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Abstract

Recent developments in multi-electrode recordings enable the simultaneous measurement of
the spiking activity of many neurons. Analysis of such multineuronal data is one of the key
challenge in computational neuroscience today. In this work, we develop a multivariate point-
process model in which the observed activity of a network of neurons depends on three terms:
(1) the experimentally-controlled stimulus; (2) the spiking history of the observed neurons;
and (3) a hidden term that corresponds, for example, to common inputr from an unobserved
population of neurons that is presynaptic to two or more cells in the observed population.
We consider two models for the network firing-rates, one of which is computationally and
analytically tractable but can lead to unrealistically high firing-rates, while the other with
reasonable firing-rates imposes a greater computational burden. We develop an expectation-
maximization algorithm for fitting the parameters of both the models. For the analytically
tractable model the expectation step is based on a continuous-time implementation of the
extended Kalman smoother, and the maximization step involves two concave maximization
problems which may be solved in parallel. The other model that we consider necessitates the
use of Monte Carlo methods for the expectation as well as maximization step. We discuss
the trade-off involved in choosing between the two models and the associated methods. The
techniques developed allow us to solve a variety of inference problems in a straightforward,
computationally efficient fashion; for example, we may use the model to predict network
activity given an arbitrary stimulus, infer a neuron’s ring rate given the stimulus and the
activity of the other observed neurons, and perform optimal stimulus decoding and
prediction. We present several detailed simulation studies which explore the strengths and
limitations of our approach.
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Introduction

With the advent of large-scale multi-electrode recordings, it is now possible to
collect simultaneous spiking data from large ensembles of neurons.
This multineuronal spike-train data gives us the ability to investigate important
questions facing systems neuroscience. For example, we can now address in
detail the question of how networks of neurons process complex dynamic inputs
and encode information (Abeles 1991; Schnitzer and Meister 2003; Cossart
et al. 2003; Litke et al. 2004). Understanding the concerted activity of large
networks will also help in the design of neural prosthetic devices which
have significant clinical implications (Loizou 1998; Donoghue 2002; Weiland
et al. 2005).

To achieve these goals we need to develop tractable, powerful methods for
modeling multineuronal spike-train data (Brown et al. 2004). There is a large
body of literature tackling the problem of developing statistical models for large-
scale simultaneous spike-train recordings (Chornoboy et al. 1988; Utikal 1997;
Martignon et al. 2000; Iyengar 2001; Schnitzer and Meister 2003; Nicolelis et al.
2003; Cossart et al. 2003; Paninski et al. 2004; Truccolo et al. 2005; Okatan
et al. 2005; Pillow et al. 2005; Nykamp 2005). Nearly all of these previous
efforts at developing population spike-train models (with the notable exception of
Nykamp (2005)) have taken the basic form

Ai(1) = Fr(x(2), (1)),

where A.(z) represents the instantaneous firing rate of the k-th observed neuron,
and F.(-) is some function that relates 1,(z) to the simultaneously observed exzernal
X(t) and internal n(t) signals. Typically, x(z) includes a truncated history of
the presented stimulus along with measurements of the animal’s behavioral
state, while 7(z) could include the firing rates of all the other observed neurons,
and/or measurements of multiunit activity or local field potential (Andersen
et al. 2004).

Thus, most of the models have stimulus-dependence terms and direcr-coupling
terms representing the influence that the activity of an observed cell might have
on the other recorded neurons. Fewer models, however, have attempted to
include the effects of the population of neurons which are not directly observed
during the experiment (Nykamp 2005). Since we can directly observe only a
small fraction of neurons in any physiological preparation, such unmeasured
neurons might have a large collective impact on the dynamics and coding
properties of the observed neural population. For example, it is well-understood
that common inpur effects play an essential role in the interpretation of pairwise
cross-correlograms (Brody 1999; Dayan and Abbott 2001; Nykamp 2005), and
that these effects can be expected to become even more important with an
increase in the size of the observed neural population.

Here, we consider models in which the firing rates of the neurons depend not only
on the stimulus history and the spiking history of the observed neurons but also on
common inputs. The models are a multivariate version of a Cox process, also known
as a doubly-stochastic point process (Cox 1955; Snyder and Miller 1991; Moeller
et al. 1998; Moeller and Waagepetersen 2004). Related models have seen several
applications in the fields of neural information processing and neural data analysis
(Smith and Brown 2003; Jackson 2004; Brockwell et al. 2004; Zemel et al. 2004;
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Sahani 1999; Wu et al. 2004, 2005; Yu et al. 2006). To our knowledge, however,
our work represents the first application of these techniques to the common-input
population model.

In this article we consider two models which differ in the way they map the
internal and external signals to the firing-rates of the neurons. The two models
considered elucidate a key trade-off between computational and analytical
tractability, and biophysical fidelity. The tractable model can lead to unrealistic
firing-rates, while the model with reasonable firing-rates is computationally
expensive. In this article we derive the methodology required to consider both
approaches. While we present a few simulation results for Model 2, the thrust of
this article is to develop computationally tractable models, and we focus
primarily on Model 1 in the results section.

To fit the tractable model we derive a modification of the standard
expectation—maximization (EM) algorithm (Dempster et al. 1977; Smith and
Brown 2003) paying special attention to computational efficiency. The EM
algorithm alternates between a run of the the expectation step (E-step) and the
maximization step (M-step). The E-step computes the observation-conditioned
distribution of the hidden process. It is implemented using a forward-sweep
which computes the conditional distributions at time ¢ using observations up to
time z, and a backward-sweep which computes the fully-conditioned distribution.
The M-step comprises of two optimization problems, both of the optimization
problems have unique solutions. One of the two problems can be solved
analytically. The other reduces into K smaller, independent, strictly-convex
optimization problems (K denotes the number of observed neurons) which can
all be solved in parallel.

In the case of the model with greater biophysical fidelity, the backward E-step
remains the same, but the forward sweep of the E-step is carried out using Monte
Carlo techniques with importance sampling. The M-step which involves the
computation of certain expectations is also carried out using Monte Carlo techniques.
This stochastic approach make parameter estimation for this model more
computationally expensive.

Once the parameters have been obtained we may use the models to solve a
variety of important stimulus-response inference problems: for example, we may
use the model to predict activity in the network (including firing rates, cross-
correlations, etc.) given some arbitrary stimulus x(z), or alternatively perform
optimal stimulus decoding the given observed network activity (Pillow and
Paninski 2005; Truccolo et al. 2005).

This article is structured as follows: Section ‘““Theory’” develops the theory
used to estimate the parameters for our models. In this section we present the
background for the Cox process model as well the EM algorithm. The Fokker—
Planck approach for numerically exact computation of the forward distributions
is presented briefly. This exact but computationally expensive approach is
abandoned in favor of the extended Kalman smoother (EKS) which is dealt with
in more detail. The optimization problems involved in the M-step are also
presented. In section “Simula results” we present results from detailed
simulation studies which explore the strengths and limitations of the proposed
approach. We consider the two models and study the accuracy of the estimates
using the methods developed for these two models. We close in section
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“Discussion’ by pointing out various connections with previous work and
discussing several important directions for future research.

Theory

In this section we outline the mathematical structure of the model and summarize
the techniques used to estimate the model parameters.

The multvariate Cox process model

We consider a multivariate point process model (Snyder and Miller 1991) for a
network of neurons (Figure 1) whose conditional intensity function is given by
k(t) = f(V(z)), where V(t) _I(z)+ GN([) In component form, the conditional
intensity function for a neuron % at time z is given by

Ar(2) = f(Vi(D), (1)
where V(1) = (Ix(z) + gkN (2)); g denotes the k-th row of the matrix G; f s a fixed,
smoothly rectifying nonlinearity; and the terms I (¢) and N (2) correspond to the fully-

observed and unobserved parts of the model, respectively. The log-likelihood for
such point-processes is given by

K T
L({r,;}) = log p({ze.j}{Ar(1)}) = Z ZIOg)\k(fk,j)_/ Ar(s)ds | +const.,  (2)
j 0

k=1

Stimulus Rectifying  Probabilistic
filter nonlinearity spiking
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Figure 1. Generalized Linear Model (GLM): The input to a neuron is the sum of the linearly-
filtered experimentally-controlled stimulus, the interneuronal cross-coupling terms, the
neuron’s post-spike waveform, and unobserved common-input terms. The post-spike
waveform can account for effects such as refractoriness and adaptation, while the common-
input terms can capture input from a shared pool of unobserved neurons presynaptic to the
observed neurons. This summated input to each neuron in the observed population is passed
through a point nonlinearity which drives the probabilistic spike-generation point process.
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where 7, ; is the time of the j~th spike observed from the k-th neuron and [0, 7)) is the
time interval over which we observe the spiking responses.

