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Abstract
Recent developments in multi-electrode recordings enable the simultaneous measurement of
the spiking activity of many neurons. Analysis of such multineuronal data is one of the key
challenge in computational neuroscience today. In this work, we develop a multivariate point-
process model in which the observed activity of a network of neurons depends on three terms:
(1) the experimentally-controlled stimulus; (2) the spiking history of the observed neurons;
and (3) a hidden term that corresponds, for example, to common input from an unobserved
population of neurons that is presynaptic to two or more cells in the observed population.
We consider two models for the network firing-rates, one of which is computationally and
analytically tractable but can lead to unrealistically high firing-rates, while the other with
reasonable firing-rates imposes a greater computational burden. We develop an expectation-
maximization algorithm for fitting the parameters of both the models. For the analytically
tractable model the expectation step is based on a continuous-time implementation of the
extended Kalman smoother, and the maximization step involves two concave maximization
problems which may be solved in parallel. The other model that we consider necessitates the
use of Monte Carlo methods for the expectation as well as maximization step. We discuss
the trade-off involved in choosing between the two models and the associated methods. The
techniques developed allow us to solve a variety of inference problems in a straightforward,
computationally efficient fashion; for example, we may use the model to predict network
activity given an arbitrary stimulus, infer a neuron’s ring rate given the stimulus and the
activity of the other observed neurons, and perform optimal stimulus decoding and
prediction. We present several detailed simulation studies which explore the strengths and
limitations of our approach.
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Introduction

With the advent of large-scale multi-electrode recordings, it is now possible to

collect simultaneous spiking data from large ensembles of neurons.

This multineuronal spike-train data gives us the ability to investigate important

questions facing systems neuroscience. For example, we can now address in

detail the question of how networks of neurons process complex dynamic inputs

and encode information (Abeles 1991; Schnitzer and Meister 2003; Cossart

et al. 2003; Litke et al. 2004). Understanding the concerted activity of large

networks will also help in the design of neural prosthetic devices which

have significant clinical implications (Loizou 1998; Donoghue 2002; Weiland

et al. 2005).

To achieve these goals we need to develop tractable, powerful methods for

modeling multineuronal spike-train data (Brown et al. 2004). There is a large

body of literature tackling the problem of developing statistical models for large-

scale simultaneous spike-train recordings (Chornoboy et al. 1988; Utikal 1997;

Martignon et al. 2000; Iyengar 2001; Schnitzer and Meister 2003; Nicolelis et al.

2003; Cossart et al. 2003; Paninski et al. 2004; Truccolo et al. 2005; Okatan

et al. 2005; Pillow et al. 2005; Nykamp 2005). Nearly all of these previous

efforts at developing population spike-train models (with the notable exception of

Nykamp (2005)) have taken the basic form

�kðtÞ ¼ Fkð~xðtÞ, ~nðtÞÞ,

where �k(t) represents the instantaneous firing rate of the k-th observed neuron,

and Fk(�) is some function that relates �k(t) to the simultaneously observed external

~xðtÞ and internal ~nðtÞ signals. Typically, ~xðtÞ includes a truncated history of

the presented stimulus along with measurements of the animal’s behavioral

state, while ~nðtÞ could include the firing rates of all the other observed neurons,

and/or measurements of multiunit activity or local field potential (Andersen

et al. 2004).

Thus, most of the models have stimulus-dependence terms and direct-coupling

terms representing the influence that the activity of an observed cell might have

on the other recorded neurons. Fewer models, however, have attempted to

include the effects of the population of neurons which are not directly observed

during the experiment (Nykamp 2005). Since we can directly observe only a

small fraction of neurons in any physiological preparation, such unmeasured

neurons might have a large collective impact on the dynamics and coding

properties of the observed neural population. For example, it is well-understood

that common input effects play an essential role in the interpretation of pairwise

cross-correlograms (Brody 1999; Dayan and Abbott 2001; Nykamp 2005), and

that these effects can be expected to become even more important with an

increase in the size of the observed neural population.

Here, we consider models in which the firing rates of the neurons depend not only

on the stimulus history and the spiking history of the observed neurons but also on

common inputs. The models are a multivariate version of a Cox process, also known

as a doubly-stochastic point process (Cox 1955; Snyder and Miller 1991; Moeller

et al. 1998; Moeller and Waagepetersen 2004). Related models have seen several

applications in the fields of neural information processing and neural data analysis

(Smith and Brown 2003; Jackson 2004; Brockwell et al. 2004; Zemel et al. 2004;

376 J. E. Kulkarani & L. Paninski
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Sahani 1999; Wu et al. 2004, 2005; Yu et al. 2006). To our knowledge, however,

our work represents the first application of these techniques to the common-input

population model.

In this article we consider two models which differ in the way they map the

internal and external signals to the firing-rates of the neurons. The two models

considered elucidate a key trade-off between computational and analytical

tractability, and biophysical fidelity. The tractable model can lead to unrealistic

firing-rates, while the model with reasonable firing-rates is computationally

expensive. In this article we derive the methodology required to consider both

approaches. While we present a few simulation results for Model 2, the thrust of

this article is to develop computationally tractable models, and we focus

primarily on Model 1 in the results section.

To fit the tractable model we derive a modification of the standard

expectation–maximization (EM) algorithm (Dempster et al. 1977; Smith and

Brown 2003) paying special attention to computational efficiency. The EM

algorithm alternates between a run of the the expectation step (E-step) and the

maximization step (M-step). The E-step computes the observation-conditioned

distribution of the hidden process. It is implemented using a forward-sweep

which computes the conditional distributions at time t using observations up to

time t, and a backward-sweep which computes the fully-conditioned distribution.

The M-step comprises of two optimization problems, both of the optimization

problems have unique solutions. One of the two problems can be solved

analytically. The other reduces into K smaller, independent, strictly-convex

optimization problems (K denotes the number of observed neurons) which can

all be solved in parallel.

In the case of the model with greater biophysical fidelity, the backward E-step

remains the same, but the forward sweep of the E-step is carried out using Monte

Carlo techniques with importance sampling. The M-step which involves the

computation of certain expectations is also carried out using Monte Carlo techniques.

This stochastic approach make parameter estimation for this model more

computationally expensive.

Once the parameters have been obtained we may use the models to solve a

variety of important stimulus-response inference problems: for example, we may

use the model to predict activity in the network (including firing rates, cross-

correlations, etc.) given some arbitrary stimulus x(t), or alternatively perform

optimal stimulus decoding the given observed network activity (Pillow and

Paninski 2005; Truccolo et al. 2005).

This article is structured as follows: Section ‘‘Theory’’ develops the theory

used to estimate the parameters for our models. In this section we present the

background for the Cox process model as well the EM algorithm. The Fokker–

Planck approach for numerically exact computation of the forward distributions

is presented briefly. This exact but computationally expensive approach is

abandoned in favor of the extended Kalman smoother (EKS) which is dealt with

in more detail. The optimization problems involved in the M-step are also

presented. In section ‘‘Simula results’’ we present results from detailed

simulation studies which explore the strengths and limitations of the proposed

approach. We consider the two models and study the accuracy of the estimates

using the methods developed for these two models. We close in section

Multiple neural spike-train data 377
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‘‘Discussion’’ by pointing out various connections with previous work and

discussing several important directions for future research.

Theory

In this section we outline the mathematical structure of the model and summarize

the techniques used to estimate the model parameters.

The multivariate Cox process model

We consider a multivariate point process model (Snyder and Miller 1991) for a

network of neurons (Figure 1) whose conditional intensity function is given by
~�ðtÞ ¼ f ð ~V ðtÞÞ, where ~V ðtÞ ¼ ~IðtÞ þG ~NðtÞ. In component form, the conditional

intensity function for a neuron k at time t is given by

�kðtÞ ¼ f ðVkðtÞÞ; ð1Þ

where VkðtÞ ¼ ðIkðtÞ þ ~gk
~NðtÞÞ; ~gk denotes the k-th row of the matrix G; f is a fixed,

smoothly rectifying nonlinearity; and the terms ~IðtÞ and ~NðtÞ correspond to the fully-

observed and unobserved parts of the model, respectively. The log-likelihood for

such point-processes is given by

Lðftk, jgÞ ¼ log pðftk, jgjf�kðtÞgÞ ¼
XK
k¼1

X
j

log �kðtk, jÞ �

Z T

0

�kðsÞds

 !
þ const:; ð2Þ

*

Common
input

+

Stimulus

Stimulus
filter

Post-spike waveform

Rectifying
nonlinearity

Probabilistic
spiking

Coupling
waveforms

+

Figure 1. Generalized Linear Model (GLM): The input to a neuron is the sum of the linearly-
filtered experimentally-controlled stimulus, the interneuronal cross-coupling terms, the
neuron’s post-spike waveform, and unobserved common-input terms. The post-spike
waveform can account for effects such as refractoriness and adaptation, while the common-
input terms can capture input from a shared pool of unobserved neurons presynaptic to the
observed neurons. This summated input to each neuron in the observed population is passed
through a point nonlinearity which drives the probabilistic spike-generation point process.

