recursion. Similarly,

(t—s)/A

S+HIA .
3 / o2/l wdv gy,
S+(—D)A

t
14

0_2/ e—qug(v)dvdu — 0_2

§ i=1

t=s)/A
=O’2 Z 672L+1Ag(v)du

i=1

S+iA SHIA
X / e 2 smadv gy,
s+(—1)A

so defining the vectors

Uy (l) — e—2g(iA)A

and

1-u> () .
va(i) = | 208 8UA) >0

fori=0,...,d— 1, we have
, t/A—1 t/A—1
o / s gy = o2 5 (i) [ w.
s i=s/A j=it]
and defining
w1 (i) = up(i)'/? = e 82,
-1, (i) .
v1(d) = s o 84N =0 ,
A, giA) =0
we have
; t/A—1
xe— s g _|_/ T(wye s®dvgy — — l_[ u; (i)
N i=s/A
t/A-1 1/A—1
+ Y u®IGA) [T w().
i=s/A j=it1

Once this matrix of means and variances has been
obtained, we may compute the matrix of correspond-
ing Gaussians G(y, t|x, s) in the obvious way (unfortu-
nately we can not avoid evaluating O(d?) exponentials
to compute the Gaussian matrix), and once this matrix
of Gaussians is in hand we are ready to compute the
integrand on the right-hand-side.

Previous authors (DiNardo et al. 2001; Haith 2004;
Plesser and Tanaka 1997) have described the solution
of the integral equation in terms of iterated trapezoidal
integrals, as indicated above. An alternative, slightly
more symbolic viewpoint is to treat the integral equa-
tion as a lower-triangular linear system Ap = b, for
some lower-triangular matrix A. In the case of the first-
kind equation, this is straightforward: A consists of the
matrix of G(Vy, t|Vy,s) values, while b is a vector
containing the discretized function G(Vy, t|Vyeser, 0).
The second-kind case is slightly more subtle, but it is
not hard to see that here the vector b corresponds to
20[ Vi, t|Viyeser, 0], and A is given by 2¢[Viy,, |V, s] —
S(s —1).

Either approach to solving the integral approach—
the iterated integration or the matrix approach—clearly
leads to an O(d?) solution. Convergence issues as
A — 0 may be addressed with standard approaches
(DiNardo et al. 2001). In Matlab, the resulting matrix
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equation Ap =b is efficiently solved using the no-
tation p = A\b, which takes advantage of the lower
triangular nature of the system (in contrast to p =
inv(A) x b, which is clearly computed in O(d’) time).
The one disadvantage of the matrix formulation versus
the repeated-integral formulation is that the former
requires O(d*) memory space, while the latter requires
O(d); however, this difference in memory requirements
only has an impact on the computation speed for very
large d (that is, very fine discretizations of the time
interval (0, T)). Note that d is the only free parameter
here (c.f. the Fokker-Planck approach, which requires
the user to specify the time discretization d,, the voltage
discretization dy, and the lower bound of the voltage
discretization V).

Note that a direct approach to substituting the inte-
grand into A does not quite work in the first-kind case,
because G(x,t|x,s) diverges as s — t. To handle this
square-root singularity, we write

Goy(Vi, 1V, 8) = fi(s)(t —s)~'2,

a uniformly smoothly differentiable function, with
fi(s) = 1,s — t.! Then fi(s) is expanded to first order
around ¢:

! t
f Go(Vin,1|Vip,8)ds =/ Fi(s)(t—s)"2ds
1—A —A

t
*/ LA @O+ @) (s—D1(t—s)"*ds
t—A

=2fiA? — %f{(t)Am

If we approximate

fi() — fit = A)

O A

we are left with

t
f Go(Vip, | Vi, s)ds =~ A2 [g i+ %fl (t— A)] :

—A

In this case, we can take fi(t) = 1, further simplifying
the computation.

with Finally, we incorporate the boundary condition

(=)' 2m 2 p(0) = 0 to eliminate the first column of A and the first
fils) = o (t]s) exp [(Vth — 1tV 5))°/20 (t|s)] element of b, and use the fact that we have assumed

that Vy;, = 1 and V. = 0, to obtain
4/ A/3
TAG(1,2A]1, A)/6 4/A/3
A—=| AGU,3AI1,A) TAG(,3A]1,2A)/6 4/ A /3
AG(1, T|1, T =2A) TAG(, T|1, T — A)/6 4/A/3

and lems both in the initialization stage of the likelihood op-

b =[G, Al0,0) G(1,2A]0,0) --- G(1, T|0,0)]'.