The observed component of the model, I,(z), captures the dependence of the
firing rate on the externally applied stimulus and cross-coupling terms from other
neurons in the observed population. As described in previous work (Brillinger 1988;
Paninski 2004; Truccolo et al. 2005), we let I.(z) take the form,

K

L) =F X0+ Y > hyt—1.), 3)

J=1{i:g,<t}

where X(z) is the stimulus at time 7, 7 is the k-th cell’s receptive field, and /()
denotes the interneuronal coupling term when k& ## j and cell £’s post-spike current
term for k=j. Thus, the fully-observable input to each neuron is a sum of
the linearly-filtered stimulus-dependent signal and the network’s spiking history; the
parameters {r;} and {/(.)} act as linear weights here. Incorporating terms
corresponding to the neuron’s own spike history allows us to model various
intrinsic spiking effects; such as refractoriness, burstiness, and adaptation; while
incorporating interneuronal cross-terms can capture more intricate reverberatory
and/or locally inhibitory network effects.

The unobserved signal 1(](1:), on the other hand, is a vector that represents the
lumped activity of a population of presynaptic neurons. The matrix G is a set of
weights that couples the dynamics of the hidden common-input process N (2) to the
instantaneous firing rate )_:(t). If we pretend for the moment that N (z) is fully-
observed, then the model reduces to a standard generalized linear model (GLM), as
described in detail and considered by many previous authors (Chornoboy et al. 1988;
Utikal 1997; Paninski et al. 2004; Truccolo et al. 2005; Okatan et al. 2005). As
discussed in Paninski (2004), this model can be fit by maximizing the log-likelihood
(2) by solving a single multivariate convex optimization problem whenever the link
function f(-) is chosen, so that f(-) is convex and logf(-) is concave (e.g.,
f(u) = exp(u)). Thus, fitting this fully-observed model is highly tractable.
Moreover, previous authors have discussed this GLLM in the context of a simplified
“soft-threshold” approximation to the canonical integrate-and-fire model (Plesser
and Gerstner 2000; Stevens and Zador 1996; Paninski 2004; Paninski et al. 2008).

However, in the present case, N (7) is not observed, so we must hypothesize some
tractable, flexible model for these common-input terms. Here, for computational
tractability, we assume that the hidden process can be defined by Gauss—Markov
dynamics,

d]i(‘) — _DN(2) + Z(2), (4)
where the input process {2(1:), t > 0} is J-dimensional standard Gaussian white-
noise, and D is a matrix, which, for stability reasons, has eigenvalues whose real
parts are nonpositive. This linear model may appear to be an oversimplification but
if the dimension ¥ of N (z) is sufficiently large then this model can lead to a rich
repertoire of dynamic behavior, including oscillatory behavior, with correlations on
multiple time-scales. The Gaussian assumption is justified by the central limit
theorem, as we assume that the hidden input to any single neuron is the weighted
sum of small inputs from a large population.
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The two models that we consider differ in the link function, that is the rectifying
non-linearity f{-), which maps the external and internal signals to the firing-rates.
The choice of the link function is crucial as it predominantly sets the statistics of
the spiking process. Different choices of this function will entail different
approaches in determining the observation-conditioned densities of the hidden
process which are needed in the M-step of the EM algorithm. The two models that
we consider are:

Model 1:  Ax(z) = exp(Vi(2)) (5)
_ [ exp(Va(0) if Vi(e) < 0
Model 2: 2x(2) = { (1+ Vi) + Vi02/2) i Vi) = 0 (6)

where V, = (I +,§kI<7) as described earlier. The only difference between the two
models is that in Model 2 we retain a second-order approximation to the
exponential nonlinearity when 17, > 0. Model 1 with its exponential non-linearity
can lead to unrealistically firing rates. This biophysical implausibility is mitigated
in Model 2 due to the truncation of the exponential to the second order.
While the difference in the two models is conceptually minor, the approaches used
in determining the conditional distributions of the hidden process, are significantly
different. As we will see, Model 1 allows us to compute most of the terms in
the forward-filter analytically, and those that cannot be computed analytically can be
approximated readily. For Model 2, on the other hand, we have to resort to
computationally expensive Monte Carlo methods. The consideration of Model 2
elucidates how the methods introduced in this article can be implemented for more
general functions by the introduction of Monte Carlo methods.

The spike-generation model is a doubly-stochastic process: spikes are
generated stochastically and the process N(z) driving the spike-generation is
also stochastic. Such doubly-stochastic point processes are also known as Cox
processes (Snyder and Miller 1991; Moeller and Waagepetersen 2004). Because
of our assumption (4) of Markovian dynamics for the hidden variable N(z), our
model is in fact a type of hidden Markov process, related more specifically, to
the Kalman filter model. Kalman filter theory for state-space models with point
process observations has been well developed (Snyder and Miller 1991; Smith
and Brown 2003) and can be fruitfully applied to our model. Though all the
parameters affect the spiking activity of the network, the parameters {7}, {A ;}
and G have a direct effect while the effect of the dynamics matrix D is indirect as
it modulates the firing rate only through the latent process. Keeping this in
mind, for convenience, in the text we will refer to {7}, {hr;} and G as the
intensity-parameters and D as the dynamic-parameter.

Before we proceed with the EM algorithm, we must first restrict our model
somewhat, as the model parameters 6= {D, G, {r}, {h;}} are known to be
nonidentifiable (Roweis and Ghahramani 1999). That is, two different settings
01, 0, of the model parameters may give rise to exactly the same data distribution,
({2 }{X(2)}, 61) = p({ze ;}1{X(2)}, 62). Specifically, the model currently has the
following symmetry: if we redefine N(z) by an orthogonal change of basis,
N — ON, for some orthogonal matrix O, then we may simply redefine G - GO’
and not see any difference in the observed data, since the observed data depend only
on GN, which is clearly preserved by the transformation (N, G) — (ON, GO'), since
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GO'ON = GN. Thus, our model is only defined uniquely up to an orthogonal
change of basis O. To remove these extra unidentifiable degrees of freedom in 6 we
simply restrict G to be a lower-triangular matrix, with the diagonal elements
restricted to be non-negative; this simple (convex) constraint on G restores the
identifiability of the model. With this lower-triangular constraint on G, and D
constrained to have eigenvalues whose real parts are non-negative, while the other
parameters {{rz}, {/}} are unconstrained, we have a convex set of parameters to
search over. We note here that other parametrizations are also possible, for example
we could fix G and vary the covariance of Z(z).

Expectation—-maximization (EM) algorithm

As emphasized above, fitting this model by maximizing the loglikelihood (2) is quite
straightforward when N(t) is fully observed. However, in our case, N(t) is not
observed, and we must instead maximize the marginal likelihood

p({11}16) = / (a1 No. 1. 9)p(No.716)dNo 7. 1)

where I(TO,T denotes the hidden sequence I(TO,T = {Z(f (0)}o<i<T- We develop an
EM algorithm (Dempster et al. 1977; Smith and Brown 2003) to estimate the
parameters 6. A variant of this algorithm (Salakhutdinov et al. 2003) may also be
used to compute the gradients of the marginal likelihood (7), in cases where it is
useful to maximize this likelihood directly by gradient ascent methods.

