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We compute the exact spike-triggered average (STA) of the voltage for the
nonleaky integrate-and-fire (IF) cell in continuous time, driven by gaus-
sian white noise. The computation is based on techniques from the theory
of renewal processes and continuous-time hidden Markov processes (e.g.,
the backward and forward Fokker-Planck partial differential equations
associated with first-passage time densities). From the STA voltage, it is
straightforward to derive the STA input current. The theory also gives an
explicit asymptotic approximation for the STA of the leaky IF cell, valid
in the low-noise regime σ → 0. We consider both the STA and the condi-
tional average voltage given an observed spike “doublet” event, that is,
two spikes separated by some fixed period of silence. In each case, we
find that the STA as a function of time-preceding-spike, τ , has a square
root singularity as τ approaches zero from below and scales linearly with
the scale of injected noise current. We close by briefly examining the
discrete-time case, where similar phenomena are observed.

1 Introduction

The spike-triggered average (STA) (de Boer & Kuyper, 1968; Bryant &
Segundo, 1976; Chichilnisky, 2001) is an easily measured experimental
quantity defined as the conditional average stimulus to a cell, given that the
cell has just emitted an action potential. Thus, this average quantity sum-
marizes, in a sense, what stimulus led to a spike, and as such has taken on
some importance in studies of neural coding (Rieke, Warland, de Ruyter van
Steveninck, & Bialek, 1997; Simoncelli, Paninski, Pillow, & Schwartz, 2004)
and Hebbian models of short-term synaptic plasticity (Dayan & Abbott,
2001).

Computing this quantity for model neurons, in turn, has led to some
insight into the coding properties of these models. For example, for the
linear-nonlinear-Poisson (LNP) cascade model (Simoncelli et al., 2004) the
STA turns out to be closely associated with the linear filter of the cell
(the “L” stage of the model) (Bussgang, 1952; Chichilnisky, 2001; Paninski,
2003, 2004), allowing for straightforward estimation of the model param-
eters via simple STA-based computations. For the linear-nonlinear model
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with multiplicative history effects (Berry & Meister, 1998), the STA is per-
turbed in an easily characterized fashion by these history terms (Paninski,
2003; Aguera y Arcas & Fairhall, 2003).

Here we consider the linear integrate-and-fire (IF) neuron driven by
white gaussian noise of scale σ and mean µ; in this model, the voltage V
satisfies the stochastic differential equation,

dVt = µdt + It, (1.1)

with It a white noise process of scale σ (that is, It = σd Bt , with Bt a standard
Brownian motion); the cell spikes and V is reset to some value Vr upon each
threshold crossing, V(t) = Vth , where Vth > Vr . This is the most common
base model for stochastic neuronal responses and has proven useful in a
wide variety of contexts (Koch, 1999; Gerstner & Kistler, 2002; Paninski,
Lau, & Reyes, 2003; Pillow, Paninski, Uzzell, Simoncelli, & Chichilnisky,
2005). Thus, it is worthwhile to examine its properties in analytical detail
where possible.

Computing the STA for the integrate-and-fire cell has proven some-
what more complex than in the simpler LNP case described above, basi-
cally because the IF cell has a more complex history dependence. Some
preliminary approximate analysis of this problem appeared in Gerstner
(2001) and Kanev, Wenning, and Obermayer (2004). More recently,
Badel, Richardson, and Gerstner (2005) presented some exact asymp-
totic results based in part on large-deviations approximations (Freidlin
& Wentzell, 1984; Kautz, 1988); see also Paninski, in press, for a re-
cent application to the IF model) and in part on the theory of par-
tial differential (Fokker-Planck) equations associated with Brownian
motion.

Here we show that it is possible to give relatively simple exact
(nonasymptotic) formulas for the STA of the nonleaky IF cell. In addi-
tion, these nonasymptotic results lead fairly naturally to exact asymptotic
results that hold slightly more generally. Our results thus complement those
of Badel et al. (2005), who considered more general versions of the basic IF
model but give only asymptotic results.

This article is organized as follows. Section 2 contains our main result:
here we explicitly calculate the conditional average voltage and input cur-
rent of the nonleaky IF cell in continuous time given an observed spike
“doublet” event, that is, two spikes separated by some fixed period of si-
lence. This result has a natural extension to an approximate solution for
the leaky case (see section 2.1); this approximation may be shown to be
exact in the small noise limit σ → 0, via comparison with the large-deviation
results (Paninski, in press; Badel et al., 2005). In section 3 we use this doublet-
triggered average and some basic renewal theory to compute the exact STA.
We discuss an alternate approach in the discrete-time setting in section 4
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and summarize a few salient points about the form of the STA, and gener-
alizations to other IF-based models, in section 5.