378 J. E. Kulkarani & L. Paninski
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where tk,j is the time of the j-th spike observed from the k-th neuron and ½0,T Þ is the

time interval over which we observe the spiking responses.

The observed component of the model, Ik(t), captures the dependence of the

firing rate on the externally applied stimulus and cross-coupling terms from other

neurons in the observed population. As described in previous work (Brillinger 1988;

Paninski 2004; Truccolo et al. 2005), we let Ik(t) take the form,

IkðtÞ ¼ ~rk � ~xðtÞ þ
XK
j¼1

X
fi : tj, i<tg

hkjðt � tj, iÞ; ð3Þ

where ~xðtÞ is the stimulus at time t, ~rk is the k-th cell’s receptive field, and hkjð�Þ

denotes the interneuronal coupling term when k 6¼ j and cell k’s post-spike current

term for k¼ j. Thus, the fully-observable input to each neuron is a sum of

the linearly-filtered stimulus-dependent signal and the network’s spiking history; the

parameters f~rkg and fhkjð:Þg act as linear weights here. Incorporating terms

corresponding to the neuron’s own spike history allows us to model various

intrinsic spiking effects; such as refractoriness, burstiness, and adaptation; while

incorporating interneuronal cross-terms can capture more intricate reverberatory

and/or locally inhibitory network effects.

The unobserved signal ~NðtÞ, on the other hand, is a vector that represents the

lumped activity of a population of presynaptic neurons. The matrix G is a set of

weights that couples the dynamics of the hidden common-input process ~NðtÞ to the

instantaneous firing rate ~�ðtÞ. If we pretend for the moment that ~NðtÞ is fully-

observed, then the model reduces to a standard generalized linear model (GLM), as

described in detail and considered by many previous authors (Chornoboy et al. 1988;

Utikal 1997; Paninski et al. 2004; Truccolo et al. 2005; Okatan et al. 2005). As

discussed in Paninski (2004), this model can be fit by maximizing the log-likelihood

(2) by solving a single multivariate convex optimization problem whenever the link

function f(�) is chosen, so that f(�) is convex and log f ð�Þ is concave (e.g.,

f ðuÞ ¼ expðuÞ). Thus, fitting this fully-observed model is highly tractable.

Moreover, previous authors have discussed this GLM in the context of a simplified

‘‘soft-threshold’’ approximation to the canonical integrate-and-fire model (Plesser

and Gerstner 2000; Stevens and Zador 1996; Paninski 2004; Paninski et al. 2008).

However, in the present case, ~NðtÞ is not observed, so we must hypothesize some

tractable, flexible model for these common-input terms. Here, for computational

tractability, we assume that the hidden process can be defined by Gauss–Markov

dynamics,

d ~NðtÞ

dt
¼ �D ~NðtÞ þ ~ZðtÞ; ð4Þ

where the input process f~ZðtÞ; t � 0g is J-dimensional standard Gaussian white-

noise, and D is a matrix, which, for stability reasons, has eigenvalues whose real

parts are nonpositive. This linear model may appear to be an oversimplification but

if the dimension J of ~NðtÞ is sufficiently large then this model can lead to a rich

repertoire of dynamic behavior, including oscillatory behavior, with correlations on

multiple time-scales. The Gaussian assumption is justified by the central limit

theorem, as we assume that the hidden input to any single neuron is the weighted

sum of small inputs from a large population.

Multiple neural spike-train data 379
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The two models that we consider differ in the link function, that is the rectifying

non-linearity f(�), which maps the external and internal signals to the firing-rates.

The choice of the link function is crucial as it predominantly sets the statistics of

the spiking process. Different choices of this function will entail different

approaches in determining the observation-conditioned densities of the hidden

process which are needed in the M-step of the EM algorithm. The two models that

we consider are:

Model 1: �kðtÞ ¼ expðVkðtÞÞ ð5Þ

Model 2: �kðtÞ ¼
expðVkðtÞÞ if VkðtÞ < 0�
1þ VkðtÞ þ VkðtÞ

2=2Þ if VkðtÞ � 0

�
ð6Þ

where Vk ¼ ðIk þ ~gk
~NÞ as described earlier. The only difference between the two

models is that in Model 2 we retain a second-order approximation to the

exponential nonlinearity when Vk � 0. Model 1 with its exponential non-linearity

can lead to unrealistically firing rates. This biophysical implausibility is mitigated

in Model 2 due to the truncation of the exponential to the second order.

While the difference in the two models is conceptually minor, the approaches used

in determining the conditional distributions of the hidden process, are significantly

different. As we will see, Model 1 allows us to compute most of the terms in

the forward-filter analytically, and those that cannot be computed analytically can be

approximated readily. For Model 2, on the other hand, we have to resort to

computationally expensive Monte Carlo methods. The consideration of Model 2

elucidates how the methods introduced in this article can be implemented for more

general functions by the introduction of Monte Carlo methods.

The spike-generation model is a doubly-stochastic process: spikes are

generated stochastically and the process ~NðtÞ driving the spike-generation is

also stochastic. Such doubly-stochastic point processes are also known as Cox

processes (Snyder and Miller 1991; Moeller and Waagepetersen 2004). Because

of our assumption (4) of Markovian dynamics for the hidden variable ~NðtÞ, our

model is in fact a type of hidden Markov process, related more specifically, to

the Kalman filter model. Kalman filter theory for state-space models with point

process observations has been well developed (Snyder and Miller 1991; Smith

and Brown 2003) and can be fruitfully applied to our model. Though all the

parameters affect the spiking activity of the network, the parameters f~rkg, fhk, jg

and G have a direct effect while the effect of the dynamics matrix D is indirect as

it modulates the firing rate only through the latent process. Keeping this in

mind, for convenience, in the text we will refer to f~rkg, fhk, jg and G as the

intensity-parameters and D as the dynamic-parameter.

Before we proceed with the EM algorithm, we must first restrict our model

somewhat, as the model parameters � ¼ fD,G; f~rkg; fhkjgg are known to be

nonidentifiable (Roweis and Ghahramani 1999). That is, two different settings

�1; �2 of the model parameters may give rise to exactly the same data distribution,

pðftk, jgjf~xðtÞg; �1Þ ¼ pðftk, jgjf~xðtÞg; �2Þ. Specifically, the model currently has the

following symmetry: if we redefine ~NðtÞ by an orthogonal change of basis,
~N ! ON, for some orthogonal matrix O, then we may simply redefine G! GO0

and not see any difference in the observed data, since the observed data depend only

on G ~N, which is clearly preserved by the transformation ð ~N ,GÞ ! ðO ~N;GO0Þ, since

380 J. E. Kulkarani & L. Paninski
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GO0O ~N ¼ G ~N. Thus, our model is only defined uniquely up to an orthogonal

change of basis O. To remove these extra unidentifiable degrees of freedom in � we

simply restrict G to be a lower-triangular matrix, with the diagonal elements

restricted to be non-negative; this simple (convex) constraint on G restores the

identifiability of the model. With this lower-triangular constraint on G, and D

constrained to have eigenvalues whose real parts are non-negative, while the other

parameters ff~rkg; fhkjgg are unconstrained, we have a convex set of parameters to

search over. We note here that other parametrizations are also possible, for example

we could fix G and vary the covariance of Z(t).

Expectation–maximization (EM) algorithm

As emphasized above, fitting this model by maximizing the loglikelihood (2) is quite

straightforward when ~NðtÞ is fully observed. However, in our case, ~NðtÞ is not

observed, and we must instead maximize the marginal likelihood

pðftk; jgj�Þ ¼

Z
pðftk; jgj ~N0;T ; �Þpð ~N0;T j�Þd ~N0;T ; ð7Þ

where ~N0,T denotes the hidden sequence ~N0,T ¼ f ~NðtÞg0�t�T . We develop an

EM algorithm (Dempster et al. 1977; Smith and Brown 2003) to estimate the

parameters �. A variant of this algorithm (Salakhutdinov et al. 2003) may also be

used to compute the gradients of the marginal likelihood (7), in cases where it is

useful to maximize this likelihood directly by gradient ascent methods.

We begin by defining some notation. Let the observed spiking activity of neuron

k, in a network with K neurons, over the interval ½0,T Þ be denoted by Ok
0,T ; a right-

continuous counting function with discontinuities at the spike-times of the neuron

(Snyder and Miller 1991). The ensemble spiking-activity is given by

O0,T ¼ fO
1
0,T ,O

2
0,T . . . ,OK

0,T g. Then our marginal loglikelihood may be written as

log pðftk, jgj�Þ ¼ log½pðO0,T j�Þ�

¼ log

Z
pðO0,T ; ~N0,T j�Þd ~N0,T

� �
: ð8Þ

The EM algorithm ascends this log-likelihood by the construction of an auxiliary

function Qð�j�i�1Þ given by

Qð�j�i�1Þ ¼ E log½pðO0,T ; ~N0,T j�Þ�

����O0,T ; �i�1

� �

¼ E log pð ~Nð0Þj�Þ
YT
t¼�t

pð ~NðtÞj ~Nðt � �tÞ, �ÞpðOtj ~NðtÞ, �Þ
� �" #����O0,T , �i�1

" #

¼ E

�
log pð ~Nð0Þj�Þ
h i

þ
XT

t¼�t

�
log pð ~NðtÞj ~Nðt � �tÞ, �Þ

þ log pðOtj ~NðtÞ, �Þ
�����O0,T ; �i�1

�
; ð9Þ

Multiple neural spike-train data 381
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where �t is a small time-step which we are free to choose. Later on we discuss the

use of adaptive time-step methods (section ‘‘Forward E-step: Kalman filter’’) to

minimize computational costs.