We begin by defining some notation. Let the observed spiking activity of neuron
k, in a network with K neurons, over the interval [0, T') be denoted by OS’T; a right-
continuous counting function with discontinuities at the spike-times of the neuron
(Snyder and Miller 1991). The ensemble spiking-activity is given by
Oo.1 = { O(l)’T, O(Z)j ey O{fT}. Then our marginal loglikelihood may be written as

log p({z1}16) = log[p(Oo.716)]

= IOg[/P(OO,Tv NO,T|9)CU<70,T]. ©)

The EM algorithm ascends this log-likelihood by the construction of an auxiliary
function Q(0|6;_1) given by

0(616;_1) = E|log[p(Oo., No.710)]

Oo,T, 9i—11|

B T
~E log{pw(om) [T(PN@ING = 52,0 OIN ). e>)} ‘oo,r, e,«_l}
L t=0t

r T

= E| log[ p(N(0)[6)] + > (1og N OIN( — 60),6)

=68t

+log p(O,IN(2), 9)) ‘OO,T, 91‘—1], 9)
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where §z is a small time-step which we are free to choose. Later on we discuss the
use of adaptive time-step methods (section “Forward E-step: Kalman filter”’) to
minimize computational costs.

The EM algorithm is an iterative scheme involving alternate runs of the E-step
and M-step given initial estimates for the parameters 6, (Dempster et al. 1977;
Smith and Brown 2003). For the Kalman filter (and hidden Markov models
more generally) the EM algorithm has been described extensively in a number of
different contexts (Snyder 1972a, b, Rabiner 1989; Harvey 1991; Doucet et al.
2001; Smith and Brown 2003; Yu et al. 2006; Wu et al. 2005). The E-step
involves the computation of the fully-observed distributions given the parameter
estimates 6;_; from the previous iteration, while the M-step involves maximizing
0(016;_1) over 6 (with 6;_; held fixed) to obtain parameter estimates 6; for the
next iteration step.

As is well-known, the E-step may be broken into two stages, known as the forward
and backward step. In the forward step we compute the forward density
P(N(2)]Oo, ., 0;-1) recursively for z € [0, T], beginning with some initial conditions
p(N (0)16;-1). The backward step recursively modifies the forward density to compute
the fully-conditioned probablhtles p(N (0))|Oo0.1,0;—1) and pairwise probabilities
p(N (1), N(t + 8t)|OO 7,0;1) for all ¢ €[0,T], starting with the end conditions

(N (7001, 0i-1) and recursing backward from =7 to t=0. Note that the
end-condition for the backward-step p(N (T)|Oo.1,0;—1) is obtained from the
forward-step. Due to the Markov nature of the Model (9), these fully-conditioned
probabilities are all we need to compute the expectations in Q(6|6;_1).

For models such as the one considered here, where the hidden process is linear
Gaussian, the backward step is fairly standard, and essentially smoothes the densities
obtained via the forward-sweep using the dynamics of the hidden process. The
backward densities may be computed via simple manipulations of mean vectors and
covariance matrices of certain Gaussian distributions (Mendel 1995; de Jong and
MacKinnon 1988; Smith and Brown 2003).

The forward step, on the other hand, is slightly more subtle. In the standard
Kalman filter, with linear Gaussian observations, the forward density is Gaussian for
all times ¢ € [0, T']. Thus we do not need to keep track of the full shape of this density
for all z; instead, we only need to track the mean and covariance of this Gaussian. It
is also straightforward to compute these quantities in a recursive manner. In our
case, unfortunately, the non-Gaussianity of the observations implies that the
forward density is also non-Gaussian, and to track this density exactly we need to
keep track of more than just the mean and the covariance. Alternately, we may take
an approximate approach: we approximate this density as a Gaussian, and at each
time step just track the mean and covariance. Each approach has its strengths and
weaknesses. In addition, there are many different ways to construct this Gaussian
approximation, as we will discuss below. In the following two subsections, we
describe: (1) a method for numerically computing the forward density exactly, and
(2) a method for recursively computing the Gaussian approximation.

The Expectation step

As discussed earlier, the EM algorithm requires the knowledge of the fully-
conditioned distributions p(N(z)|Oo 7, 6;—1) and p(N(z), N(t + 62)|Oo.1,0i—1) at
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each instant in time. There are different ways in which these distributions can
be computed, and the classical approach involves a forward-sweep over the data
followed by a backward-sweep. In this section we discuss how these forward
and backward steps are implemented along with the computationally more
intensive method of numerically solving the Fokker-Planck equation for the
forward step.

Forward E-step: Fokker—Planck approach. An application of the Feynman-Kac
formula (Karatzas and Shreve 1997) shows that the joint density
P(N,1) = p(N(z), Op.,) may be computed, up to an irrelevant constant factor, via
the following Fokker—Planck equation,

P(N,7) divP(N 7 JIDNP(N K .
0 (al,l'): 1v. ; ,f)_za[ail\;’[)]_Zf[]k(t)+gkN]P(N’t)’ (10)

i=1 k=1

where N is the j-th element of N, with the time-discontinuous update rule

P(N.1f ) = P(N. ; )f[Ii(tx;) + 8N] (11)

at time 1 for the j-th spike time observed from the k-th cell. This PDE has
boundary condition

f P(N,7)dN < co. (12)

In the absence of any spiking observations a reasonable initialization P(NN, 0) may be
constructed by using the asymptotic mean and covariance of the latent process N(z).
The solution {N(z),z > 0} to Equation 4 is a Gaussian process with moments

E[N(1)] = exp(—tD)N(0), (13)

Cov[N(1)] = %D‘I(I — exp(—2tD)), (14)

where I is the appropriately-sized identity matrix. Therefore, we may take P(KZ ,0) to
be Gaussian with mean 0 and covariance 1D L

While mathematically elegant, solving thlS equation when dlm(N ) > 2 becomes
computationally very expensive. Thus we will describe a more efficient, albeit
approximate, technique known as the extended Kalman smoother (EKS) for
computing P(N t) in the next section. For dlm(N) =1, on the other hand, this
equation may be solved exactly and efficiently using any of a variety of standard
numerical PDE schemes (Press et al. 1992). The Fokker—Planck approach
though allows us to compare the accuracy of the methods that we will develop
for the two models against the true distributions and in the results section
(section “‘Simulation results”) we will describe a simple illustrative example for
the dim(N) =1 case.
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Forward E-step: Kalman filter. 'The chief advantage of the EKS algorithm is that
it overcomes the computational burden of the Fokker—Planck approach, at the
cost that we have to accept approximate instead of potentially exact results. As
mentioned above, the basic idea is to assume that P(N,:) can be
approximated by a Gaussian distribution at all times; thus we may ignore
all of the details of P(N ?) and simply track the mean Ar(r) = [N(t)lOo ] and
the covariance matrix af(t) = Cov[N(t)|OO ] of N(t) as a function of time r.
Note that PgN t) is guaranteed to be a smooth, bounded, log-concave
function of N(z) for any ¢ whenever P(N 0) is log-concave and the link
function f(u) is convex and log-concave in u (since P(N,r) may be constructed
as a composition of convolutions, affine rescalings, and products with log-
concave functions Paninski 2004, 2005), and therefore a Gaussian approxima-
tion will typically be justified. Figure 2 illustrates the accuracy of this
approximation for the dim(N) =1 case.