2 The Doublet-Triggered Average

To compute the STA, we first compute the doublet-triggered density,

P(V(t)|s[t1, t2] = {t1, t2}),

the probability density of V(t) given that s[t1, t2], the observed spike data
in the interval [t1, t2], consisted of spikes at times t1 and t2, with no spikes
observed at times t ∈ (t1, t2). Once we have calculated the corresponding
doublet-triggered expected voltage,

E(V(t)|s[t1, t2] = {t1, t2}),

we will use equation 1.1 to recover the doublet-triggered expected current.
(Of course, the doublet-triggered voltage density P(V(t)|s[t1, t2] = {t1, t2}) is
of independent interest; de Ruyter & Bialek, 1988; Paninski, in press; Badel
et al., 2005.) We emphasize that V(t) here is assumed to follow the nonleaky
noisy dynamics 1.1; we address the leaky case below, in section 2.1. To save
on notation, we will fix t1 = 0 in this section (without loss of generality).

The doublet-triggered density P(V(t)|s[0, t2] = {0, t2}) is given by a nor-
malized product of two terms,

P(V(t)|s[0, t2] = {0, t2}) = 1
Z(t)

Pf (V, t)Pb(V, t), t ∈ (0, t2). (2.1)

This follows from the fact that the integrate-and-fire cell is a special case of
a continuous-time hidden Markov model (HMM): V acts as the “hidden”
variable, which evolves according to Markovian dynamics, and the pres-
ence or absence of a spike in time bin t is the observed variable, which is
dependent (in this case deterministically) only on V(t) at the single time
point t. Thus, we may adapt the existing methods for computing (and sam-
pling from) the conditional density of the hidden variable of an HMM,
conditioned on its beginning and end states to this special IF model case.
(See, e.g., Rabiner, 1989, and Harvey, 1991, for further detail.)

We start by defining Pf and Pb ; this is a simple matter of some manipu-
lations with Bayes’ rule. For all 0 < t < t2, we have

P(V(t)|s[0, t2] = {0, t2}) = P(s[0, t2] = {0, t2}|V(t))P(V(t))
P(s[0, t2] = {0, t2})

= P(s[0, t] = {0}|V(t))P(s[t, t2] = {t2}|V(t))P(V(t))
P(s[0, t2] = {0, t2})
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= P(s[0, t] = {0})
P(s[0, t2] = {0, t2}) P(V(t)|s[0, t] = {0})P(s[t, t2] = {t2}|V(t))

≡ 1
Z(t)

Pf (V, t)Pb(V, t),

where the second equality reflects the conditional independence of s([0, t])
and s((t, T)) given V(t) and the last equality is a definition. The ratio
P(s[0, t] = {0})/P(s[0, t2] = {0, t2}), which is constant in V, may be taken
as a normalization factor that ensures the conditional V-probability inte-
grates to one.

It is well known that the forward term solves the Fokker-Planck (for-
ward) equation (Karlin & Taylor, 1981; Tuckwell, 1988; Risken, 1996; Brunel
& Hakim, 1999; Haskell, Nykamp, & Tranchina, 2001),

∂ Pf (V, t)
∂t

= σ 2

2
∂2 Pf (V, t)

∂V2 − µ
∂ Pf (V, t)

∂V
,

with boundary conditions

Pf (Vth, t) = 0 ∀t ∈ [0, t2]

and

Pf (V, 0) = δ(V − Vr ).

This may be solved explicitly via the method of images (Daniels, 1982) as

Pf (V, t) =N (Vr + µt, σ 2t) − e2µ(Vth−Vr )/σ 2N (2Vth − Vr + µt, σ 2t),

V ≤ Vth, t > 0,

where N (µ, σ 2) = N (µ, σ 2)(V) denotes the gaussian kernel of mean µ and
scale σ .

The backward term, on the other hand, solves the Kolmogorov backward
equation (Karlin & Taylor, 1981),

∂ Pb(V, t)
∂t

= −σ 2

2
∂2 Pb(V, t)

∂V2 − µ
∂ Pb(V, t)

∂V
,

with boundary conditions

Pb(Vth, t) = 0 ∀t ∈ [0, t2]
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and

Pb(V, t2) = δ(V − Vth).

Solving for Pb is slightly more delicate; if we try to solve the backward equa-
tion directly, starting at t = t2 and using the method of images to propagate
the solution backward in time, all the mass is absorbed at Vth immediately.
Thus, a more indirect, limiting argument is required. We start with the exact
solution to the backward equation started at V(t2) = Vth − ε, ε > 0,

Pε
b (V, t) =N (Vth − ε − µ(t2 − t), σ 2(t2 − t))

−e−2µε/σ 2N (Vth + ε − µ(t2 − t), σ 2(t2 − t)), V ≤ Vth, t < t2,

and then take the (normalized) limit as ε → 0. Abbreviating t2 − t = w, we
have

Pε
b (V, t) = c(t)

[
exp

(
− (Vth − ε − µw − V)2

2σ 2w

)
− e−2µε/σ 2

× exp
(

− (Vth + ε − µw − V)2

2σ 2w

)]

= c(t) exp
(

− (Vth − µw − V)2

2σ 2w

)[
exp

(
2ε(Vth − µw − V)