The EM algorithm is an iterative scheme involving alternate runs of the E-step

and M-step given initial estimates for the parameters �0 (Dempster et al. 1977;

Smith and Brown 2003). For the Kalman filter (and hidden Markov models

more generally) the EM algorithm has been described extensively in a number of

different contexts (Snyder 1972a, b, Rabiner 1989; Harvey 1991; Doucet et al.

2001; Smith and Brown 2003; Yu et al. 2006; Wu et al. 2005). The E-step

involves the computation of the fully-observed distributions given the parameter

estimates �i�1 from the previous iteration, while the M-step involves maximizing

Qð�j�i�1Þ over � (with �i�1 held fixed) to obtain parameter estimates �i for the

next iteration step.

As is well-known, the E-step may be broken into two stages, known as the forward

and backward step. In the forward step we compute the forward density

pð ~NðtÞjO0, t; �i�1Þ recursively for t 2 ½0,T �, beginning with some initial conditions

pð ~Nð0Þj�i�1Þ. The backward step recursively modifies the forward density to compute

the fully-conditioned probabilities pð ~NðtÞÞjO0,T ; �i�1Þ and pairwise probabilities

pð ~NðtÞ; ~Nðt þ �tÞjO0,T ; �i�1Þ for all t 2 ½0,T �, starting with the end conditions

pð ~NðT ÞjO0,T ; �i�1Þ and recursing backward from t¼T to t¼ 0. Note that the

end-condition for the backward-step pð ~NðT ÞjO0,T ; �i�1Þ is obtained from the

forward-step. Due to the Markov nature of the Model (9), these fully-conditioned

probabilities are all we need to compute the expectations in Qð�j�i�1Þ.

For models such as the one considered here, where the hidden process is linear

Gaussian, the backward step is fairly standard, and essentially smoothes the densities

obtained via the forward-sweep using the dynamics of the hidden process. The

backward densities may be computed via simple manipulations of mean vectors and

covariance matrices of certain Gaussian distributions (Mendel 1995; de Jong and

MacKinnon 1988; Smith and Brown 2003).

The forward step, on the other hand, is slightly more subtle. In the standard

Kalman filter, with linear Gaussian observations, the forward density is Gaussian for

all times t 2 ½0,T �. Thus we do not need to keep track of the full shape of this density

for all t; instead, we only need to track the mean and covariance of this Gaussian. It

is also straightforward to compute these quantities in a recursive manner. In our

case, unfortunately, the non-Gaussianity of the observations implies that the

forward density is also non-Gaussian, and to track this density exactly we need to

keep track of more than just the mean and the covariance. Alternately, we may take

an approximate approach: we approximate this density as a Gaussian, and at each

time step just track the mean and covariance. Each approach has its strengths and

weaknesses. In addition, there are many different ways to construct this Gaussian

approximation, as we will discuss below. In the following two subsections, we

describe: (1) a method for numerically computing the forward density exactly, and

(2) a method for recursively computing the Gaussian approximation.

The Expectation step

As discussed earlier, the EM algorithm requires the knowledge of the fully-

conditioned distributions pð ~NðtÞjO0,T ; �i�1Þ and pð ~NðtÞ; ~Nðt þ �tÞjO0,T ; �i�1Þ at

382 J. E. Kulkarani & L. Paninski
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each instant in time. There are different ways in which these distributions can

be computed, and the classical approach involves a forward-sweep over the data

followed by a backward-sweep. In this section we discuss how these forward

and backward steps are implemented along with the computationally more

intensive method of numerically solving the Fokker–Planck equation for the

forward step.

Forward E-step: Fokker–Planck approach. An application of the Feynman–Kac

formula (Karatzas and Shreve 1997) shows that the joint density

Pð ~N , tÞ � pð ~NðtÞ;O0, tÞ may be computed, up to an irrelevant constant factor, via

the following Fokker–Planck equation,

@Pð ~N , tÞ

@t
¼

divPð ~N , tÞ

2
�
XJ

j¼1

@½D ~NPð ~N , tÞ�

@Nj
�
XK
k¼1

f ½IkðtÞ þ ~gk
~N �Pð ~N , tÞ; ð10Þ

where Nj is the j-th element of ~N, with the time-discontinuous update rule

Pð ~N; tþk, jÞ ¼ Pð ~N; t�k, jÞf ½Ikðtk, jÞ þ ~gk
~N � ð11Þ

at time tk,j, for the j-th spike time observed from the k-th cell. This PDE has

boundary condition

Z
Pð ~N , tÞd ~N <1: ð12Þ

In the absence of any spiking observations a reasonable initialization Pð ~N , 0Þmay be

constructed by using the asymptotic mean and covariance of the latent process ~NðtÞ.
The solution f ~NðtÞ; t � 0g to Equation 4 is a Gaussian process with moments

E½ ~NðtÞ� ¼ expð�tDÞ ~Nð0Þ; ð13Þ

Cov½ ~NðtÞ� ¼
1

2
D�1ðI � expð�2tDÞÞ; ð14Þ

where I is the appropriately-sized identity matrix. Therefore, we may take Pð ~N , 0Þ to

be Gaussian with mean 0 and covariance 1
2
D�1:

While mathematically elegant, solving this equation when dimð ~NÞ > 2 becomes

computationally very expensive. Thus we will describe a more efficient, albeit

approximate, technique known as the extended Kalman smoother (EKS) for

computing P( ~N, t) in the next section. For dimð ~NÞ ¼ 1, on the other hand, this

equation may be solved exactly and efficiently using any of a variety of standard

numerical PDE schemes (Press et al. 1992). The Fokker–Planck approach

though allows us to compare the accuracy of the methods that we will develop

for the two models against the true distributions and in the results section

(section ‘‘Simulation results’’) we will describe a simple illustrative example for

the dimð ~NÞ ¼ 1 case.
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Forward E-step: Kalman filter. The chief advantage of the EKS algorithm is that

it overcomes the computational burden of the Fokker–Planck approach, at the

cost that we have to accept approximate instead of potentially exact results. As

mentioned above, the basic idea is to assume that Pð ~N; tÞ can be

approximated by a Gaussian distribution at all times; thus we may ignore

all of the details of Pð ~N , tÞ and simply track the mean ~�f ðtÞ � E½ ~NðtÞjO0, t� and

the covariance matrix �2
f ðtÞ � Cov½ ~NðtÞjO0, t� of ~NðtÞ as a function of time t.

Note that Pð ~N , tÞ is guaranteed to be a smooth, bounded, log-concave

function of ~NðtÞ for any t whenever Pð ~N , 0Þ is log-concave and the link

function f(u) is convex and log-concave in u (since Pð ~N , tÞ may be constructed

as a composition of convolutions, affine rescalings, and products with log-

concave functions Paninski 2004, 2005), and therefore a Gaussian approxima-

tion will typically be justified. Figure 2 illustrates the accuracy of this

approximation for the dimð ~NÞ ¼ 1 case.

There are many different ways to construct and track this Gaussian approxima-

tion; we describe the EKS approach in depth here, and compare the advantages and

limitations of several other approaches in the discussion section. The forward-step is

based on the following recursion:

pð ~NtþdtjO0, tþdtÞ ¼
pðOt, tþdtj ~NtþdtÞ

pðOt, tþdtÞ
pð ~NtþdtjO0, tÞ

¼
pðOt, tþdtj ~NtþdtÞ

pðOt, tþdtÞ

Z
pð ~Ntþdt; ~NtjO0, tÞd ~Nt

¼
pðOt, tþdtj ~NtþdtÞ

pðOt, tþdtÞ

Z
pð ~Ntþdtj ~NtÞpð ~NtjO0, tÞd ~Nt: ð15Þ

The recursive nature of the computation is clear from the fact that to compute the

densities conditioned on the observations at time t þ dt involves knowing the

conditional-densities at t. In the case of Model 1, the forward-step is based on a

local Taylor expansion: we first initialize the filter using Equations 13 and 14, and

then we propagate �f(t) and �2
f ðtÞ from one time step t to the next t þ �t using the

dynamics equation (this part of the forward propagation is exact in the case of

Gaussian densities, due to the linearity of the dynamics (4)), next we incorporate the

observed spiking data Ot, tþ�t approximately, via a second-order Taylor expansion of

the log-likelihood, log p½Ot, tþ�tj ~Nðt þ �tÞ�, about the propagated mean of ~Nðt þ �tÞ.
For Model 2, the main difference is that the mean of the posterior density which

incorporates the observations is computed using Monte Carlo methods. A detailed

derivation is presented in the Appendix.