There are many different ways to construct and track this Gaussian approxima-
tion; we describe the EKS approach in depth here, and compare the advantages and
limitations of several other approaches in the discussion section. The forward-step is
based on the following recursion:

p(ol, t+dr |Nz+dz)

P(Nt-&-dz | OO, z+dz) = P(Nz+dz| OO, r)

p(ot, z+dz)
P(Ot I+dl|Nl+dl) > > -
=——"———— | p(Ne+ar, N:|Op,;)dN,
P(Ot, z+dz) P( rhde ! | 0, t) t
O, 1+l N, .. _
:w/p(N,+dt|N,)p(Nt|00’t)dNt_ (15)
P(Oz, l+d[)

The recursive nature of the computation is clear from the fact that to compute the
densities conditioned on the observations at time ¢+ dz involves knowing the
conditional-densities at z. In the case of Model 1, the forward-step is based on a
local Taylor expansion: we first initialize the filter using Equations 13 and 14, and
then we propagate uAz) and Uf(t) from one time step 7 to the next 7 + 8¢ using the
dynamics equation (this part of the forward propagation is exact in the case of
Gaussian densities, due to the linearity of the dynamics (4)), next we incorporate the
observed spiking data O; ;s approximately, via a second-order Taylor expansion of
the log-likelihood, log p[O; ,+s|N(z + 6t)], about the propagated mean of N(z + &z).
For Model 2, the main difference is that the mean of the posterior density which
incorporates the observations is computed using Monte Carlo methods. A detailed
derivation is presented in the Appendix.

In the case of the classical Kalman filter with continuous observations and a
continuous latent process, and with Gaussian process and observational noise,
the conditional densities computed at each instant are also Gaussian. Thus no
approximations are made and the classical Kalman filter is optimal in a number
of important senses, including the least-square sense. In the present case,
however, the observational model is nonlinear, the conditional densities are not
Gaussian, and we make an approximation by retaining only the mean and
covariance terms.
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Figure 2. Comparing the Fokker—Planck approach with forward-EKS: In these simulations
we numerically solve the Fokker—Planck Equations 10-12, for the case of a single neuron with
a simple sinusoidal input and a one-dimensional noise-term for three different cases. The
sinusoidal input in the three cases is identical and is plotted in (4), where the dotted vertical
lines indicate the occurrence of spikes at 0.3 and 0.8s. (B) Shows the ‘““‘true” and the
approximate probability distribution of the latent process when a small value of G is chosen
(G =0.05). The difference between the distributions as measured via the K—L distance is also
shown. The ‘true’ distribution is obtained using the Fokker-Planck equations while the
approximate distribution is obtained using the forward-filter derived in the text. (C) Shows
similar plots for Model 1 when G is large (G=1) and (D) Shows plots for Model 2 for the
same large value of G chosen in (C) (G=1). There are two important points to note: The first
point is that the true and approximate distributions are visibly different for Model 1 in the
large G case, while being similar in the small G case. The second point is that for the same
large G, however, the true and approximate distributions are very similar for Model 2 as
reflected by the smaller K-L distance.
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For Model 1, the EKS approach reduces the complexity of the computation
to O(P) per time step (we need to keep track of O(¥?) numbers, and
updating these numbers at each time step requires O(¥’) time), instead of the
intractable O(S”) required in the Fokker-Planck case (where S is the number of
discrete points per dimension of N(z) on which we numerically solve the
multivariate Fokker—Planck Equations 10-12). For Model 2, the computation
also depend linearly on the sample size chosen for the Monte Carlo simulations
and for a sample size of M the complexity of the computation is given
by O(MP?).

Forward filter, Model 1: In the case of Model 1, the convenient choice f(-) = exp(+)
allows us to derive exact updates at spike-times, while for non-spiking updates we
make a second-order approximation of the log-likelihood as considered below.

1. Dynamics update: The dynamics update step is obtained via the usual
convolution representation of N(z),

N = exp(~DIN(0) + [ exp(~Dla — 9261 (16)

giving
it + 1) = piif(2). (17)
oAt +80) = ¢[af(z) + %I}q&’ + %1 + % exp(%tD) exp (%”)) s, (18)

where ¢ = exp(—4&zD) and accuracy to the second order in 8z, and is obtained
using Simpson’s rule approximation for d]?(t) = —2Dcrj?(t) + I, following the
discussion in (Dieci and Eirola 1994). To the first order, we have
o2t +61) = poP()p + 81l

2. Data update: For the data update step we use the fact that the product of two
unnormalized Gaussian functions is also a Gaussian and that a local
approximation of the matrix inverse can be obtained using

(A7' +eB)™' = A — eBA) + o(e). (19)

Together with a second-order expansion of the log-likelihood
log p[O;. 1+5:|N(z + 8t)], this leads to the following updates:

K -1
o2t +80)* = [(02(7: +80N T+ > Wit + 808,807 (¢ + 5:)*}
k=1

K
= o2t +80) [I = Wil + 60)g,8e0(t + az)*} +0(81),  (20)
k=1
) K
At + 80)* = ji(z 4 80)' — o?(¢ + 81)° [ W(z + 5t)§,;:| + o(82), (21)
k=1

where W.(r) = exp[Ix(z) + gri(2)]5z.
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In the event that no spikes are observed from any of the cells in the time bin
[z, + 51), we have

o} (¢ + 81) = 0*(t + 81)", (22)
fis(t + 81) = fi(z + 81)" (23)

If spikes are observed at time ¢ + 4z, then incorporating this into our updated
state estimate, we have instead,

o7 (¢ + 81) = 0*(r + 81)", (24)
fip(t + 80) = fi(z + 81)° 4+ 02(t + 80)* G 1(2), (25)

with the ik(z) indicating the presence or absence of a spike at time ¢ in neuron
k. As emphasized above, this update at the spike time is exact for exponential
f; related (but approximate) formulas may be derived for more general link
functions .

While the forward filter does not involve any matrix inversions, we unfortunately
cannot avoid a full matrix multiplication. Updates requiring a matrix inversion or
full matrix multiplication each require O(¥°) time, which may be infeasible for very
large .

Two speedups are readily apparent. First, it is clear that the updates between
spike-times may be written as an Euler’s method for an ODE solver. Thus we
may use adaptive time-step methods quite fruitfully, by simply and cheaply
tracking,

r{naxK} W) = max / Wi (s)ds, (26)

where u indexes the time of the last update. On each time step, we update ﬁ’/*(t),
and only update fi/(z) and crfz(t) when max W (z) over k= {l,...,K} reaches a
fixed threshold, at which point we also reset W*(z) to zero. Our simulations show
that this adaptive time-stepping can lead to a substantial speedup without
significant loss of accuracy. Following the same line of reasoning, we note that not
every W (z) will be large. Thus, we can operate in a subspace to speed up the
bottleneck computation O’Z(Z)dlag[W*(l)] 2(z). Specifically, we update ¢2(z) only in
the subspace spanned by the significanily large k, as measured by W} (z), and only
set these elements of W™*(z) to zero, letting the other elements continue to
integrate up to threshold.

Forward filter, Model 2: In this section we consider the forward filter for Model 2
and compute the various terms using Monte Carlo methods. Referring back to
Equation 15 we have,

P( Oz, t+de |N z+dz)
V2 ( Ol, H—dz)

_ P(Oz, t+de |Nt+dz)

P( OL‘, z+dz)

P(Nyyarl Oo.rar) = P(NoaiIN)P(N,| O, )N,

PNt NDG iy o2 ep(NDAN, (27)
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where we have introduced the notation G;,2(IN) to denote a Gaussian distribution
for the random variable N with mean (i and covariance o%. The observational term is
obtained from the definition of the model. For example, the probability that the k-th
neuron spikes is given by,

(O o= 1) = | 7 o e8)
PO har = thde) = 1+ Ve+VE/2)dt V>0
and the probability that it does not spike is given by,
) exp(— exp(V;)dz) Ve <0
o —OIN _ 29
(O 1yqr INetar) { exp(—(1 + Vi + V2/2)dt) V>0 29

where V), =1, + §k1<1,+dt as before. The mean and covariance terms ﬁf(t) and oj?(t)
are obtained recursively as described earlier. The dynamics term p(N,.q4;|N;) is the
same as that obtained for Model 1, since this depends only on the model for the
latent process, which is similar for the two models. To compute the other terms,
we resort to Monte Carlo methods with importance sampling. Many problems,
including computing integrals and expectations of functions, can be formulated as
Monte Carlo problems, where the true values are approximated numerically using
random samples chosen from suitable distributions. For example, to compute the
expectation of the function g(-) of a random variable N, the Monte Carlo estimate is
given by

1 =M
ELo(N)) = [ epONIAN & 11> g(No.