2σ 2w

)

− exp
(−2µε

σ 2 − 2ε(Vth − µw − V)
2σ 2w

)]
+ o(ε)

= c(t) exp
(

− (Vth − µw − V)2

2σ 2w

)[
2ε(Vth − µw − V)

2w
+ 2µε

+ 2ε(Vth − µw − V)
2w

]
+ o(ε)

= c(t) exp
(

− (Vth − µw − V)2

2σ 2w

)
[Vth − µw − V + µw]ε + o(ε)

= c(t) exp
(

− (Vth − µw − V)2

2σ 2w

)
[Vth − V]ε + o(ε),

where the c(t) above represents an irrelevant normalization factor, constant
in V; thus, we arrive at

Pb(V, t) = c(t)[Vth − V]N (Vth − µ(t2 − t), σ 2(t2 − t)), V ≤ Vth .
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Now we may solve for P(V(t)|s[0, t2] = {0, t2}) (and therefore any con-
ditional moment of V(t), such as the mean voltage given the observed
data s[0, t2]) simply by plugging the above formulas for Pb and Pf into
equation 2.1 and normalizing. This normalization, in turn, requires that we
compute integrals of the truncated gaussian distribution,

N+(m, V)(x) = e(−m/
√

V)−1N (m, V)(x), x > 0,

with

e(x) =
∫ ∞

x
N (0, 1)(u)du.

We will need the first and second moments of this distribution,

〈x〉m,V = m +
√

V
√

2/π

erfcx(−m/(
√

V
√

2))

and

〈x2〉m,V = m2 + V + m
√

V
√

2/π

erfcx(−m/(
√

V
√

2))
,

with erfcx(.) denoting the scaled complementary error function,

erfcx(x) = 2√
π

ex2
∫ ∞

x
e−t2

dt.

After one last change of variables, we have

P(V(t)|s[0, t2] ={0, t2}) = Vth − V
z(t)

[
N

(
(Vth − Vr )t

t2
+ Vr , q (t)

)

−N
(

(Vr − Vth)t
t2

+ 2Vth − Vr , q (t)
)]

for V < Vth , with the variance term

q (t) = σ 2(t−1 + (t2 − t)−1)−1

and the normalization

z(t) = e(−y(t)/
√

q (t)) < x >y(t),q (t) −e(y(t)/
√

q (t)) < x >−y(t),q (t),
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Figure 1: The densities Pf (V, t), Pb(V, t), and P(V(t)|s[0, t2] = {0, t2}) =
Pf (V, t)Pb(V, t)/z(t), for t = 0.3; Vth = 1, Vr = 0, σ 2 = 1, µ = 1, t1 = 0, t2 = 1.

where we have abbreviated

y(t) = (Vth − Vr )(1 − t/t2).

See Figures 1 and 2 for an illustration of the three densities Pf , Pb , and
P = Pf Pb/z. Now, finally, we may read off our main result:

E(V(t)|s[0, t2] ={0, t2}) = Vth − z(t)−1[e(−y(t)/
√

q (t)) < x2 >y(t),q (t)

−e(y(t)/
√

q (t)) < x2 >−y(t),q (t)],

for t ∈ [0, t2]. We will abbreviate this solution as St1,t2 (t), that is,

St1,t2 (t) ≡ E(V(t)|s[t1, t2] = {t1, t2}), t ∈ [t1, t2]

for use below.
At this point, it is worth pausing to note a few salient properties of this

doublet-triggered average. First, St1,t2 (t) behaves as

St1,t2 (t) = Vth − σ
√

8/π
√

t2 − t + o(
√

t2 − t)

as t ↗ t2. (See Figures 2 and 3.) This square-root behavior at t2 was also
noted by Badel et al. (2005).
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Figure 2: The doublet-triggered average, S0,1(t). Parameters as in Figure 1. Pan-
els 1–3 show the evolution of densities Pf (t), Pb(t), and P(V(t)|s[0, t2] = {0, t2}),
for t ∈ [0, 1]; grayscale level indicates height of density. Panel 4 shows some sam-
ples (gray traces) from the conditional voltage path distribution given spikes at
t1 = 0 and t2 = 1 (see the appendix for a brief description of the exact sampling
procedure), with the empirical mean given 100 samples shown in black. The
bottom panel shows the most likely path (dotted trace), the analytical doublet-
triggered average (dashed), and the empirical doublet-triggered average (solid).

Second, in the low-noise regime, σ → 0, the doublet-triggered average
converges uniformly to the most likely (ML) voltage path (see Figure 3),
which in this case takes the simple linear form (Paninski, in press)

VML (t) = 1
t2 − t1

(Vr (t2 − t) + Vth(t − t1)), t ∈ [t1, t2].
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Figure 3: Effects of varying σ on St1,t2 (t). Note the convergence to the most
likely voltage path (the linear dotted voltage trace) as σ → 0. Also note that at
sufficiently high noise levels, the doublet-triggered average voltage is actually
hyperpolarized below Vr due to the “killing” effect of the absorbing boundary
at Vth , as described in the text.