In the case of the classical Kalman filter with continuous observations and a

continuous latent process, and with Gaussian process and observational noise,

the conditional densities computed at each instant are also Gaussian. Thus no

approximations are made and the classical Kalman filter is optimal in a number

of important senses, including the least-square sense. In the present case,

however, the observational model is nonlinear, the conditional densities are not

Gaussian, and we make an approximation by retaining only the mean and

covariance terms.
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Figure 2. Comparing the Fokker–Planck approach with forward-EKS: In these simulations
we numerically solve the Fokker–Planck Equations 10–12, for the case of a single neuron with
a simple sinusoidal input and a one-dimensional noise-term for three different cases. The
sinusoidal input in the three cases is identical and is plotted in (A), where the dotted vertical
lines indicate the occurrence of spikes at 0.3 and 0.8 s. (B) Shows the ‘‘true’’ and the
approximate probability distribution of the latent process when a small value of G is chosen
(G¼ 0.05). The difference between the distributions as measured via the K–L distance is also
shown. The ‘true’ distribution is obtained using the Fokker–Planck equations while the
approximate distribution is obtained using the forward-filter derived in the text. (C) Shows
similar plots for Model 1 when G is large (G¼ 1) and (D) Shows plots for Model 2 for the
same large value of G chosen in (C) (G¼ 1). There are two important points to note: The first
point is that the true and approximate distributions are visibly different for Model 1 in the
large G case, while being similar in the small G case. The second point is that for the same
large G, however, the true and approximate distributions are very similar for Model 2 as
reflected by the smaller K–L distance.
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For Model 1, the EKS approach reduces the complexity of the computation

to OðJ3Þ per time step (we need to keep track of OðJ2Þ numbers, and

updating these numbers at each time step requires OðJ3Þ time), instead of the

intractable O(SJ) required in the Fokker–Planck case (where S is the number of

discrete points per dimension of ~NðtÞ on which we numerically solve the

multivariate Fokker–Planck Equations 10–12). For Model 2, the computation

also depend linearly on the sample size chosen for the Monte Carlo simulations

and for a sample size of M the complexity of the computation is given

by OðMJ3Þ.

Forward filter, Model 1: In the case of Model 1, the convenient choice f ð�Þ ¼ expð�Þ

allows us to derive exact updates at spike-times, while for non-spiking updates we

make a second-order approximation of the log-likelihood as considered below.

1. Dynamics update: The dynamics update step is obtained via the usual

convolution representation of ~NðtÞ,

~NðtÞ ¼ expð�tDÞ ~Nð0Þ þ

Z t

0

expð�Dðt � sÞÞ~ZðsÞds; ð16Þ

giving

~�ðt þ �tÞy ¼ � ~�f ðtÞ; ð17Þ

�2ðt þ �tÞy ¼ � �2
f ðtÞ þ

�t

6
I

� �
�0 þ

�t

6
Iþ

2

3
exp
��tD

2

� 	
exp
��tD

2

� 	
�t; ð18Þ

where � ¼ expð��tDÞ and accuracy to the second order in �t, and is obtained

using Simpson’s rule approximation for _�2
f ðtÞ ¼ �2D�2

f ðtÞ þ I, following the

discussion in (Dieci and Eirola 1994). To the first order, we have

�2ðt þ �tÞy ¼ ��2
f ðtÞ�

0 þ �tI.
2. Data update: For the data update step we use the fact that the product of two

unnormalized Gaussian functions is also a Gaussian and that a local

approximation of the matrix inverse can be obtained using

ðA�1 þ �BÞ�1
¼ AðI� �BAÞ þ oð�Þ: ð19Þ

Together with a second-order expansion of the log-likelihood

log p½Ot, tþ�tj ~Nðt þ �tÞ�, this leads to the following updates:

�2ðt þ �tÞ� ¼

�
ð�2ðt þ �tÞyÞ�1

þ
XK
k¼1

Wkðt þ �tÞ~g
0
k~gk�

2ðt þ �tÞy
��1

¼ �2ðt þ �tÞy I�
XK
k¼1

Wkðt þ �tÞ~g
0
k~gk�

2ðt þ �tÞy

" #
þ oð�tÞ, ð20Þ

~�ðt þ �tÞ� ¼ ~�ðt þ �tÞy � �2ðt þ �tÞy
XK
k¼1

Wkðt þ �tÞ~g
0
k

" #
þ oð�tÞ; ð21Þ

where WkðtÞ ¼ exp½IkðtÞ þ ~gk ~�ðtÞ��t.

386 J. E. Kulkarani & L. Paninski



D
ow

nl
oa

de
d 

B
y:

 [C
ol

um
bi

a 
U

ni
ve

rs
ity

] A
t: 

22
:5

7 
19

 J
un

e 
20

08
 

In the event that no spikes are observed from any of the cells in the time bin

½t, t þ �tÞ, we have

�2
f ðt þ �tÞ ¼ �

2ðt þ �tÞ�, ð22Þ

~�f ðt þ �tÞ ¼ ~�ðt þ �tÞ� ð23Þ

If spikes are observed at time t þ �t, then incorporating this into our updated

state estimate, we have instead,

�2
f ðt þ �tÞ ¼ �

2ðt þ �tÞ�, ð24Þ

~�f ðt þ �tÞ ¼ ~�ðt þ �tÞ� þ �2ðt þ �tÞ�G0~1kðtÞ, ð25Þ

with the ~1kðtÞ indicating the presence or absence of a spike at time t in neuron

k. As emphasized above, this update at the spike time is exact for exponential

f; related (but approximate) formulas may be derived for more general link

functions f.

While the forward filter does not involve any matrix inversions, we unfortunately

cannot avoid a full matrix multiplication. Updates requiring a matrix inversion or

full matrix multiplication each require OðJ3Þ time, which may be infeasible for very

large J.

Two speedups are readily apparent. First, it is clear that the updates between

spike-times may be written as an Euler’s method for an ODE solver. Thus we

may use adaptive time-step methods quite fruitfully, by simply and cheaply

tracking,

max
k¼f1,...,Kg

W �
k ðtÞ ¼ max

k

Z t

u

WkðsÞds; ð26Þ

where u indexes the time of the last update. On each time step, we update ~W �ðtÞ,

and only update ~�f ðtÞ and �2
f ðtÞ when max W �

k ðtÞ over k ¼ f1, . . . ,Kg reaches a

fixed threshold, at which point we also reset ~W �ðtÞ to zero. Our simulations show

that this adaptive time-stepping can lead to a substantial speedup without

significant loss of accuracy. Following the same line of reasoning, we note that not

every W �
k ðtÞ will be large. Thus, we can operate in a subspace to speed up the

bottleneck computation �2ðtÞdiag½ ~W �ðtÞ��2ðtÞ. Specifically, we update �2ðtÞ only in

the subspace spanned by the significantly large k, as measured by W �
k ðtÞ, and only

set these elements of ~W �ðtÞ to zero, letting the other elements continue to

integrate up to threshold.

Forward filter, Model 2: In this section we consider the forward filter for Model 2

and compute the various terms using Monte Carlo methods. Referring back to

Equation 15 we have,

pð ~NtþdtjO0, tþdtÞ ¼
pðOt, tþdtj ~NtþdtÞ

pðOt, tþdtÞ

Z
pð ~Ntþdtj ~NtÞpð ~NtjO0, tÞ ~Nt

¼
pðOt, tþdtj ~NtþdtÞ

pðOt, tþdtÞ

Z
pð ~Ntþdtj ~NtÞGð ~�f ðtÞ�2

f
ðtÞÞð

~NtÞd ~Nt; ð27Þ
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where we have introduced the notation G ~��2ðNÞ to denote a Gaussian distribution

for the random variable N with mean ~� and covariance �2. The observational term is

obtained from the definition of the model. For example, the probability that the k-th

neuron spikes is given by,

pðOk
t, tþdt ¼ 1j ~NtþdtÞ ¼

expðVkÞdt Vk < 0

ð1þ Vk þ V 2
k =2Þdt Vk � 0

�
ð28Þ

and the probability that it does not spike is given by,

pðOk
t, tþdt ¼ 0j ~NtþdtÞ ¼

expð� expðVkÞdtÞ Vk < 0

expð�ð1þ Vk þ V 2
k =2ÞdtÞ Vk � 0

�
ð29Þ

where Vk ¼ Ik þ ~gk
~Ntþdt as before. The mean and covariance terms ~�f ðtÞ and �2

f ðtÞ

are obtained recursively as described earlier. The dynamics term pð ~Ntþdtj ~NtÞ is the

same as that obtained for Model 1, since this depends only on the model for the

latent process, which is similar for the two models. To compute the other terms,

we resort to Monte Carlo methods with importance sampling. Many problems,

including computing integrals and expectations of functions, can be formulated as

Monte Carlo problems, where the true values are approximated numerically using

random samples chosen from suitable distributions. For example, to compute the

expectation of the function g(�) of a random variable N , the Monte Carlo estimate is

given by

E½gðNÞ� ¼

Z
gðNÞpðNÞdN �

1

M

Xi¼M

i¼1

gðNiÞ;

where Ni 	 pðNÞ. Thus, to compute the normalizing factor we have,

pðOt, tþdtÞ ¼

Z
pðOt, tþdtj ~N

�
tþdtÞpð

~N�tþdtÞd
~N�tþdt

¼ E ~N�
tþdt

½pðOt, tþdtj ~N
�
tþdtÞ�; ð30Þ

where pð ~N�tþdtÞ refers to the distribution of the latent process obtained by

conditioning on the observations up to t and propagating it forward by one time-

step dt via the dynamics equations, that is pð ~N�tþdtÞ 	 Gð��f ðtÞ;��2
f
ðtÞ�0þIdtÞð

~NtþdtÞ.