=1

where N; ~ p(N). Thus, to compute the normalizing factor we have,

PO rrar) = / P(Or varl N, g )P(NT 4 )ANT, 4,

= EIQ [P(Or. t+dr |]<[;k+dt)]’ (30)

t+de

where p(ﬂ[:‘+dr) refers to the distribution of the latent process obtained by
conditioning on the observations up to z and _propagating it forward by one time-
step dz via the dynamics equations, that is p(N; 4,) ~ g(¢u/(z),¢rrf2(t)¢’ +7de)(Nevdr)-

We are interested in the mean and the covariance of the conditional-distribution
P(N:+4:100. 1+d:)> Which can be obtained once again using Monte Carlo methods.
We have,

e+ d) =Eg o [ Nea ool Oo, s | (31)
The covariance can be computed more quickly using,
2

-1
0 -
afz(t +dy) = — |: = log p(N:+d:|Oo, t+dz):| N

r+dr Nivdr=if(e+de)

(32)
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To generate random samples we follow the ‘Inverse Transform Method.” In
the open interval (0,1), M equally-spaced points U; are chosen. These points
are mapped via the inverse cumulative distribution of the standard Gaussian
distribution onto the real line to obtain our Gaussian random sample
(Zi = ®(U;)™"). These random samples from the standard Gaussian distribution
are generated once and for all at the beginning of the simulation and are used
in the Monte Carlo methods via the transformation X; =+/CZ; + nu when
samples from a Gaussian distribution with a mean p and covariance C are
required.

The computational cost of the Monte Carlo method for the forward filter scales
linearly with the sample size. Our simulations indicate that, in the parameter range
of interest, a sample size of the order of 102 is necessary to obtain good estimates,
resulting in this approach taking two orders of magnitude more time than the
forward-filter for Model 1. Also we note that the M-step requires the computation of
certain expectations, as can be seen from Equation 9. For Model 2, these
expectations are also computed using Monte Carlo methods, and as this is a part of
the maximization step, these integral need to be computed several times during each
iteration of the EM algorithm.

Backward E-step: Kalman smoother. The backward-sweep of the E-step for hidden
Markov processes uses the output of the forward-step, p(N(2)|Oo,;), in order to
compute the fully-conditioned distributions, p(N(2)|Oor), and p(N(2),
N(t +dt)|Og 7). The algorithm for the backward filter can be derived using the
Bayesian approach. It is initialized by noting that the forward-step gives the fully-
conditioned distribution at time 7" and by considering,

1
(N7 alOo,1) = 20 )P(NT ar» Oo.1)

p(Oo )/P(NT - N7, Oy, r)dN7

1 R .. .
_ 2Nl O, 1—ar) / PO NN N7—a) AN
p(Oo.1)

The backward filter smoothes the conditioned distribution by incorporating the
dynamics of the hidden process backwards in time, and as such is independent of
the observational model. As our observational model is Gaussian, this computation
is standard (Mendel 1995; de Jong and MacKinnon 1988; Smith and Brown 2003).
Denoting the fully conditioned statistics by fis(t) = E[N(2)|Oo 1], 02(t) =
E[N (zt)N (2)'|Oo.7] we have

[as(2) = pis(2) + A@)(s(z + do) — s (2)), (33)
ol (t) = 07 (1) + A*(1)(07(z + 81) — (g7 ()¢ + 182)), (34)
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and

E[N(2)N'(z + 61)| Oo.r] = A(£)o?(z + 8¢) + [i(2)jil(z + 60), (35)
where A(r) = afz(t)¢/[¢0]?(t)¢’ + 687!, We may use the usual mean-variance

decomposition to obtain

EIN@)N'(2)|Oo.7] = fi(8)il(t) + 02(2). (36)

We use the notation fi,(z) and o(z) here to emphasize that the means and covariances
computed via the full forward-backward method are typically smoother functions of
time than the forward means [i/(z) and covariances o}(z) (Figure 3).

A 4
Stimulus 2K =
0
B
True N(f)
True rate
D
$4(T)
E
Sa(T)
E
Fow. Mean
G
EstNG Of
st M) -05F
-1
100 T
Est.rate 50 Y i
L T T |
0
0 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 3. Example of forward—backward Kalman smoother: In this simulation the firing-rates
of two cells was modulated by: A constant input, the neuron’s post-spike waveform,
interneuronal cross-coupling terms, and the latent OU processes as given by Equation 42.
(A) Shows the constant d.c. input. (B) Shows the true values for the four OU processes used
to generate data on a single trial. (C) Shows the true intensity function for both the cells. Cell
one is indicated by solid line and cell two by dotted line. (D) and (E) Shows the spike data
generated in a single trial from the the two cells. (F) Shows the conditional mean of N(z)
computed via the forward filter given the true values of the parameters, the stimulus, and the
spike-data from [0,z). Note the upward jumps in mean corresponding to spike-times
followed by continuous decay. Conditional means for both cells jump simultaneously,
though with amplitude depending on which neuron was observed to spike, as can be seen
from Equation 25. The backward filter (G) estimates N(z) by conditioning on the entire
data sample. Note that the mean obtained from the full spike train is continuous, unlike
the forward mean. (H) shows the estimated firing rate of the two cells obtained from the
smoothed estimate of N(z) along with the known stimulus by using the moment-generating
function for the Gaussian distribution (40). The values of the various parameters used in this
simulation are noted in the accompanying text.
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The Maximization step

In the M-step we need to maximize the expected value of the complete data
log-likelihood given in Equation 9 with respect to 6 to obtain the parameter
estimates for the next iteration of the EM algorithm. From Equation 9 we see that
the M-step for the dynamics-parameter D decouples from that of the intensity-
parameters {G, {7}, {/}}. In this section we consider the implementation of the
M-step for the two models to determine these parameters.

Dynamics-parameter. From Equation 9 we see that this part of the M-step involves
finding E[log p(No,70)|Oo, 1, 0:—1]. Since the latent process for the Models 1 and 2 is
identical, this part of the M-step is the same for the two models. To determine this
term we need to compute the following expectations,

E[log[p(ﬂfoqu9)|Oo,T, 91‘—1]]

=T

= E[log[p(N(O)wn + Y loglp(N(2)|N(z — 82), 0)] ] Oor, 91-_1]
=6t

— Bl- 1Ry (i 711({0

=E[- ()(5 ) (0)]

=T

T E[ i [ R0 — 68— 80 (R ) — o — 30| ‘oo,n 91-1}

=0t

=T
_ [1 + O(%)}E[Z - ﬁ [(N(2) — ¢N(z — 81)) (N(2) — N(z — 81))]
=45t

Oo,1, 9i1] ,
(37)

where again ¢ = exp(—&zD), and we have neglected, in the final step, the
contribution to the expectation by the initial condition P(N, 0). The expectation
has taken over the conditional measure of N(z) given the current parameter settings
and the observed spike data on [0,7]. The output of the forward-backward
algorithm outlined in the earlier sections allow us to compute the various terms in
this expectation. Differentiating Equation 25 with respect to ¢ we obtain ¢™*V for the
next iteration,

T T -1
¢ = (Z E[N()N(z — dt)'|Oo,r, 9“1) (Z E[N(2)|Oo,7, a-ﬂ) . (38

r=dz r=dz

We obtain the elements of D from D = —(1/8z)log(¢)."

In our experience, the resulting estimate of D always corresponds to a stable dynamical system (i.e., the eigenvalues of
D+D' are negative), and therefore our constraint on D has been satisfied automatically. If this is not the case, a
straightforward expansion of ¢ in 8z reduces Equation 37 to a quadratic function of D, up to 0(87) terms; maximizing this
quadratic function under the stability constraints is now a semi-definite program (Boyd and Vandenberghe 2004), to
which standard convex optimization procedures may be applied.
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M-step: intensity-parameters. To obtain the values for the intensity-parameters
{G, {1}, {lsj}} we need to maximize the other term from Equation 9 with respect to
the parameters, that is maximize E[logp(Oo 7|No.1, 0)|Oo. 7, 6;—1] with respect to 6.
This term will be different for the two models.