This result is consistent with basic results from the theory of large deviations
(Freidlin & Wentzell, 1984; Paninski, in press), which indicates that this most
likely path will dominate expectations as σ → 0.

Thus, the doublet-triggered average may be roughly described as a
straight line between Vr and Vth , minus a sag of size proportional to σ ;
this sag, in turn, behaves as a square root as t → t2, and is due to the fact
that voltage paths that happen to be depolarized by noise above threshold
are “killed” by the absorbing boundary at Vth .

Finally, due to some cancellations, µ does not appear in the above ex-
pressions; thus, the doublet-triggered average is (somewhat surprisingly)
independent of the mean input current µ. (As we will see in section 3,
the STA is dependent on µ; this dependence enters strictly through the µ-
dependence of the IF interspike interval density.) To get a better sense of
why µ drops out here, it is enlightening to take an alternate approach, based
on the Brownian bridge, which is defined (Karlin & Taylor, 1981; Karatzas
& Shreve, 1997) as the stochastic process formed by conditioning Brownian
motion (with or without drift) on its start and end points. To see the rele-
vance of the Brownian bridge here, we may consider the doublet-triggered
density in two steps. First, we condition V(t) to end at V(t2) = Vth . This
gives us a Brownian bridge started at (0, Vr ) and ended at (t2, Vth); note,
importantly, that this is the point at which the dependence on µ drops out
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(since the Brownian bridge has no dependence on the drift µ of the original
Brownian motion). Then we condition further, imposing the inequality con-
straints V(t) < Vth, 0 < t < t2, to obtain the doublet-triggered distribution;
since µ plays no role in the Brownian bridge process, µ can play no role in
this further conditioned process either. (The relevant computations for this
conditioned Brownian bridge may be carried out explicitly, using a form of
the method of images for the Brownian bridge; the final result is the same,
so we omit the details.) This alternate approach also explains the form of
the variance term q (t), which exactly matches the variance of the Brownian
bridge (Karlin & Taylor, 1981).

With the doublet-triggered average voltage in hand, it is straightforward
to derive the doublet-triggered average current from the IF dynamics, equa-
tion 1.1; we may simply write

E(I (t)|s[t1, t2] = {t1, t2}) = ∂

∂t
St1,t2 (t) − µ.

(The careful reader will note that we have been rather blithe about an
interchange between a derivative and an expectation here; we will dis-
cuss this further in section 4.) This doublet-triggered average current di-
verges as (t2 − t)−1/2 as t → t2; this has an interesting effect on the dis-
cretized STA for current, which appears not to converge to any physically
reasonable limit as the time discretization dt goes to zero (see section 4
below).

2.1 The Leaky Case. The above results suggest a simple approximation
for the leaky case,

dVt = (µ − gVt)dt + It.

The forward equation in this case becomes

∂ Pf (V, t)
∂t

= σ 2

2
∂2 Pf (V, t)

∂V2 − µ
∂ Pf (V, t)

∂V
+ g

∂[Pf (V, t)V]
∂V

,

with boundary conditions as above,

Pf (Vth, t) = 0 ∀t ∈ [0, t2]

and

Pf (V, 0) = δ(V − Vr ).
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In this case, Pf satisfies the renewal equation (Karlin & Taylor, 1981; Plesser
& Tanaka, 1997; Burkitt & Clark, 1999; Paninski, Haith, Pillow, & Williams,
2005),

Pf (V, t) = PVr ,0(V, t) −
∫ t

0
p1(s)PVth ,s(V, t)ds,

with p1(t) denoting the first-passage density,

p1(t) = ∂

∂t

(
1 −

∫ Vth

−∞
Pf (V, t)dV

)
= − ∂

∂t

∫ Vth

−∞
Pf (V, t)dV,

and Px,s(V, t) denoting the “free” solution to the forward equation, that is,
the (uniquely well-behaved) solution to the forward equation in the absence
of the threshold boundary condition, for example,

PVr ,0(V, t) = N
(

Vr +
(

µ

g
− Vr

)
(1 − e−gt),

σ 2

2g
(1 − e−2gt)

)
.

No elementary analytical solution for Pf is available in the leaky case to
our knowledge; instead, we simply neglect the second term in the above
renewal expression for Pf and approximate

Pf (V, t) ≈ PVr ,0(V, t).