The details of filling in A and b in the second-kind
case follow similarly (although the second-kind case
is much more straightforward, since we were able to
adjust (Viy, t|Vip, s) to eliminate the singularity).

5 Large-deviations approximation of very small
likelihoods

As discussed in Haith (2004), the issue of very low-
probability events is a nuisance with any of the three
methods we have discussed so far. Small errors in the
computation of these very small likelihoods cause prob-
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timization routine (where the initial parameters might
match the true parameters poorly) and also near con-
vergence (since real data inevitably contains some out-
liers, which correspond to low-likelihood events).

To handle these low-likelihood events, we make
use of the well-known theory of large deviations
(Dembo and Zeitouni 1993; Freidlin and Wentzell
1984; Paninski 2006), which provides approximations to
log p(¢) that are asymptotically exact in the limit that
D(u, C) — oo, where D(u, C) denotes a kind of Maha-
lanobis distance between the mean p of the Gaussian

1 1
Note that the term ~J/3- appears as a constant factor on both

sides of the first-kind integral equation, and thus we have divided
it out here to simplify the computation.
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measure on {V(¢)} and the constraint set C of valid
voltage paths.?

Specifically, the
states that

large-deviation approximation

log p(t) = <—% éreﬂé D(u, V)) <1 + 0(1))

as infyecc D(u, V) — oo, with
1 Lo
DGu. V) = /O [Vs) — (I(s) — g(&)VisH] ds.

where V(s) denotes the time-derivative of the voltage
path V at time s.

Thus to compute the approximation we must solve
the optimization problem infy.c D(u, V). As empha-
sized in Paninski (2006), this is a quadratic pro-
gramming problem in the vector {V(A), V(2A), ...,
V(T — A)}, with a unique global optimum which can be
computed via standard and efficient ascent algorithms
(Boyd and Vandenberghe 2004) (the uniqueness of the
optimizer here is due to the strict convexity of the
function D(.,.) and the convexity of the set C). In this
case we may start with the analytic guess

Vopt’ () = pn(tl Vieser, 0)

2
_ rT wdu @ (710) .
+e sl um Vin = (T Vreser, 0) |
this was derived in Paninski (2006) as the solution to the
optimization problem infy.c D(u, V), where the set C’
is defined as

C = {V : V(O) = Viesets V(t) = Vth}

(note that C C ). It turns out we have already com-
puted all the pieces of the above formula in the previous
section, which makes V,,, a convenient initializer for
the optimization.

Now if V() < Vy, for t < T (thatis, if V,,r € C),
then the optimization problem is complete; otherwise,
we need to ascend (via quadratic programming, e.g.,
quadprog.m in Matlab) into the feasible set C.

Once we have obtained the optimizer

Vop: = arg r‘}lelrcl D, V),

2A different method, based on the theory of “small-ball” prob-
abilities for Gaussian measures, exists to handle the opposite
extreme, when the probability of C becomes small not because
the mean is distant from C, but rather because o is large com-
pared to the scale of C. However, these large-o asymptotics
are less relevant in the neural setting (since it is known that
somatic current noise is relatively small compared to the other
nondeterministic components of the neural response Mainen and
Sejnowski 1995) and will not be discussed further here.

we compute the large-deviations approximation as

2

1 [T/
log p(T) = —=— (Vopt(t) + 8O Vop(®) — 1(0) dt.

20’2 0
This integral may be computed by a straightforward
Euler rule; note that here it is slightly more convenient
to use a rectangular than a trapezoidal integration rule,
since Vop,, g, and I are most conveniently defined on
the intervals between the points (0, A, 2A, ..., T).

6 Computing gradients

The key advantage of the matrix formulation of the
integral equation described in Section 4 is that the
equation Aypg = by is easy to differentiate with re-
spect to 0; that is, this formulation permits the efficient
computation of likelihood gradients. In particular, we
can use the chain rule to compute the gradient of
po(t) with respect to 0 via simple matrix perturbation
techniques: we need only compute the derivative

i[(A + €AY (b + b)),
de

where A’ and b’ are arbitrary perturbations of A and b,

respectively. For this we have

(A+eA) (b +eb) = [AU+eA AN (b +eb)
—[I+eA™ A A'b +eb)
=[I—cA"A +0(e)]

x A7N(b 4+ €b’)
=Ab+e[ATD - A7
xA'A7'b] + o(e).