Model 1: We have,

E|:10g[P(Oo.T|1<70,T, 9)‘00,% 9i1]

K

- T -
= > B[ S+ BN G) ~ [ enptti) + 2N
J

k=1

Oo,T, 91’1}

T -
Z(Ik(l‘k, i)+ 8ris(tr ) — /0 exp(Ix(s))E[exp(g:N(s))ds| Oo, T, 91‘—1]}

J

Il
g

K T
= (Te(t.j) + Brits(tr;)) — | exp(Ix(s)) explgris(s) + 1g’kfff(s)g’;;]ds ,
5 2
J

=1
(39)

where we have used the fact that neurons in the ensemble are conditionally
independent given the latent process, along with the moment-generating function
for the multivariate normal distribution,

Er o fesp2)] = exp(F7 + 370% ). (40)
In Equation 39 we have a positively-weighted generalization of the usual point-
process likelihood (Smith and Brown 2003; Paninski 2004); the key fact is that this
function is jointly concave as a function of the parameters (g, 7%, {/}); thus we may
compute gradients with respect to the parameters and carry out the maximization
via straightforward conjugate gradient ascent. Note, therefore, that this M-step
reduces to K smaller independent optimization problems, all of which have unique
global optimizers which can easily be computed in parallel by standard conjugate
gradient ascent algorithms.

Model 2: We have,

E[log@(Oo,TI&o,T, 0)

Oo,Tﬂz’—l]

K
=ZE[A D Ukl +&N@w)+ Y (log(l+ Vi) + V(i) /2)

k=1 Ly V(2 ;)<0 J:Vir(tj)=0
T . T
- / exp(Lu(s) + BN (s))ds — f (14 Vi(s)+ Va(sY2/2)ds| Oo 1. 91‘1]
0:Vx(s)<0 0:Vx(s)>0
(41)

The expectations required of the M-step of Model 2, as given by Equation 41, are
computed using Monte Carlo methods. We can also evaluate the gradients, of this
expectation, with respect to the parameters using Monte Carlo methods; allowing us
to ascend this function using gradient-ascent methods.
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We have found that a good initialization of the parameters {r, 2;(.)} (for the
first M-step) is provided by the the optimizer of the classical loglikelihood, that
is, with G set to zero. For all subsequent M-steps, the optimizer 6, ; from the
last iteration is used as the initialization to the ascent algorithm. Finally, as usual,
prior information in the form of a log-concave prior distribution on the
parameters 6, p(0) = exp(—Q(0)), for some convex ‘“‘penalty” function Q(6), may
be easily incorporated: to compute the maximum a posterior (MAP) estimate for
0 instead of the maximum likelihood estimator, we simply ascend the functions
(37) and (39 and 41 ) added to the log-prior term — Q(6); the usual proof that
EM ascends the log-likelihood surface applies unchanged to establish that this
penalized EM ascends the log-posterior surface, i.e., that penalized EM returns
the MAP estimate for 6.

Simulation results

In this section we explore the system identification tools developed above by
considering several modeling scenarios.

Fokker—Planck simulations

In our first set of simulations we consider the error, introduced by the Gaussian
approximation, in our inference of the forward conditioned-distribution of the
latent process for the two models. That is, we compare the solution of the
forward-EKS step with the numerical solution obtained from solving the Fokker—
Planck equation. To simulate the Fokker—Planck equation we consider the
simplest possible model of a single neuron, with a scalar N(z), no spike history
terms and instantaneous stimulus filtering. As N(z) is one-dimensional, we can
solve the Fokker—Planck Equations 10-12 numerically in order to compare the
exact solution to the approximate forward-EKS solution. The results of this
comparison are shown in Figure 2. We compare a small-noise and a large-noise
case, with G set to 0.05 and 1.0, respectively for Model 1. We also compute the
true and approximate distributions for Model 2 for the large-noise case with
G =1 as before. The dynamics term D=2 and the stimulus filter 7, = 1 in each
case. x(¢) is chosen to be a simple sinusoid. We compare P(N, ) given this input
and two spikes at times r=0.3 and 0.8.

We immediately see that for Model 1, the EKS solution is rigorously valid
only in the small G limit. This is seen from considering the derivation of the
forward-EKS (presented in the Appendix) for the non-spike updates, where a
local Taylor expansion is used to approximate the likelihood. This expansion is
reasonably accurate only when the N term is small. Figure 4 makes a similar
point via simulations. We see that the forward-EKS approximation is quite
good in the small-noise case but only qualitatively accurate in the case of larger
noise. Though P(N,r) is well approximated by a Gaussian for all times z, the
mean and variance of the forward-EKS approximation are significantly off, as
can be quantified by computing the Kullback-Leibler divergence between the
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Figure 4. System Identification for Single Neuron (Model 1): The true parameter values for
by, b, and G (dotted line) and the estimates obtained from data of different durations
T= {50, 150, 250, 350} seconds are plotted in (A), (B), and (C). For each duration 7T the
spike-data is generated from the model given by Equation 44, and the parameters are
identified. These estimates are indicated by asterisks and the mean of the estimate by circles.
The variance of the estimates decreases as the length of the data increases. G is consistently
underestimated here. (D) Shows that the true post-spike inhibitory self-current (solid line) is
within the 95% confidence limits (dashed lines) about the estimated post-spike current
(dash-dot line) obtained using the mean and the variance of the estimates for b, and b, from
data-sample of duration 350 s. Note that the self-inhibitory currents are estimated accurately
despite the bias in estimate of G.

true and approximate solutions for P(N, ). Since the EM algorithm is based on
the calculation of P(N,r) we can expect that the EM algorithm will lead to
more accurate estimates in the presence of small G terms. We will examine this
phenomenon in further detail subsequently.

However, in the case of Model 2, where we have truncated the exponential
term of the link function, we see that the true and approximate distributions are
very similar even for the value of G=1 where Model 1 showed a larger error.
The fact that the true distribution is better inferred by Model 2 implies that the
EM algorithm will be better able to estimate the parameters of this model, a
point that we will return to in further simulations subsequently.

Extended Kalman smoother simulation

The forward-EKS step computes the first two moments of the latent process
at an instant in time, conditioned on the observations made up to that time,
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while the forward—backward EKS computes the moments conditioned on the
entire data.

In Figure 3 we demonstrate the forward and forward—backward steps of the EKS
implemented for Model 1. The two cells in this simulation receive a constant
stimulus input of 7, - X(z) = 1.5 and common inputs from four OU processes with
time-constants 0.5s, 1s, 1s, and 2s. The post-spike waveform reflecting the
refractory nature of a spiking neuron is taken to be the weighted sum of two
exponentials with time-constants t; = 2ms and 7, = 5 ms, while the interneuronal
cross-coupling term is taken to be the weighted sum of two exponentials with
time-constants 73 = 10 ms and 74 = 50 ms. The intensity function of neuron % is
therefore given by

(%)
€Xp _‘[—
Me(2) = exp |:1.5+ Z B !

U e<t) exp _lj;k

T2

I

K €exXp _1'_

> 2. ¢
i=1,i#k (i <1} exp _
Ty

where the matrices B, C, and G used in the simulation are given by

-2 -2 2 3 [8 5 75
B=10 , C=10 G=10 . (43)
-5 1 -2 5 10 6 8

+ + g’kz(f(z)} , (42)

The forward and backward steps of the EKS are useful in solving several inference
tasks. For example, given the stimulus and the model we can compute various
quantities of interest, such as the mean, variance, and auto- and cross-correlations
of the firing rate, by simply running Equation 4 forward and using Equation 1 to
recursively generate spikes. The forward filter also allows us to compute the
likelihood of a given observed spike-train under the assumed model.

The EKS also enables us to infer the activity of a group of cells in a network given
the activity of another group of disjoint cells. Again considering Model 1, an
example of this application is shown in Figure 5, where the activity of ten cells is
modulated by a four-dimensional OU process. Only nine of these cells are observed,
and the spiking data obtained from these nine cells is used to predict the spike rate of
the tenth unobserved cell.