We are interested in the mean and the covariance of the conditional-distribution

pð ~NtþdtjO0, tþdtÞ, which can be obtained once again using Monte Carlo methods.

We have,

~�f ðt þ dtÞ ¼ E ~Ntþdt jOt, tþdt

~Ntþdt pð ~NtþdtjO0, tþdtÞ

h i
: ð31Þ

The covariance can be computed more quickly using,

�2
f ðt þ dtÞ ¼ �

@2

@ ~Ntþdt

log pð ~NtþdtjO0, tþdtÞ

" #�1����
~Ntþdt¼ ~�f ðtþdtÞ

: ð32Þ
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To generate random samples we follow the ‘Inverse Transform Method.’ In

the open interval (0, 1), M equally-spaced points Ui are chosen. These points

are mapped via the inverse cumulative distribution of the standard Gaussian

distribution onto the real line to obtain our Gaussian random sample

(Zi ¼ �ðUiÞ
�1). These random samples from the standard Gaussian distribution

are generated once and for all at the beginning of the simulation and are used

in the Monte Carlo methods via the transformation Xi ¼
ffiffiffiffi
C
p

Zi þ � when

samples from a Gaussian distribution with a mean � and covariance C are

required.

The computational cost of the Monte Carlo method for the forward filter scales

linearly with the sample size. Our simulations indicate that, in the parameter range

of interest, a sample size of the order of 102 is necessary to obtain good estimates,

resulting in this approach taking two orders of magnitude more time than the

forward-filter for Model 1. Also we note that the M-step requires the computation of

certain expectations, as can be seen from Equation 9. For Model 2, these

expectations are also computed using Monte Carlo methods, and as this is a part of

the maximization step, these integral need to be computed several times during each

iteration of the EM algorithm.

Backward E-step: Kalman smoother. The backward-sweep of the E-step for hidden

Markov processes uses the output of the forward-step, pð ~NðtÞjO0, tÞ, in order to

compute the fully-conditioned distributions, pð ~NðtÞjO0,T Þ, and pð ~NðtÞ;
~Nðt þ dtÞjO0,T Þ. The algorithm for the backward filter can be derived using the

Bayesian approach. It is initialized by noting that the forward-step gives the fully-

conditioned distribution at time T and by considering,

pð ~NT�dtjO0,T Þ ¼
1

pðO0,T Þ
pð ~NT�dt;O0,T Þ

¼
1

pðO0,T Þ

Z
pð ~NT�dt; ~NT ;O0,T Þd ~NT

¼
1

pðO0,T Þ
pð ~NT�dtjO0,T�dtÞ

Z
pðOT j ~NT Þpð ~NT j ~NT�dtÞd ~NT :

The backward filter smoothes the conditioned distribution by incorporating the

dynamics of the hidden process backwards in time, and as such is independent of

the observational model. As our observational model is Gaussian, this computation

is standard (Mendel 1995; de Jong and MacKinnon 1988; Smith and Brown 2003).

Denoting the fully conditioned statistics by ~�sðtÞ � E½ ~NðtÞjO0,T �, �2
s ðtÞ �

E½ ~NðtÞ ~NðtÞ0jO0,T � we have

~�sðtÞ ¼ ~�f ðtÞ þ AðtÞð ~�sðt þ dtÞ � � ~�f ðtÞÞ; ð33Þ

�2
s ðtÞ ¼ �

2
f ðtÞ þ A2ðtÞð�2

s ðt þ �tÞ � ð��
2
f ðtÞ�

0 þ I�tÞÞ; ð34Þ
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and

E½ ~NðtÞ ~N 0ðt þ �tÞjO0,T � ¼ AðtÞ�2
s ðt þ �tÞ þ ~�sðtÞ ~�

0
sðt þ �tÞ; ð35Þ

where AðtÞ ¼ �2
f ðtÞ�

0½��2
f ðtÞ�

0 þ �tI��1. We may use the usual mean-variance

decomposition to obtain

E½ ~NðtÞ ~N 0ðtÞ
��O0;T � ¼ ~�sðtÞ ~�

0
sðtÞ þ �

2
s ðtÞ: ð36Þ

We use the notation ~�sðtÞ and �2
s ðtÞ here to emphasize that the means and covariances

computed via the full forward-backward method are typically smoother functions of

time than the forward means ~�f ðtÞ and covariances �2
f ðtÞ (Figure 3).
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Figure 3. Example of forward–backward Kalman smoother: In this simulation the firing-rates
of two cells was modulated by: A constant input, the neuron’s post-spike waveform,
interneuronal cross-coupling terms, and the latent OU processes as given by Equation 42.
(A) Shows the constant d.c. input. (B) Shows the true values for the four OU processes used
to generate data on a single trial. (C) Shows the true intensity function for both the cells. Cell
one is indicated by solid line and cell two by dotted line. (D) and (E) Shows the spike data
generated in a single trial from the the two cells. (F) Shows the conditional mean of ~NðtÞ
computed via the forward filter given the true values of the parameters, the stimulus, and the
spike-data from [0, t). Note the upward jumps in mean corresponding to spike-times
followed by continuous decay. Conditional means for both cells jump simultaneously,
though with amplitude depending on which neuron was observed to spike, as can be seen
from Equation 25. The backward filter (G) estimates ~NðtÞ by conditioning on the entire
data sample. Note that the mean obtained from the full spike train is continuous, unlike
the forward mean. (H) shows the estimated firing rate of the two cells obtained from the
smoothed estimate of ~NðtÞ along with the known stimulus by using the moment-generating
function for the Gaussian distribution (40). The values of the various parameters used in this
simulation are noted in the accompanying text.
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The Maximization step

In the M-step we need to maximize the expected value of the complete data

log-likelihood given in Equation 9 with respect to � to obtain the parameter

estimates for the next iteration of the EM algorithm. From Equation 9 we see that

the M-step for the dynamics-parameter D decouples from that of the intensity-

parameters fG; f~rkg; fhkjgg. In this section we consider the implementation of the

M-step for the two models to determine these parameters.

Dynamics-parameter. From Equation 9 we see that this part of the M-step involves

finding E½log pð ~N0,T j�ÞjO0,T , �i�1�. Since the latent process for the Models 1 and 2 is

identical, this part of the M-step is the same for the two models. To determine this

term we need to compute the following expectations,

E log½pð ~N0,T j�Þ
��O0,T ; �i�1�

h i

¼ E

�
log½pð ~Nð0Þj�Þ� þ

Xt¼T

t¼�t

log½pð ~NðtÞj ~Nðt � �tÞ, �Þ�

����O0,T ; �i�1

�

¼ E½�
1

2
~Nð0Þ0

1

2
D�1

� 	�1

~Nð0Þ�

þ E

�Xt¼T

t¼�t

�
1

2�t
ð ~NðtÞ � � ~Nðt � �tÞÞ0ð ~NðtÞ � � ~Nðt � �tÞÞ
h i����O0,T ; �i�1

�

¼ 1þO
1

T

� 	� �
E

�Xt¼T

t¼�t

�
1

2�t

�
ð ~NðtÞ � � ~Nðt � �tÞÞ0ð ~NðtÞ � � ~Nðt � �tÞÞ

�����O0,T ; �i�1

�
;

ð37Þ

where again � ¼ expð��tDÞ, and we have neglected, in the final step, the

contribution to the expectation by the initial condition Pð ~N; 0Þ. The expectation

has taken over the conditional measure of ~NðtÞ given the current parameter settings

and the observed spike data on [0, T]. The output of the forward-backward

algorithm outlined in the earlier sections allow us to compute the various terms in

this expectation. Differentiating Equation 25 with respect to � we obtain �new for the

next iteration,

�new ¼
XT

t¼dt

E½NðtÞNðt � dtÞ0jO0;T ; �i�1�

 ! XT

t¼dt

E½NðtÞjO0;T ; �i�1�

 !�1

: ð38Þ

We obtain the elements of D from D ¼ �ð1=�tÞ logð�Þ:1

1In our experience, the resulting estimate of D always corresponds to a stable dynamical system (i.e., the eigenvalues of

DþD0 are negative), and therefore our constraint on D has been satisfied automatically. If this is not the case, a

straightforward expansion of � in �t reduces Equation 37 to a quadratic function of D, up to o(�t) terms; maximizing this

quadratic function under the stability constraints is now a semi-definite program (Boyd and Vandenberghe 2004), to

which standard convex optimization procedures may be applied.
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M-step: intensity-parameters. To obtain the values for the intensity-parameters

fG; f~rkg; fhkjgg we need to maximize the other term from Equation 9 with respect to

the parameters, that is maximize E½log pðO0,T j ~N0,T ; �ÞjO0,T ; �i�1� with respect to �.
This term will be different for the two models.