This is accurate as σ → 0, if µ/g < Vth .
For the backward equation, we replace our analytical solution above

with

Pb(V, t) ≈ c(t)[Vth − V]N
((

Vth − µ

g

)
eg(t2−t) + µ

g
,
σ 2

2g
(e2g(t2−t) − 1)

)
,

V ≤ Vth,

which again makes use of the free solution to the backward equation.
The corresponding approximation to the doublet-triggered average,

formed by plugging the above approximations to Pf and Pb into
equation 2.1, is crude but nonetheless asymptotically correct as σ → 0: this
approximate doublet-triggered average, S̃0,t2 (t), behaves like

S̃σ→0
0,t2 (t) =

σ 2

2g (1 − e−2gt)((Vth − µ

g )eg(t2−t) + µ

g ) + σ 2

2g (e2g(t2−t) − 1)
(
Vr + (

µ

g − Vr
)
(1 − e−gt)

)
σ 2

2g (1 − e−2gt) + σ 2

2g (e2g(t2−t) − 1)
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as σ → 0. Some algebra reduces this to

S̃σ→0
0,t2 (t) = µ

g
+ ae−gt + begt,

with a , b suitably chosen constants in t. Since S̃σ→0
0,t2 (t) uniquely satisfies the

second-order differential equation,

∂2

∂t2 S̃σ→0
0,t2 (t) = −g(−gS̃σ→0

0,t2 (t) + µ) = g2
(

S̃σ→0
0,t2 (t) − µ

g

)
,

with boundary conditions S̃σ→0
0,t2 (0) = Vr and S̃σ→0

0,t2 (t2) = Vth , S̃σ→0
0,t2 (t) corre-

sponds exactly to the ML voltage path, which dominates the true doublet-
triggered average in the limit σ → 0 (Paninski, in press), as discussed above.
See Figure 4 for some examples of this approximation.

The doublet-triggered average current is only slightly more complex in
this case, since we have to include the effect of the leak, in particular, the
mean leak current,

E(−gV(t)|s[0, t2] = {0, t2}) = −gE(V(t)|s[0, t2] = {0, t2}) = −gSt1,t2 (t).

Our approximation in this case thus takes the form

E(I (t)|s[t1, t2] = {t1, t2}) ≈ ∂

∂t
S̃t1,t2 (t) − µ + gS̃t1,t2 (t).

3 The Spike-Triggered Average

Given the doublet-triggered distributions P(V(t)|s[t1, t2]), it is straightfor-
ward to obtain the full STA (and more generally, the full distribution of V(s)
at any time s, given a spike at time t).

We make use of the renewal representation of the spike times in this
model: note that for µ > 0, the IF model represents a stationary stochastic
process. Moreover, since V(t) is strong Markov, the sequence of spike times
is a renewal process; as is well known, it is straightforward to calculate
the interspike interval density for every order (e.g., via the reflection prin-
ciple for Brownian motion, coupled with the Girsanov formula; Karatzas
& Shreve, 1997). The density of the interval between a given spike and
the ith following spike is given by the inverse gaussian density (Seshadri,
1993):

pi (t) = i(Vth − Vr )√
2πσ 2t3

e−(i(Vth−Vr )−µt)2/2σ 2t = p1 ∗i−1 p1,



2604 L. Paninski

0

0.5

1

V

µ = 0; σ = 1.0; g = 2

0

0.5

1

V

µ = 0; σ = 1.0; g = 5

0

0.5

1

V

µ = 3; σ = 1.0; g = 2

0

0.5

1

V

µ = 3; σ = 0.3; g = 2

0 0.2 0.4 0.6 0.8 1
−1

0

1

time

V

µ = 0; σ = 3.0; g = 2

Figure 4: Some approximate doublet-triggered averages in the leaky case. The
approximation is fairly accurate in general and is exact as σ → 0. The approx-
imation fails in the σ large case, when the free approximation to the forward
solution fails (that is, when a nonnegligible amount of probability mass crosses
threshold before t2). Conventions are as in the bottom panel of Figure 2: dashed
curves are analytical approximations to the doublet-triggered averages, dotted
curves are ML paths, and solid curves are empirical doublet-triggered averages
(based on 1000 samples from true conditional voltage distribution given s[0, t2]).

where ∗i denotes the i-fold convolution.
Define

S+
1 (t) =

∫ ∞

t
p1(s)S0,s(t)ds, t > 0,
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and

S−
1 (t) =

∫ −t

−∞
p1(−s)Ss,0(t)ds, t > 0.

These are the doublet-triggered averages S0,t2 averaged over the next and
previous interspike intervals, respectively. Denote the firing rate function
(Rudd & Brown, 1997) of the IF cell as

f (t) =
∞∑

i=1

pi (t);

this is the expected firing rate of the cell at time t given a spike at time 0.
Then the spike-triggered average voltage for positive times t is given by the
convolution

STA(t) = ( f (t) + δ(t)) ∗ S+
1 (t) = S+

1 (t) +
∫ s

0
f (t − s)S+

1 (s)ds, t > 0,

and similarly for negative times,

STA(−t) = ( f (t) + δ(t)) ∗ S−
1 (t) = S−

1 (t) +
∫ s

0
f (t − s)S−

1 (s)ds, t > 0.

The spike-triggered average current and distributions P(V(t)|s[0] = {0})
follow similarly. See Figure 5 for a few examples of the STA.

The leaky case follows exactly the same route, with the exception (again)
that no explicit analytical solution is known for p1(t) or f (t) in the leaky
case. But the spikes from the leaky IF (LIF) cell are still a renewal process,
and the STA can still be written in the convolution form given above.