EM simulations

In this subsection we analyze the performance of the EM algorithm, applied to
several models of increasing complexity.

Single neuron with refractoriness: Model 1 and Model 2. In these set of simulation
we compare the accuracy of the estimates obtained using the EM algorithm for
Models 1 and 2. We consider a spike train obtained from a single neuron whose
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Figure 5. Example of inference using the EKS: Here we simulated the activity of ten cells with
a constant input stimulus of unit amplitude, and correlated noisy-input arising from the
activity of a four-dimensional OU process with time constants of 0.5, 1, 2, and 4s.
For simplicity, in this simulation, we assume that there are no cross-coupling terms. The
true parameters are assumed to be known. (A) Shows the true spiking activity of the ten
neurons. The spike-trains of neurons 1-9 are used in the EKS to estimate the latent
process, which in turn is used to obtain the estimated spike-rate of the unobserved neuron
#10. (B) Shows the estimated spike rate of neuron #10 using our knowledge of the
activity of the other cells in the network and the stimulus (solid line) and using only
the stimulus (dotted line).

spike-rate is modulated by a known constant stimulus, inhibitory currents which
peak every time the neuron spikes (capturing the refractoriness of the neuron), as
well as a one-dimensional noise-driven input. We have

2
vy =|2+> 3 b,-exp(—l;[j

=1 {ji;<t}

) +GN() |, (44)

where the firing-rate for Model 1 is given by Equation 5 and for Model 2 is
given by Equation 6, and where ¢; refers to the time of the j-th spike of the
neuron. Though we consider the effect of the refractory terms to be the sum of
exponentials with different decay rates, the formulation is general and allows for
other kernels. The time-constant t of the OU process was taken to be 2s
(modeling slow fluctuations in the underlying mean firing rate), while the time-
constants for the exponentials were taken to be 10 ms and 5ms. We generate the
spiking data by recursively sampling from Equation 44, and we then
subsequently fit the model to the data using the EM algorithm. For this as
well as all the subsequent simulations we fix 8§z =5 x 107%. A large value of G
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(G=2) was used in these set of simulations. System identification was carried
out multiple times over independent, identically distributed data samples of
different lengths 7 as shown in Figure 4.

We can see from Figure 4 that for Model 1, G was significantly underestimated. In
the next set of simulations (Figure 6), for the same single neuron (Model 1), we
explore the effect of the size of G in estimating the parameters accurately. As the
Fokker-Planck simulations (Figure 3) indicate, the accuracy of the estimates
decreases as G increases. This bias in our estimation of G is not seen for Model 2 as
can be seen from the Figure 7. Note however that for both the models the bias in the
estimates of b; and b, was substantially less, and the self-current ), b; exp(—z/7;) was
estimated accurately as well.

The computational effort required for estimating the parameters in this simple
case for Model 2 was orders of magnitude greater than for Model 1. Thus, though
the parameters are estimated accurately, the computational burden is greater than
for Model 1, and in our subsequent simulations, which are more detailed than the
present case, we present results only for Model 1.

Single neuron with realistic stimulus filter. In the next set of simulations we consider
the problem of identifying a more complicated stimulus filter. Spiking data is
generated for a single neuron with refractoriness and with a receptive field which is
similar to the classical spike-triggered receptive field shape given in Figure 2.14 of
(Dayan and Abbott 2001). The firing rate of the neuron is given by

i=6 i=11

AMr) = exp |:a1 + Z a; cos(2mit/ Ty) — Z a; sin(2mie/ Tp)

=2 =7

+ 22: b exp(—

i=1 {j:<t}

! - lf') + GN(z)}, (45)

where Ty = 0.3s and a; are the coefficients of the receptive field in the Fourier
domain. Figure 8 shows a plot of the true vs. estimated receptive field, along with a
plot for the post-spike inhibitory currents. The values of the true and estimated
parameters, along with the standard deviations of the estimates, are presented in
Table I; the estimates are seen to be fairly accurate here.

Several interconnected neurons with common input. In this final set of simulations we
consider a richer model with four neurons where the firing rate of neuron % at the
time ¢ is given by,

2
=14
Ar(r) = exp |:4 + Z Z b, i) exp (— TS,eljf >

=1 {jitj p <t}

Z Y i eXP( m)+g N(t)} (46)

i=1 I=1,l#k {jig, <t}

where N(z) is a two-dimensional OU process. This formulation captures the effect
on the firing rate of the stimulus through the constant term, the refractory terms are
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Figure 7. System identification for single neuron (Model 2): The true parameter values for b,
b, and G (dotted line) and the estimates obtained for Model 2 from data of different durations
T= {10, 50} seconds are plotted in (A), (B), and (C). As in Figure 4, for each duration 7 the
spike-data is generated from the model given by Equation 44, and the parameters are
identified. These estimates are indicated by asterisks and the means by circles. The variance
of the estimates decreases as the length of the data increases. (D) Shows that the true post-
spike inhibitory self-current (solid line) is within the 95% confidence limits (dashed lines)
about the estimated post-spike current (dash-dot line) obtained using the mean and the
variance of the estimates for b; and b, from data-sample of duration 50s. The point to be
noted here is that the estimated G is closer to the true value than the estimate for Model 1
(Figure 6). Also note that Model 2 requires less data to estimate the parameters of the model
accurately.

captured through & and the inputs due to the firing of other neurons is captured
through ¢. The estimated and true parameter values, along with the standard
deviations of the estimates, are tabulated in Table II (the duration 7" was taken to be
450 s here); again, we see that the parameters are accurately recovered.

Discussion

In this article we have considered the problem of estimating the connectivity of
neurons in a network using observed spike-train data and the stimulus presented to
the network, while accounting for the effect of unobserved neurons on the firing of
the observed neurons. The effect of these unobserved neurons is modeled as a latent
process modulating the firing activity of the observed neurons. Our model
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Table I. Estimated and true parameter values for neuron with realistic stimulus filter.

Parameter True Estimate Parameter True Estimate

G 0.20 0.18£0.02 as 0.08 0.06+0.03
by —0.50 —0.49+£0.11 ae 0.08 0.09 +0.04
b, —1.50 —1.54+£0.17 a 0.96 0.90+0.011
a; 4.00 3.95+0.017 ag 0.56 0.6240.018
as 1.09 1.204+0.04 a9 —0.43 —0.51£0.03
as —1.01 —1.10£0.04 ao —0.20 —0.14+£0.018
ay —-0.32 —0.29£0.04 apn —0.04 —0.07+£0.013

Table II. Estimated and true parameter values for several interconnected neurons.

Parameter True Estimate Parameter True Estimate
b1,y —1.00 —1.33+£0.08 by, —2.00 —1.69£0.05
boy —0.50 —0.69+£0.10 2%} —-2.50 —2.32+£0.08
b3, —3.00 —3.20£0.06 bs,» —1.00 —0.82+£0.04
ba,y —2.00 —2.23+£0.06 (2% —1.00 —0.76 £0.04
1,1 0.20 0.17+0.02 1,2 0.10 0.124+0.01
Ca1 0.30 0.29£0.02 2,2 0.15 0.16 +0.03
c31 0.20 0.2040.03 3,2 0.30 0.294+0.03
Ca1 0.18 0.1140.002 Ca,2 0.20 0.26 +0.006

formulation is sufficiently general and allows us to consider several other important
modeling scenarios. For example, to consider the important situation where the
unobserved neurons are influenced by the stimulus, we can introduce a stimulus
dependent term in the dynamics equation for the latent process, and estimate it
using the tools developed in this article. We can also consider the effect of
adaptation, which is observed typically in the response of neural circuits to repeated
stimulation, by incorporating a term similar to the self-inhibitory that we considered
but which acts on longer time-scales.