Model 1: We have,

E

�
log½pðO0,T j ~N0,T , �Þ

����O0,T ; �i�1

�

¼
XK
k¼1

E

�X
j

ðIkðtk, jÞ þ ~gk
~Nðtk, jÞÞ �

Z T

0

expðIkðsÞ þ ~gk
~NðsÞÞds

����O0,T ; �i�1

�

¼
XK
k¼1

�X
j

ðIkðtk, jÞ þ ~gk ~�sðtk, jÞÞ �

Z T

0

expðIkðsÞÞE½expð~gk
~NðsÞÞdsjO0,T ; �i�1�

�

¼
XK
k¼1

�X
j

ðIkðtk, jÞ þ ~gk ~�sðtk, jÞÞ �

Z T

0

expðIkðsÞÞ exp½~gk ~�sðsÞ þ
1

2
~gk�

2
s ðsÞ~g

0
k�ds

�
;

ð39Þ

where we have used the fact that neurons in the ensemble are conditionally

independent given the latent process, along with the moment-generating function

for the multivariate normal distribution,

E~z	Nð ~�;�2Þ½expð~y0~zÞ� ¼ exp ~y0 ~�þ
1

2
~y0�2~y

� 	
: ð40Þ

In Equation 39 we have a positively-weighted generalization of the usual point-

process likelihood (Smith and Brown 2003; Paninski 2004); the key fact is that this

function is jointly concave as a function of the parameters ð~gk; ~rk; fhkjgÞ; thus we may

compute gradients with respect to the parameters and carry out the maximization

via straightforward conjugate gradient ascent. Note, therefore, that this M-step

reduces to K smaller independent optimization problems, all of which have unique

global optimizers which can easily be computed in parallel by standard conjugate

gradient ascent algorithms.

Model 2: We have,

E

�
log½pðO0,T j ~N0,T ,�Þ

����O0,T ; �i�1

�

¼
XK
k¼1

E

� X
j:Vkðtk, j Þ<0

ðIkðtk, jÞþ ~gk
~Nðtk, jÞÞþ

X
j:Vkðtk, j Þ�0

ðlogð1þVkðtk, jÞþVkðtk, jÞ
2=2Þ

�

Z T

0:VkðsÞ<0

expðIkðsÞþ ~gk
~NðsÞÞds�

Z T

0:VkðsÞ�0

ð1þVkðsÞþVkðsÞ
2=2Þds

����O0,T ; �i�1

�
:

ð41Þ

The expectations required of the M-step of Model 2, as given by Equation 41, are

computed using Monte Carlo methods. We can also evaluate the gradients, of this

expectation, with respect to the parameters using Monte Carlo methods; allowing us

to ascend this function using gradient-ascent methods.
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We have found that a good initialization of the parameters frk; hjkð:Þg (for the

first M-step) is provided by the the optimizer of the classical loglikelihood, that

is, with G set to zero. For all subsequent M-steps, the optimizer �̂i�1 from the

last iteration is used as the initialization to the ascent algorithm. Finally, as usual,

prior information in the form of a log-concave prior distribution on the

parameters �, pð�Þ ¼ expð�Qð�ÞÞ, for some convex ‘‘penalty’’ function Q(�), may

be easily incorporated: to compute the maximum a posterior (MAP) estimate for

� instead of the maximum likelihood estimator, we simply ascend the functions

(37) and (39 and 41 ) added to the log-prior term – Qð�Þ; the usual proof that

EM ascends the log-likelihood surface applies unchanged to establish that this

penalized EM ascends the log-posterior surface, i.e., that penalized EM returns

the MAP estimate for �.

Simulation results

In this section we explore the system identification tools developed above by

considering several modeling scenarios.

Fokker–Planck simulations

In our first set of simulations we consider the error, introduced by the Gaussian

approximation, in our inference of the forward conditioned-distribution of the

latent process for the two models. That is, we compare the solution of the

forward-EKS step with the numerical solution obtained from solving the Fokker–

Planck equation. To simulate the Fokker–Planck equation we consider the

simplest possible model of a single neuron, with a scalar N(t), no spike history

terms and instantaneous stimulus filtering. As N(t) is one-dimensional, we can

solve the Fokker–Planck Equations 10–12 numerically in order to compare the

exact solution to the approximate forward-EKS solution. The results of this

comparison are shown in Figure 2. We compare a small-noise and a large-noise

case, with G set to 0.05 and 1.0, respectively for Model 1. We also compute the

true and approximate distributions for Model 2 for the large-noise case with

G¼ 1 as before. The dynamics term D¼ 2 and the stimulus filter ~rk ¼ 1 in each

case. x(t) is chosen to be a simple sinusoid. We compare P(N, t) given this input

and two spikes at times t¼ 0.3 and 0.8.

We immediately see that for Model 1, the EKS solution is rigorously valid

only in the small G limit. This is seen from considering the derivation of the

forward-EKS (presented in the Appendix) for the non-spike updates, where a

local Taylor expansion is used to approximate the likelihood. This expansion is

reasonably accurate only when the ~N term is small. Figure 4 makes a similar

point via simulations. We see that the forward-EKS approximation is quite

good in the small-noise case but only qualitatively accurate in the case of larger

noise. Though P(N, t) is well approximated by a Gaussian for all times t, the

mean and variance of the forward-EKS approximation are significantly off, as

can be quantified by computing the Kullback–Leibler divergence between the
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true and approximate solutions for P(N, t). Since the EM algorithm is based on

the calculation of P(N, t) we can expect that the EM algorithm will lead to

more accurate estimates in the presence of small G terms. We will examine this

phenomenon in further detail subsequently.

However, in the case of Model 2, where we have truncated the exponential

term of the link function, we see that the true and approximate distributions are

very similar even for the value of G¼ 1 where Model 1 showed a larger error.

The fact that the true distribution is better inferred by Model 2 implies that the

EM algorithm will be better able to estimate the parameters of this model, a

point that we will return to in further simulations subsequently.

Extended Kalman smoother simulation

The forward-EKS step computes the first two moments of the latent process

at an instant in time, conditioned on the observations made up to that time,
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Figure 4. System Identification for Single Neuron (Model 1): The true parameter values for
b1, b2 and G (dotted line) and the estimates obtained from data of different durations
T¼ {50, 150, 250, 350} seconds are plotted in (A), (B), and (C). For each duration T the
spike-data is generated from the model given by Equation 44, and the parameters are
identified. These estimates are indicated by asterisks and the mean of the estimate by circles.
The variance of the estimates decreases as the length of the data increases. G is consistently
underestimated here. (D) Shows that the true post-spike inhibitory self-current (solid line) is
within the 95% confidence limits (dashed lines) about the estimated post-spike current
(dash-dot line) obtained using the mean and the variance of the estimates for b1 and b2 from
data-sample of duration 350 s. Note that the self-inhibitory currents are estimated accurately
despite the bias in estimate of G.
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while the forward–backward EKS computes the moments conditioned on the

entire data.

In Figure 3 we demonstrate the forward and forward–backward steps of the EKS

implemented for Model 1. The two cells in this simulation receive a constant

stimulus input of ~rk � ~xðtÞ ¼ 1:5 and common inputs from four OU processes with

time-constants 0.5 s, 1 s, 1 s, and 2 s. The post-spike waveform reflecting the

refractory nature of a spiking neuron is taken to be the weighted sum of two

exponentials with time-constants �1 ¼ 2 ms and �2 ¼ 5 ms, while the interneuronal

cross-coupling term is taken to be the weighted sum of two exponentials with

time-constants �3 ¼ 10 ms and �4 ¼ 50 ms. The intensity function of neuron k is

therefore given by

�kðtÞ ¼ exp

"
1:5þ

X
fj:tj, k<tg

B

exp �
tj, k

�1

� 	

exp �
tj, k

�2

� 	
2
6664

3
7775

þ
XK

i¼1, i 6¼k

X
fj:tj, i<tg

C

exp �
tj, i

�3

� 	

exp �
tj, i

�4

� 	
2
6664

3
7775þ ~gk

~NðtÞ

#
; ð42Þ

where the matrices B , C, and G used in the simulation are given by

B ¼ 10�2
�2 �2

�3 �5

� �
; C ¼ 10�2

2 3

1 �2

� �
G ¼ 10�1

8 5 7 5

5 10 6 8

� �
: ð43Þ

The forward and backward steps of the EKS are useful in solving several inference

tasks. For example, given the stimulus and the model we can compute various

quantities of interest, such as the mean, variance, and auto- and cross-correlations

of the firing rate, by simply running Equation 4 forward and using Equation 1 to

recursively generate spikes. The forward filter also allows us to compute the

likelihood of a given observed spike-train under the assumed model.