It is worth pointing out that a simpler approach suffices for posi-
tive times. In this case, we can form the spike-triggered distributions
P(V(t)|s[0] = 0) directly, without going through the intermediate step of
computing the doublet-triggered distributions. By the usual renewal argu-
ment, we have that

P(V(t)|s[0] = 0) = Pf (V, t) +
∫ t

0
Pf (V, t − s) f (s)ds, t > 0,

from which we may read off the expectation to obtain the STA. From this,
it is easy to see that the STA may be approximated for small, positive times
t with the simple linear form

STA(t) ≈ Vr + (µ − gVr )t + o(t)
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Figure 5: A few examples of the spike-triggered average voltage, for different
values of σ (in each case, the leak g = 0). Black trace is analytical STA; gray
trace (mostly obscured by the black trace) is empirical STA, given 2000 seconds
of simulated data. In the low-noise regime σ → 0 (top panel), an oscillatory
ringing is visible, at a frequency approaching the firing rate of the cell in the
absence of noise µ/(Vth − Vr ), 2 Hz in this case; the square root singularity at
t → 0− becomes more visible as σ increases.
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(in contrast with the square root singularity as t approaches zero from the
left).

4 Discrete-Time Approach

In the previous sections, we computed the spike-triggered average volt-
age in continuous time. Deriving the spike-triggered average current from
the average voltage may be done formally by a simple interchange of the
derivative in equation 1.1 and the expectation taken when forming the STA.
However, justifying this interchange rigorously runs into the usual issues
associated with white noise in continuous time (specifically, the fact that
white noise is only defined as a measure on a space of generalized func-
tions; Hida, 1980) and would take us slightly afield. Instead, we discuss here
a more direct, rigorous calculation of the spike-triggered average current in
discrete time and point out some similarities to the formal continuous-time
approach taken above.

We begin by writing the LIF model in discrete time:

V(t + dt) = V(t) + (µ − gV)dt + It,

where It , the input current, is discrete gaussian white noise with mean zero
and scale σ

√
dt, and the voltage is reset to Vr at each threshold crossing.

Note that the
√

dt scaling on the input noise current ensures the existence
of a continuum limit of the above process, as dt → 0; this limit process is
equivalent to an Ornstein-Uhlenbeck process that resets at each crossing of
the threshold Vth . We will focus on this dt → 0 limit below.

In the following, we suppress the argument of I (t − τdt) and abbreviate
the event s[t] = {t} as s. Thus, we write the spike-triggered average current
as

E(I (t − τdt)|s[t] = {t}) =
∫

I P(I |s)d I

=
∫

I
P(s|I )
P(s)

P(I )d I.

We analyze each term in the above expression in turn.
First, by definition,

P(I ) = N (0, σ 2dt).

Next,

P(s) = F dt + o(dt),
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where F denotes the invariant (steady-state) firing rate of the cell. F , in
turn, can be computed as follows (Karlin & Taylor, 1981; Brunel & Hakim,
1999; Haskell, Nykamp, & Tranchina, 2001; Paninski et al., 2003):

F = −σ 2

2
∂ P∞(V)

∂V

∣∣∣∣
V=Vth

,

where P∞(V) is the invariant density on voltage. It turns out that we will
not need to know anything about this invariant distribution beyond the fact
that it exists uniquely, is differentiable from below at Vth , and is zero above
Vth . Somewhat surprisingly, we will not even need to compute F .

The hard part is P(s|I ). We condition on the voltage at time t, as follows:

P(s|I ) =
∫

P(s, I, V)
P(I )

dV

=
∫

P(s|I, V)P(I, V)
P(I )

dV

=
∫

P(s|I, V)P(V|I )dV

=
∫

P(s|I, V)P(V)dV,

where we have used the independence of the current and the voltage at a
given time step in the final line.

To compute p(s|I, V), we need to introduce some limiting
arguments—the fact that dt → 0 will allow us to compute p(s|I, V) ex-
actly asymptotically, and this does not appear to be possible for arbitrary
dt. First, we write out the definition more carefully:

P(s|I, V) = P(V(t) > Vth |V(t − (τ + 1)dt), I (t − τdt))

= P(V(t) > Vth |V(t − τdt) = V(t − (τ + 1)dt) + (µ − gV)dt + I ).

To put it more simply, this is the probability that the stochastic process V
will cross the boundary Vth on the τ th time step; clearly, any such crossing
must be from below, given the definition of the LIF model.

The first limiting argument is simple: as dt → 0, the probability that
more than one such crossing will occur in the interval (t − τdt, t) decreases
exponentially. Thus, we have a relatively simple gaussian first passage time
problem:

P(s|I, V) = qD−OU(τ, Vth, V + I, σ
√

dt, g, µ/g, dt) + O(
√

dt),
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where qD−OU is the probability that a discrete Ornstein-Uhlenbeck process,
starting at V + I , with leak parameter g, equilibrium potential µ/g, time
step dt, and scale σ

√
dt, will first cross the threshold Vth at τ time steps. It

will be helpful to rescale qD−OU as follows:

qD−OU(τ, Vth, V + I, σ
√

dt, g, µ/g, dt)

= qD−OU(τ, 0, (V + I − Vth)/σ
√

dt, 1, gdt, µ/g, 1).