Here, we have considered two models and developed methods to estimate the
parameters of the network by following the state-space approach to the modeling of
point-process observations (Smith and Brown 2003). We have used a modified
computationally tractable EM algorithm, where the E-step is carried out by using
forward and backward sweeps of the EKS, and the M-step involves the
maximization of concave functions. The state-space approach to modeling point-
processes has received increasing attention recently. The other work (aside from
that of Smith and Brown (2003) that most closely corresponds, in methodology, to
what we have presented in this article is that of Yu et al. (2005), who modeled the
hidden dynamics of a behavioral motor task using a nonlinear extended Kalman
framework. As in our work, the key idea in Yu et al. (2005) is that the activity of the
observed population of neurons is modulated by some common unobserved
dynamical process. The main difference is in the interpretation of this underlying
dynamical process: in Yu et al. (2005), this process corresponds to the evolution of a
decision to move in a delayed-reach task, while in our case the process corresponds
to a noisy lumped sum of activity from a population of presynaptic neurons. Another
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(less important) difference is that the underlying dynamics in our model were
chosen to be linear, implying that many of the steps in the EKS algorithm could be
implemented exactly (because linear dynamics preserve Gaussianity), and allowing
us to make use of straightforward adaptive time-stepping ideas to improve the
numerical efficiency of the algorithm (recall section “Forward E-step: Kalman
filter’”), whereas the nonlinear hidden dynamics used in Yu et al. (2005) require
further approximations to apply the EKS algorithm (Wan and Merwe 2004). In
addition, we have emphasized the incorporation of the coupling terms {/;(.)}, which
allow us to capture refractoriness and burstiness effects as well as direct
network coupling effects (these terms could be easily incorporated in the framework
of Yu et al. (2005) as well).

While Yu et al. (2005) consider a different modeling problem using similar
tools, Nykamp (2005, 2007) considers a similar problem (inferring unobserved
common input terms from the observed activity of a population of possibly
coupled neurons) using methods which are significantly different from ours. The
approach adopted in Nykamp (2005, 2007) is to use the joint stimulus-spike
statistics to determine the neuronal connectivity via a version of the method of
moments, or alternatively via an expansion in the coupling terms of the point-
process likelihood of the fully-observed neural population. This expansion
analysis is carried out under the assumption that the inter-neuronal coupling is
weak, similar in some respects to our assumption that G is small in the case of
Model 1 (which ensures that our Gaussian approximation is reasonable),
although in our case we do not need to assume that the coupling terms {7}
or {h(.)} are small. An important direction for future research is to further
compare the strengths and limitations of these two approaches.

The key limitation of our approach, for Model 1, is the bias in the estimates of the
parameters when the modulation of the firing rate by the N(z) terms is high. This
bias arises, because while incorporating the observations in our estimate of the state
in the derivation of the forward-EKS step (Appendix), we approximate the posterior
distribution of the state by considering a second-order Taylor series approximation
about the mean of the prior distribution of N(z). We decided to pursue the EKS
approach here primarily due to its computational efficiency. On the other hand, we
considered Monte Carlo methods for Model 2, where we have accurate parameter
estimation but we have to contend with the excessive computational burden of this
approach.

Different strategies can be adopted to overcome both these limitations. For one,
the algorithm can be speeded up significantly by resorting to distributed computing,
where the problem is broken into smaller independent problems which can be
farmed out to a bank of processors. For example for Model 1, the M-step as
mentioned in the text, can be split into a number of smaller independent
optimization problems. In the case of the Monte Carlo approach for Model 2, each
of the processors can consider a fraction of the random samples, and the results
from each processor can be pooled, leading to a significant reduction in the real-
time performance of the algorithm. Also note that the sums over the interval (0, T)
required for the M-step can also be split into smaller independent time-segments
which can be handled by different processors.

To minimize the bias in Model 1, one could again consider the
computationally fairly expensive solution by using the particle filter approach
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(Arulampalam et al. 2002). Particle filters are sequential Monte Carlo methods
based on a point-mass representation of the relevant probability densities (P(N, z),
in the current context), which can be applied to any state-space model (including
models with nonlinear dynamics and non-Gaussian observations) and therefore
generalize the EKS approach presented here. Particle filters, depending on the
number of sample points chosen, can achieve any level of accuracy. This accuracy
comes, however, at a significant computational cost: to obtain accurate results we
need to sample from a potentially large set of particles.

The unscented Kalman filter (UKF) is another alternate approach (Wan and
Merwe 2004); the idea is to use a minimal set of carefully chosen sample points that
approximate the distribution. These sample points capture the true mean and
covariance of the state of the system if the underlying dynamics are Gaussian and
linear (as in our case), and when propagated through a nonlinearity, capture the
posterior mean and the covariance to the second-order of the Taylor expansion of
the nonlinearity. Incorporating the data observations in the UKF setting involves
computing a sample average and a sample covariance, instead of the expansion
approach taken by the EKS; like the particle filter, the UKF may be made more
accurate (at some computational cost) by incorporating a larger number of sample
points.

A final approach to overcome the bias issue in our estimates is to use the
Expectation Propagation method (Minka 2001). Expectation propagation is a
deterministic method that approximates the distributions using an iterative
approach to incorporating the observations. It differs from EKS in that it may
be applied to general (not only Gaussian) distributions. Expectation propagation
is slightly more computationally intensive than EKS or UKF, but in general
less intensive than particle filtering. In the future we plan to compare
these different approaches in detail, and to apply these methods to real
physiological data.
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Appendix: Deriving the forward-EKS equations

We derive the equations of the forward-EKS step, which computes the expectation
and variance of the latent process N (z), conditioned on the observations made up to
the time z. The filter is derived in an iterative manner, where we assume that we
know the initial distribution of the hidden process. Over each subsequent time



Downloaded By: [Columbia University] At: 22:57 19 June 2008

404 F E. Rulkarani & L. Paminski

interval we propagate this distribution through the dynamic equation, and update
this transformed distribution based on the observed spiking of the neurons over that
time interval.

e Spike update: Let there be a spike in the k-th neuron at time z. We will denote
the time instant before and after spiking information is used by ¢~ and rt,
respectively. The forward Kalman filter is iterative and we assume that we know
the distribution of the latent process at ¢, that is, p(N(z7)|Oo ) ~ N (i, 0?).
Then using the fact that the increments for a Poisson process are independent
over disjoint intervals,

N[00 -, OF = 1) = oK) |00, (O = 1[N())

1 1 - -1,2. - 5 =
= ZeXp[— SN - i)o® (N — u)} exp[l; + geN]

1 1o~ stz o= o1
:Eexpl:_E(N/az 'N-2N©*"ii +g,;))]

where Z is a normalizing factor. Therefore p(N (t*)\OO, = Of" =1)~
N (i + 028}, 02).

e For Non-spike updates: Let there be no spike in any of the £ neurons in
[z, 2 + 8z], and let p(N(z + 6t)|Oo, ) ~ N (ji, 5?), which is obtained from passing the
updated distribution at time ¢ through the linear dynamics Equations 17 and 18.
We have,

- I K -
PIN(t +80)[ 0.1, O 115 = 0) = Zp(N(z +8)| Oo..) [ [ (0% 15 = O|N(z + 61))
k=1

Now,
P(OF, 1+ 8t = O|N(z + 51)) = exp[— exp[I; + 8N157]
- exp[— expll + Bii)(1 + (N — i)z
1 . SN/ D N =N/ 2
+5 (N = g N — i) )8z | + o(82%)
-7z Wi Kr/—'/ﬂ N N/ )
= Zexp —7( £.8eIN — 2N'(g1.8r it — &)

where I, and N are evaluated at time ¢ + 8t, Wy, = —exp(I + gri1)dt, and Z is a
normalizing factor.
Therefore using results from the product of Gaussian distributions, we have

p[N(t +61)| O, O, + 62 = 6] ~ N (fgrods 0oa),
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where
K -1
Oprod = | 0771 + Z = 15 W88
k=1
K
S Zoz We.g,gro” + o(81%),
k=1
K
llprod = ﬁ - 02 Z Wké;e + 0(8t2)
k=1
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