Alternatively, we may simply define the implicit
derivatives

Ap=b>b
9A op  ob
Sl
a0 Pt %% = %0

0 b A
a6 a6 a6

=A"! b _ %A‘lb
a6 06

to obtain the same result in a more symbolic manner.
So given A~!, the directional derivatives with respect
to A’ and b’ are cheap to compute, and therefore the
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@ r r r r
40 —O— 1Istkind |]
—— 2nd kind
301
5 — — —true fpt

0.04 0.06 0.08
time

0.02 0.1

Fig. 1 Stability comparisons between first-kind and second-kind
approaches. Top: first-passage time density p(f) computed using
a discretization depth d = 10. / and g were each constant here;
leftt I =g=0 and o = 10; right: I = g=40, and o = 1. The
condition number of the first-kind matrix was > 20 times as large

gradient with respect to the parameters may be ob-
tained easily as well. Again, the most efficient notation
for A~!in Matlabis A\eye(size(A)), which exploits the
lower-triangular nature of A.

Note in particular that the likelihood is given by the
last element of the vector p; thus, we do not need to

Fig. 2 Explanation of the
stability differences between
first-kind and second-kind
approaches. Top left: A
matrix in first-kind equation.
Top right: A in second-kind
equation. Note that the
second-kind A is close to
diagonal, decaying much
more quickly away from the 30
diagonal than does the
first-kind A, with a much
smaller condition number and
therefore more stable
estimates. Bottom: inverse
matrices A~!; note the
oscillations in the first-kind
case. Parameters: I = 30,
g=40,0 =5,and d = 40

1st kind

10

< 20
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st —¥— 2nd kind
= — — —true fpt
10t
5 L
0

log error

0.1 0.15
time

0.05 0.2

as was the condition number of the second-kind matrix in the case
on the right. Bottom: log-ratio of computed to true p(f). Note that
the first-kind method has larger errors than does the second-kind
method; in fact, the second-kind method is exact in the g = 0 case
shown in the left panels

compute the derivative of the full vector p with respect
to A’ and b’, but rather only that of the last element.
Thus, letting ay denote the bottom row of A1,

Vb p = ay,

2nd kind
0.08
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0.06 0.2
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0
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—1
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and
Vap =—(A"'b)a.

No major conceptual difficulties arise in computing
the gradients of A and b with respect to I(s), g(s),
and o. As expected, everything can be computed in
O(d*) time (although since no additional exponentials
need to be computed, it turns out that even for d as
large as 50, computing the gradient turns out to be
only about as expensive as a single additional like-
lihood computation); an implementation of the code
is available at http://www.stat.columbia.edu/~liam/
research/code/basic-fpt-code.zip. We do need the gradi-
ents of the Gaussian function:

flx,s,v) = v 172 exp[—s(a — x)2/2v];

a—x

f _

8x_s f

af (a—x)?

Bs v f

af 1 (a—x)?
5—[‘5“ e }f'

50 :
d=20
407| ——— d=50
—— d=100
= 30 d=500
= 20t
10t
0 |
0.05 0.1 0.15 0.2

t

Fig. 3 Two examples of p(f) computed via the second-kind
method, given time-varying input current /(f). Left: linear ramp
1(t). Right: sinusoidal /(¢). In each case, 0 = 0.5 and g = 40. Top:
input /(¢). Bottom: computed p(f), at various settings for the
discretization depth d. Note that p(f) converges somewhat slowly

(Note that these gradients do not require any additional
calls to the exponential function.) We also need the
derivatives of u;, etc., with respect to g:

8u1

_— = —Au1

a8

3

2 = —ZAL{Q

g

v —gm“;*”‘, g(iA) > 0
0 |-a22.  gia)=0
du, [ ERESER giA) > 0

Again, note that we have avoided any further exponen-
tiation. The gradients of ¢ with respect to o2, I(s), and
g(s) follow similarly, albeit with a few more steps and
applications of the chain rule; we skip the (unenlight-
ening) details.

The gradient of the large deviation approximation
described in the last section is comparatively easy to
compute. Defining the function

2

T
oW, 0) = —L/ (V(t)+g(I)V(t) - I(t)> dr,
0

202

0.15 0.2

0.05 0.1
t

in the case of a rapidly-varying /(¢); thus it is reasonable to assign
large d to longer interspike intervals or on intervals where (f) or
g(t) vary quickly, and assign small d to intervals where / and g
are relatively constant (where the faster small-d approximation is
expected to be more adequate)
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Fig. 4 Examples of the estimated parameters, k(.) and A(.).
White noise current was filtered by the function k(.) shown
in bold in the left panel, then injected into an IF cell with
parameters g = 40,0 = 0.05, DC input current Iy =35, and
afterhyperpolarizing current /(.) shown in bold on the right.
Seventy-five spikes were generated and used to fit the unknown
model parameters. Estimated k(.) and /& are shown for com-
parison; each function was estimated in a lower-dimensional
subspace via maximum likelihood. Errorbars correspond to the

we use the chain rule to write the gradient of the
approximation as

Vo log p(T) = Vy Q(Vopi(0), 6)
av,
= 80’" ViQWVop(0),0) + V2 O(Vopi(6), )