Putting all the pieces together, we have

STA(τ ) = 1
P(s)

∫ ∫
I P(I )P(V)P(s|I, V)d I dV

= − 2
σ 2dt Ṗ∞(Vth)

∫ ∫
I

σ
√

dt
G

(
I

σ
√

dt

)
P∞(V)

×(qD−OU(τ, 0, (V+ I − Vth)/σ
√

dt, 1, gdt, µ/g, 1) + O(
√

dt))d I dV,

where G denotes the standard gaussian density. Now we change variables:

a = I/σ
√

dt,

and

b = (Vth − V)/(σ
√

dt),

to simplify our integral to

2
Ṗ∞(Vth)

∫ ∫
aG(a )P∞(Vth − bσ

√
dt)

×(qD−OU(τ, 0, a − b, 1, gdt, µ/g, 1) + O(
√

dt))dadb.

Finally, by L’Hopital and a simple dominated convergence argument and
the fact that the Ornstein-Uhlenbeck mean and covariance matrix converge
to that of discrete Brownian motion in this limit, we have

STA(τ ) = 2σ
√

dt
∫

aG(a )da
∫ ∞

0
bqDB(τ, b − a )db + O(dt), dt → 0,

with qDB denoting the probability that a standard discrete Brownian motion
(that is, a cumulative sum of independently and identically standard normal
variables) will first cross the threshold b − a at time τ .



2610 L. Paninski

Unfortunately, qDB does not seem to have a simple analytical expression,
although we can compute this quantity fairly explicitly for small τ , and the
large τ asymptotics can be computed by appealing to known results on the
corresponding quantity for Brownian motion. For example, we can compute

qDB(1, u) = �(−u)e(u);

in general, qDB is given by a similar τ -dimensional gaussian integral over an
orthant (Paninski, Pillow, & Simoncelli, 2004), or alternately by a repeated
convolution of error functions.

As discussed in the previous section, the corresponding crossing proba-
bilities for continuous-time Brownian motion can be computed exactly:

qB(τ, u) =
∫ τ+1

τ

pu
1 (t)dt = 2

∫ τ−1/2u

(τ+1)−1/2u
G(x)dx,

with pu
1 (t) denoting the first passage time of a standard Brownian motion to

the threshold u, and it is fairly easy to show that qB ∼ qDB as τ → ∞. Since

qB(τ, u) ≈ G(τ−1/2u)τ−3/2u

for large τ , we have

STA(τ ) ≈ 2σ
√

dtτ−3/2
∫

da
∫ ∞

0
ab(b − a )G(a )G(τ−1/2(b − a ))db.

Another change of variable demonstrates that the spike-triggered average
current behaves like

STA(τ ) = Aσ
√

dtτ−1/2 + o(τ−1/2)

(with the prefactor A given by a gaussian polynomial integral over a half-
space) as τ → ∞, locally at the spike time (i.e., for τdt → 0). This matches
the result established by the continuous-time argument in the preceding
section. See Figure 6 for an illustration of the singular behavior of the
discrete STA as τ → 0− and of the dependence of the STA on dt.

5 Conclusions and Extensions

We can derive three somewhat surprising conclusions from the above re-
sults. First, the spike-triggered average current of the LIF cell in discrete
time does not, in fact, have a continuum limit as dt → 0 in the usual
sense. We might have expected that the STA would live on a timescale
of ∼1/g—roughly, that the cell would integrate over about a membrane
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Figure 6: The discrete spike-triggered average current, as a function of dt.
Note that the STA becomes sharper with decreasing dt, with a horizontal
scale proportional to dt and a vertical scale proportional to

√
dt. Parameters:

σ = 1, µ = 2, g = 0.

time constant’s worth of input before “deciding” whether to spike. In fact,
the STA is effectively supported on a dt timescale, and therefore the width of
the spike-triggered average vanishes as dt → 0. This illustrates the danger
of thinking of the STA too glibly as the “linear prefilter” of the cell, applied
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to the input before some nonlinear probabilistic spiking step (a similar point
is made, in Aguera y Arcas & Fairhall, 2003).

From a more physical point of view, of course, this “degeneracy” of the
STA is perhaps less surprising (in retrospect, at least), since decreasing dt
corresponds to increasing the bandwidth of the current, and this should in-
crease the “bandwidth” of the cross-correlation between the current input
and the spike output (namely, the STA), as well. This intuition is supported
by numerical experiments in which the white noise current input is pre-
ceded by some fixed prefilter of limited bandwidth (Pillow & Simoncelli,
2003; Paninski et al., 2004); for this prefiltered input, the STA does indeed
have a nonvanishing limit as dt → 0.