The EKS also enables us to infer the activity of a group of cells in a network given

the activity of another group of disjoint cells. Again considering Model 1, an

example of this application is shown in Figure 5, where the activity of ten cells is

modulated by a four-dimensional OU process. Only nine of these cells are observed,

and the spiking data obtained from these nine cells is used to predict the spike rate of

the tenth unobserved cell.

EM simulations

In this subsection we analyze the performance of the EM algorithm, applied to

several models of increasing complexity.

Single neuron with refractoriness: Model 1 and Model 2. In these set of simulation

we compare the accuracy of the estimates obtained using the EM algorithm for

Models 1 and 2. We consider a spike train obtained from a single neuron whose
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spike-rate is modulated by a known constant stimulus, inhibitory currents which

peak every time the neuron spikes (capturing the refractoriness of the neuron), as

well as a one-dimensional noise-driven input. We have

V ðtÞ ¼ 2þ
X2

i¼1

X
fj:tj<tg

bi exp �
t � tj

�i

� 	
þGNðtÞ

2
4

3
5; ð44Þ

where the firing-rate for Model 1 is given by Equation 5 and for Model 2 is

given by Equation 6, and where tj refers to the time of the j-th spike of the

neuron. Though we consider the effect of the refractory terms to be the sum of

exponentials with different decay rates, the formulation is general and allows for

other kernels. The time-constant � of the OU process was taken to be 2 s

(modeling slow fluctuations in the underlying mean firing rate), while the time-

constants for the exponentials were taken to be 10 ms and 5 ms. We generate the

spiking data by recursively sampling from Equation 44, and we then

subsequently fit the model to the data using the EM algorithm. For this as

well as all the subsequent simulations we fix �t ¼ 5
 10�4. A large value of G
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Figure 5. Example of inference using the EKS: Here we simulated the activity of ten cells with
a constant input stimulus of unit amplitude, and correlated noisy-input arising from the
activity of a four-dimensional OU process with time constants of 0.5, 1, 2, and 4 s.
For simplicity, in this simulation, we assume that there are no cross-coupling terms. The
true parameters are assumed to be known. (A) Shows the true spiking activity of the ten
neurons. The spike-trains of neurons 1–9 are used in the EKS to estimate the latent
process, which in turn is used to obtain the estimated spike-rate of the unobserved neuron
#10. (B) Shows the estimated spike rate of neuron #10 using our knowledge of the
activity of the other cells in the network and the stimulus (solid line) and using only
the stimulus (dotted line).
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(G¼ 2) was used in these set of simulations. System identification was carried

out multiple times over independent, identically distributed data samples of

different lengths T as shown in Figure 4.

We can see from Figure 4 that for Model 1, G was significantly underestimated. In

the next set of simulations (Figure 6), for the same single neuron (Model 1), we

explore the effect of the size of G in estimating the parameters accurately. As the

Fokker–Planck simulations (Figure 3) indicate, the accuracy of the estimates

decreases as G increases. This bias in our estimation of G is not seen for Model 2 as

can be seen from the Figure 7. Note however that for both the models the bias in the

estimates of b1 and b2 was substantially less, and the self-current
P

i bi expð�t=�iÞ was

estimated accurately as well.

The computational effort required for estimating the parameters in this simple

case for Model 2 was orders of magnitude greater than for Model 1. Thus, though

the parameters are estimated accurately, the computational burden is greater than

for Model 1, and in our subsequent simulations, which are more detailed than the

present case, we present results only for Model 1.

Single neuron with realistic stimulus filter. In the next set of simulations we consider

the problem of identifying a more complicated stimulus filter. Spiking data is

generated for a single neuron with refractoriness and with a receptive field which is

similar to the classical spike-triggered receptive field shape given in Figure 2.14 of

(Dayan and Abbott 2001). The firing rate of the neuron is given by

�ðtÞ ¼ exp

�
a1 þ

Xi¼6

i¼2

ai cosð2	it=T0Þ �
Xi¼11

i¼7

ai sinð2	it=T0Þ

þ
X2

i¼1

X
fj:tj<tg

bi exp �
t � tj

�i

� 	
þGNðtÞ

�
; ð45Þ

where T0 ¼ 0:3 s and ai are the coefficients of the receptive field in the Fourier

domain. Figure 8 shows a plot of the true vs. estimated receptive field, along with a

plot for the post-spike inhibitory currents. The values of the true and estimated

parameters, along with the standard deviations of the estimates, are presented in

Table I; the estimates are seen to be fairly accurate here.

Several interconnected neurons with common input. In this final set of simulations we

consider a richer model with four neurons where the firing rate of neuron k at the

time t is given by,

�kðtÞ ¼ exp

"
4þ

X2

i¼1

X
fj:tj, k<tg

bðk, iÞ exp �
t � tj, k

�self
i

� 	

þ
X2

i¼1

XK
l¼1;l 6¼k

X
fj:tj, l<tg

cðk, iÞ exp �
t � tj, l

�cross
i

� 	
þ gk

~NðtÞ

#
; ð46Þ

where ~NðtÞ is a two-dimensional OU process. This formulation captures the effect

on the firing rate of the stimulus through the constant term, the refractory terms are
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captured through b and the inputs due to the firing of other neurons is captured

through c. The estimated and true parameter values, along with the standard

deviations of the estimates, are tabulated in Table II (the duration T was taken to be

450 s here); again, we see that the parameters are accurately recovered.

Discussion

In this article we have considered the problem of estimating the connectivity of

neurons in a network using observed spike-train data and the stimulus presented to

the network, while accounting for the effect of unobserved neurons on the firing of

the observed neurons. The effect of these unobserved neurons is modeled as a latent

process modulating the firing activity of the observed neurons. Our model

b 1
G

b 2

Length of data (s)

Length of data (s) Length of data (s)

Time (s)

S
el

f-
cu

rr
en

t

Figure 7. System identification for single neuron (Model 2): The true parameter values for b1,
b2 and G (dotted line) and the estimates obtained for Model 2 from data of different durations
T¼ {10, 50} seconds are plotted in (A), (B), and (C). As in Figure 4, for each duration T the
spike-data is generated from the model given by Equation 44, and the parameters are
identified. These estimates are indicated by asterisks and the means by circles. The variance
of the estimates decreases as the length of the data increases. (D) Shows that the true post-
spike inhibitory self-current (solid line) is within the 95% confidence limits (dashed lines)
about the estimated post-spike current (dash-dot line) obtained using the mean and the
variance of the estimates for b1 and b2 from data-sample of duration 50 s. The point to be
noted here is that the estimated G is closer to the true value than the estimate for Model 1
(Figure 6). Also note that Model 2 requires less data to estimate the parameters of the model
accurately.
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formulation is sufficiently general and allows us to consider several other important

modeling scenarios. For example, to consider the important situation where the

unobserved neurons are influenced by the stimulus, we can introduce a stimulus

dependent term in the dynamics equation for the latent process, and estimate it

using the tools developed in this article. We can also consider the effect of

adaptation, which is observed typically in the response of neural circuits to repeated

stimulation, by incorporating a term similar to the self-inhibitory that we considered

but which acts on longer time-scales.

Here, we have considered two models and developed methods to estimate the

parameters of the network by following the state-space approach to the modeling of

point-process observations (Smith and Brown 2003). We have used a modified

computationally tractable EM algorithm, where the E-step is carried out by using

forward and backward sweeps of the EKS, and the M-step involves the

maximization of concave functions. The state-space approach to modeling point-

processes has received increasing attention recently. The other work (aside from

that of Smith and Brown (2003) that most closely corresponds, in methodology, to

what we have presented in this article is that of Yu et al. (2005), who modeled the

hidden dynamics of a behavioral motor task using a nonlinear extended Kalman

framework. As in our work, the key idea in Yu et al. (2005) is that the activity of the

observed population of neurons is modulated by some common unobserved

dynamical process. The main difference is in the interpretation of this underlying

dynamical process: in Yu et al. (2005), this process corresponds to the evolution of a

decision to move in a delayed-reach task, while in our case the process corresponds

to a noisy lumped sum of activity from a population of presynaptic neurons. Another

Table II. Estimated and true parameter values for several interconnected neurons.

Parameter True Estimate Parameter True Estimate

b1,1 �1.00 �1.33� 0.08 b1, 2 �2.00 �1.69� 0.05

b2,1 �0.50 �0.69� 0.10 b2, 2 �2.50 �2.32� 0.08

b3,1 �3.00 �3.20� 0.06 b3, 2 �1.00 �0.82� 0.04

b4,1 �2.00 �2.23� 0.06 b4, 2 �1.00 �0.76� 0.04

c1,1 0.20 0.17� 0.02 c1, 2 0.10 0.12� 0.01

c2,1 0.30 0.29� 0.02 c2, 2 0.15 0.16� 0.03

c3,1 0.20 0.20� 0.03 c3, 2 0.30 0.29� 0.03

c4,1 0.18 0.11� 0.002 c4, 2 0.20 0.26� 0.006

Table I. Estimated and true parameter values for neuron with realistic stimulus filter.