=V, Q(Vopt(e)’ 0),

where the last equality follows from ;[/he fact that
a opt

Vope optimizes D(u, V), and therefore —z* is orthog-
onal to Vi Q(V,,(0), 0), by the Karush-Kuhn-Tucker

conditions. Computing

V2O(Vopi(6), 0)

1 [Ty 2
=Vy (_F /0 (Vopt(t) + 8 Vope(t) — I (t)> dt)

with V,,, held fixed, is now straightforward; e.g.,
Q(Vopi(9), 0) is simply quadratic in I(r) and g(?).

7 Numerical results

We found that the second-kind integral equation
method due to DiNardo et al. (2001) is more ro-
bust than the basic first-kind equation (Fig. 1; c.f.
Plesser and Tanaka 1997); this relative instability of the
first-kind equation is well-known (Lamm 2000). Note
that this behavior is not universal; for some parameter

@ Springer
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estimated standard error, and were computed using the observed
Fisher information method (van der Vaart 1998); we numeri-
cally computed the negative Hessian of the log-likelihood as a
function of the model parameters, evaluated at the maximum
likelihood value of the model parameters, then approximated
the covariance of the estimate as the inverse of this negative
Hessian matrix. Finally, we obtained the errorbars by the usual
propagation-of-error formulas, followed by a square-root

settings, the first-kind equation gives more accurate
results. However, on balance it appears that the second-
kind equation has a more stable solution, as predicted
(Lamm 2000). In particular, the matrix A in the second-
kind equation consistently has a smaller (more sta-
ble) condition number than does the first-kind A; this
gap becomes particularly pronounced when o is large,
where fi(t — s) falls off slowly as |t — s| becomes large.
See Fig. 2 for a comparison of these two matrices;
Fig. 3 shows estimates of p(f) in the case of two simple
example time-varying currents /(f) (a linear ramp and
a sine-wave current).

Since the solution to the second-kind equation is
generally more stable, and is guaranteed to give the
correct result in the special case of g = 0, we use the
second-kind equation in our demonstration of the per-
formance of the MLE in simulated data (Fig. 4). We
fit the model described in Paninski et al. (2004b) and
Pillow et al. (2005), with V(¢) solving Eq. (1) (with con-
stant membrane conductance g) and the input current
given by

1) = 10+/

X(Dk(t = )dr + Y ht — 1)),
*© j

where x(¢) was a (fully-observed) white noise stimulus,
the sum over A(.) is over all past spike times ¢;, and
the true values of the stimulus filter k(.) and spike-
history filter A(.) are shown in Fig. 4. We see that
the integral equation method provides good estimates
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of the true parameters, with the advantage of easily-
computed gradients (note that the gradient of the
likelihood with respect to I(f) can easily be translated
into gradients with respect to k(.), Iy, and A(.), since
I(¢) is a linear function of these parameters), which
speeds optimization and also the computation of the
negative Hessian of the log-likelihood (the observed
Fisher information, Schervish 1995), for the purposes
of computing confidence intervals around the MLE.

8 Conclusions

We have adapted exact integral equation methods
(DiNardo et al. 2001; Plesser and Tanaka 1997)
and approximate quadratic-programming methods
(Freidlin and Wentzell 1984; Paninski 2006) for com-
puting spiking likelihoods in the stochastic integrate-
and-fire neuron in order that the gradient of the
likelihood may be efficiently computed, for optimiza-
tion purposes. We found that an integral equation of
the second kind required the computation of a few
additional terms but provided solutions that were sig-
nificantly more stable than the first-kind method. In
particular, the second-kind integral equation method is
acceptably fast and stable for slowly-changing /(¢) and
g(), with speed O((£)%) (or O((1)%) if the gradient
is computed) and accuracy 0(%) (and in fact perfect
accuracy in the special case of constant input current
and zero leak). Finally, this second-kind method pro-
vided us with an accurate and efficient code for comput-
ing the ML estimator for the integrate-and-fire model
used in Paninski et al. (2004b) and Pillow et al. (2005).
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