Second, on a related note, ST A(τ ) displays a square root singularity as
τ → 0−, which is due to the interaction of the Brownian motion term in the
IF stochastic differential equation with the absorbing threshold at Vth (see
also Badel et al., 2005, for a discussion of this point).

Finally, perhaps most surprising, the STA is basically parameter inde-
pendent for τ close enough to zero. The STA scales linearly in σ , but all
the other model parameters—µ, g, vL , and vreset—become irrelevant in the
τ → 0− limit, due to the

√
dt relationship between the scale and drift of a

diffusion with bounded coefficients. Loosely speaking, the noise term dom-
inates the leak terms on small timescales; diffusion processes with bounded
parameters can be locally approximated by (zero-drift) Brownian motion.
The linear scaling of the STA in σ , on the other hand, has interesting impli-
cations for the “adaptive” properties of the LIF cell, as discussed in more
detail in Rudd & Brown (1997), Paninski et al. (2003), and Yu and Lee (2003).
More globally (that is, if we do not confine our attention to times very near
the spike), as emphasized in Paninski (in press) and Badel et al. (2005), the
most likely voltage path dominates the STA for σ sufficiently small.

5.1 Directions. We briefly indicate a few possible ways to generalize
the above results. As mentioned above, we could replace our linear LIF
model with a more general stochastic differential equation:

dV = f (V)dt + a (V)It,

with f (V), a (V) some fixed, uniformly smooth functions of voltage V
(Brunel & Latham, 2003). Again, though, while this will change the fir-
ing statistics of the model (perhaps drastically), our results on the STA in
the τ → 0− regime remain unchanged. (We are assuming, of course, that the
Fokker-Planck equation corresponding to this model has a unique, differ-
entiable invariant density P∞(V); without such a unique invariant P∞(V),
it is typically not possible even to define the STA. (See, e.g., Karlin & Taylor,
1981, for conditions ensuring the existence of a P∞(V) with the required
properties.)
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One interesting application of this idea involves invertible rescalings
of the voltage axis, V → g(V), for g(.) a smooth, invertible function. For
example, taking U(t) = exp(V(t)) gives us a geometric Brownian motion,
which serves the same fundamental role in, for example, financial appli-
cations that the Ornstein-Uhlenbeck process serves in neural applications.
Since invertible rescalings preserve the Markov property, all of our re-
sults go through unchanged after applying the usual change-of-measure
formula.

Perhaps the fundamental step of our analysis is the Markov assumption.
Thus, generalizations that would be worth exploring include the extension
to more general spike-response models (Gerstner & Kistler, 2002), as defined
by

dV = ( f (V) + η(t − ts))dt + a (V, t − ts)It,

where η is a smooth function of t − ts , the time since the last spike (this
class of models allows for more interesting interspike interactions, since
the subthreshold dynamics are no longer Markovian), and perhaps more
importantly, to colored or conductance noise input I (Badel et al., 2005).

Appendix: Sampling

Sampling from the unconditioned stochastic differential equation 1.1 is
straightforward, and will not be discussed further here (see, e.g., Risken,
1996 and Karatzas & Shreve, 1997, for a discussion). Conditional sam-
pling, on the other hand—drawing samples from model 1.1, given the
observed spike data s[t1, t2]—is not quite so obvious. The exact sam-
pling method used here is a variant of the forward-backward algorithm
described above for computing conditional densities and is again in-
herited from methods for sampling from hidden Markov models (Ra-
biner, 1989). An identical procedure is used in Paninski (in press) but
will be described here for completeness. We initialize V(t2) = Vth . (This
initial condition is due to the data that a spike occurred at time t2, as
above.)

Now, for t2 > t > t1, sample backward:

V(t) ∼ P(V(t)|{V(u)}t<u<t2 , s[t1, t2] = {t1, t2})
= P(V(t)|V(t + dt), s[t1, t] = {t1})

= 1
Z

P(V(t + dt), s[t1, t] = {t1}|V(t))P(V(t))

= 1
Z

P(V(t + dt)|V(t))P(s[t1, t] = {t1}|V(t))P(V(t))
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= 1
Z

P(V(t + dt)|V(t))P(V(t)|s[t1, t] = {t1})

= 1
Z

P(V(t + dt)|V(t))Pf (V, t).

Thus, sampling on each time step simply requires that we draw in-
dependently from a one-dimensional density, proportional to the prod-
uct in the last line. Once this product has been computed, this sampling
can be done using standard methods (namely, the inverse cumulative
probability transform (Press, Teukolsky, Vetterling, & Flannery, 1992)). (Of
course, Pf (V, t) need only be computed once for t1 < t < t2, no matter
how many samples are required.) The second term is computed directly
from the gaussian stochastic dynamics, equation 1.1, given each V(t + dt).
Putting the samples together, for 0 < t < t2 clearly gives a sample from
P({V(t)}0<t<t2 |s[t1, t2] = {t1, t2}), as desired.
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