Parameter True Estimate Parameter True Estimate

G 0.20 0.18� 0.02 a5 0.08 0.06� 0.03

b1 �0.50 �0.49� 0.11 a6 0.08 0.09� 0.04

b2 �1.50 �1.54� 0.17 a7 0.96 0.90� 0.011

a1 4.00 3.95� 0.017 a8 0.56 0.62� 0.018

a2 1.09 1.20� 0.04 a9 �0.43 �0.51� 0.03

a3 �1.01 �1.10� 0.04 a10 �0.20 �0.14� 0.018

a4 �0.32 �0.29� 0.04 a11 �0.04 �0.07� 0.013
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(less important) difference is that the underlying dynamics in our model were

chosen to be linear, implying that many of the steps in the EKS algorithm could be

implemented exactly (because linear dynamics preserve Gaussianity), and allowing

us to make use of straightforward adaptive time-stepping ideas to improve the

numerical efficiency of the algorithm (recall section ‘‘Forward E-step: Kalman

filter’’), whereas the nonlinear hidden dynamics used in Yu et al. (2005) require

further approximations to apply the EKS algorithm (Wan and Merwe 2004). In

addition, we have emphasized the incorporation of the coupling terms fhkjð:Þg, which

allow us to capture refractoriness and burstiness effects as well as direct

network coupling effects (these terms could be easily incorporated in the framework

of Yu et al. (2005) as well).

While Yu et al. (2005) consider a different modeling problem using similar

tools, Nykamp (2005, 2007) considers a similar problem (inferring unobserved

common input terms from the observed activity of a population of possibly

coupled neurons) using methods which are significantly different from ours. The

approach adopted in Nykamp (2005, 2007) is to use the joint stimulus-spike

statistics to determine the neuronal connectivity via a version of the method of

moments, or alternatively via an expansion in the coupling terms of the point-

process likelihood of the fully-observed neural population. This expansion

analysis is carried out under the assumption that the inter-neuronal coupling is

weak, similar in some respects to our assumption that G is small in the case of

Model 1 (which ensures that our Gaussian approximation is reasonable),

although in our case we do not need to assume that the coupling terms f~rkg

or fhkjð:Þg are small. An important direction for future research is to further

compare the strengths and limitations of these two approaches.

The key limitation of our approach, for Model 1, is the bias in the estimates of the

parameters when the modulation of the firing rate by the ~NðtÞ terms is high. This

bias arises, because while incorporating the observations in our estimate of the state

in the derivation of the forward-EKS step (Appendix), we approximate the posterior

distribution of the state by considering a second-order Taylor series approximation

about the mean of the prior distribution of ~NðtÞ. We decided to pursue the EKS

approach here primarily due to its computational efficiency. On the other hand, we

considered Monte Carlo methods for Model 2, where we have accurate parameter

estimation but we have to contend with the excessive computational burden of this

approach.

Different strategies can be adopted to overcome both these limitations. For one,

the algorithm can be speeded up significantly by resorting to distributed computing,

where the problem is broken into smaller independent problems which can be

farmed out to a bank of processors. For example for Model 1, the M-step as

mentioned in the text, can be split into a number of smaller independent

optimization problems. In the case of the Monte Carlo approach for Model 2, each

of the processors can consider a fraction of the random samples, and the results

from each processor can be pooled, leading to a significant reduction in the real-

time performance of the algorithm. Also note that the sums over the interval ð0,T Þ
required for the M-step can also be split into smaller independent time-segments

which can be handled by different processors.

To minimize the bias in Model 1, one could again consider the

computationally fairly expensive solution by using the particle filter approach
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(Arulampalam et al. 2002). Particle filters are sequential Monte Carlo methods

based on a point-mass representation of the relevant probability densities (Pð ~N , tÞ,
in the current context), which can be applied to any state-space model (including

models with nonlinear dynamics and non-Gaussian observations) and therefore

generalize the EKS approach presented here. Particle filters, depending on the

number of sample points chosen, can achieve any level of accuracy. This accuracy

comes, however, at a significant computational cost: to obtain accurate results we

need to sample from a potentially large set of particles.

The unscented Kalman filter (UKF) is another alternate approach (Wan and

Merwe 2004); the idea is to use a minimal set of carefully chosen sample points that

approximate the distribution. These sample points capture the true mean and

covariance of the state of the system if the underlying dynamics are Gaussian and

linear (as in our case), and when propagated through a nonlinearity, capture the

posterior mean and the covariance to the second-order of the Taylor expansion of

the nonlinearity. Incorporating the data observations in the UKF setting involves

computing a sample average and a sample covariance, instead of the expansion

approach taken by the EKS; like the particle filter, the UKF may be made more

accurate (at some computational cost) by incorporating a larger number of sample

points.

A final approach to overcome the bias issue in our estimates is to use the

Expectation Propagation method (Minka 2001). Expectation propagation is a

deterministic method that approximates the distributions using an iterative

approach to incorporating the observations. It differs from EKS in that it may

be applied to general (not only Gaussian) distributions. Expectation propagation

is slightly more computationally intensive than EKS or UKF, but in general

less intensive than particle filtering. In the future we plan to compare

these different approaches in detail, and to apply these methods to real

physiological data.
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Appendix: Deriving the forward-EKS equations

We derive the equations of the forward-EKS step, which computes the expectation

and variance of the latent process ~N(t), conditioned on the observations made up to

the time t. The filter is derived in an iterative manner, where we assume that we

know the initial distribution of the hidden process. Over each subsequent time
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interval we propagate this distribution through the dynamic equation, and update

this transformed distribution based on the observed spiking of the neurons over that

time interval.

. Spike update: Let there be a spike in the k-th neuron at time t. We will denote

the time instant before and after spiking information is used by t� and tþ,

respectively. The forward Kalman filter is iterative and we assume that we know

the distribution of the latent process at t�, that is, pð ~Nðt�Þ
��O0, t�Þ 	 N ð ~�; �

2Þ.

Then using the fact that the increments for a Poisson process are independent

over disjoint intervals,

pð ~NðtþÞ
��O0, t� ;O

k
t ¼ 1Þ ¼

1

Z
pð ~Nðt�Þ

��O0, t�ÞpðO
k
t ¼ 1

�� ~Nðt�ÞÞ
¼

1

Z
exp �

1

2
ð ~N � ~�Þ0�2�1

ð ~N � ~�Þ

� �
exp½Ik þ ~gk

~N �

¼
1

Z
exp �

1

2
ð ~N 0�2�1 ~N � 2 ~N 0ð�2�1

~�þ ~g0kÞÞ

� �
;

where Z is a normalizing factor. Therefore pð ~NðtþÞ
��O0, t� ;O

k
t ¼ 1Þ 	

N ð ~�þ �2~g0k, �
2Þ.

. For Non-spike updates: Let there be no spike in any of the k neurons in

½t, t þ �t�, and let pð ~Nðt þ �tÞ
��O0, tÞ 	 N ð ~�, �

2Þ, which is obtained from passing the

updated distribution at time t through the linear dynamics Equations 17 and 18.

We have,

pð ~Nðt þ �tÞ
��O0, t,Ot, tþ�t ¼ ~0Þ ¼

1

Z
pð ~Nðt þ �tÞ

��O0, tÞ
YK
k¼1

pðOk
t, tþ�t ¼ 0

�� ~Nðt þ �tÞÞ
Now,

pðOk
t ; t þ �t ¼ 0

�� ~Nðt þ �tÞÞ ¼ exp½� exp½Ik þ ~gk
~N ��t�

¼ exp

�
� exp½Ik þ ~gk ~��

�
1þ ð ~N � ~�Þ0~gk

þ
1

2
ð ~N � ~�Þ0~g0k~gkð ~N � ~�Þ0



�t

�
þ oð�t2Þ

¼ Z exp �
Wk

2
ð ~N 0~g0k~gk

~N � 2 ~N 0ð~g0k~gk ~�� ~g
0
kÞÞ

� �

where Ik and ~N are evaluated at time t þ �t, Wk ¼ � expðIk þ ~gk ~�Þ�t, and Z is a

normalizing factor.

Therefore using results from the product of Gaussian distributions, we have

p ~Nðt þ �tÞ
��O0;t;Ot;t þ �t ¼ ~0

h i
	 Nð ~�prod; �

2
prodÞ;
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where

�2
prod ¼ �2�1 þ

XK
k¼1

¼ 1K Wk~g
0
k~gk

 !�1

¼ �2 �
XK
k¼1

�2Wk~g
0
k~gk�

2 þ oð�t2Þ;

~�prod ¼ ~�� �2
XK
k¼1

Wk~g
0
k

 !
þ oð�t2Þ
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