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Abstract— We develop a “plug-in” kernel estimator for the differenti al
entropy that is consistent even if the kernel width tends to zero as quickly
as 1/N , where N is the number of i.i.d. samples. Thus, accurate density
estimates are not required for accurate kernel entropy estimates; in fact,
it is a good idea when estimating entropy to sacrifice some accuracy in
the quality of the corresponding density estimate.

Index Terms— Approximation theory, bias, consistency, distribution-
free bounds, density estimation.

INTRODUCTION

The estimation of the entropy and of related quantities (mutual
information, Kullback-Leibler divergence, etc.) from i.i.d. samples is
a very well-studied problem. Work on estimating the discrete entropy
began shortly after the appearance of Shannon’s original work (Miller,
1955; Basharin, 1959; Antos and Kontoyiannis, 2001; Paninski,
2003). A variety of nonparametric approaches for estimating the
differential entropy have been studied, including histogram-based
estimators, “plug-in” kernel estimators, resampled kernel estimators,
and nearest-neighbor estimators; see (Beirlant et al., 1997) for a nice
review.

In particular, this previous work has established the consistency
of several kernel- or nearest-neighbor-based estimators of the dif-
ferential entropy, under certain smoothness or tail conditions on the
underlying (unknown) distributionp. In the kernel case, consistency
is established under the assumption that the kernel width scales more
slowly than 1/N (Beirlant et al., 1997); this is the usual assump-
tion guaranteeing that the corresponding kernel density estimate is
consistent (not “undersmoothed”). While these consistency results
are well-understood, worst-case error bounds — i.e., bounds on the
estimator’s average error over a large class of underlying probability
measuresp — are more rare.

Our main result here is an adaptation of the discrete (histogram-
based) techniques of (Paninski, 2003; Paninski, 2004) to the kernel
estimator case. This earlier work established universal consistency for
a histogram-based estimator of the entropy assuming that the number
of histogram bins,m = mN , obeyed the scalingmN = O(N);
in addition, nonparametric error bounds were established for any
(m,N) pair. To adapt these results here we decompose the error
of the kernel estimator into three parts: a (deterministic) smoothing
error, and an estimation error consisting of the usual bias and variance
terms. Smoothing error generically decreases with kernel width, and
therefore it is beneficial to make the kernel width as small as possible;
on the other hand, in the classical plug-in entropy estimators, making
the kernel width too small can make the estimation error component
(the bias plus the variance) large. We provide an estimator whose
estimation error term may be bounded by a term which goes to
zero even if the kernel width scales as1/N . Thus, accurate density
estimates are not required for accurate kernel entropy estimates; in
fact, it is a good idea when estimating entropy to sacrifice some
accuracy in the quality of the corresponding density estimate (i.e., to
undersmooth). Some comparisons on simulated data are provided.
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MAIN RESULTS

We assume that data{xj}, 1 ≤ j ≤ N , are drawn i.i.d. from some
arbitrary probability measurep. We are interested in estimating the
differential entropy ofp (Cover and Thomas, 1991),

H(p) =

Z

−
dp(s)

ds
log

dp(s)

ds
ds

(for clarity, we will restrict our attention here to the case that the base
measureds is Lebesgue measure on a finite one-dimensional interval
X of lengthµ(X ), though extensions of the following results to more
general measure spaces are possible.)

We will consider kernel entropy estimators of the following form:

Ĥ =

Z

g(p̂(s))ds,

where we define the kernel density estimate

p̂(s) =
1

N

N
X

j=1

k(s− xj),

with k(.) the kernel; as usual,
R

kds = 1 andk ≥ 0. The standard
“plug-in” estimator for the entropy is obtained by setting

g(u) = h(u) ≡ −u log u;

our basic plan is to optimizeg(.), in some sense, to obtain a better
estimate than the plug-in estimate.

Our development begins with the standard bias-variance decompo-
sition for the squared error of the estimator:

E(H − Ĥ)2 = (Eapp +B(Ĥ))2 + V (Ĥ),

with the approximation error

Eapp = H(p ∗ k) −H(p),

and the bias term

B(Ĥ) = Ep(Ĥ) −H(p ∗ k)

defined relative to the smoothed measure

p ∗ k(s) = Ep(p̂(s)) =

Z

k(s− x)dp(x).

Note thatEapp is generically positive and increasing with the kernel
width (since smoothing tends to increase entropy), while the bias
B(Ĥ) of the standard plug-in estimator (g(.) = h(.)) is always
negative, by Jensen’s inequality.

Clearly, it is impossible to obtain any nontrivial risk bounds on
the expected mean-square error of any estimator of the differential
entropy, since we might haveH = −∞ (in the case thatp is
singular). Thus, instead of trying to obtain bounds on the full error
E(H(p) − Ĥ)2, our goal will be to bound the estimation error

E(H(p ∗ k) − Ĥ)2 = B(Ĥ)2 + V (Ĥ),

and then choose the kernelk so that the smoothing errorEapp is as
small as possible, under the constraint that the worst-case expected
estimation error is acceptably small.

For this class of kernel entropy estimators, we have some simple
bounds on the bias and variance (adapted from bounds derived in
(Antos and Kontoyiannis, 2001; Paninski, 2003)). We may bound
the varianceV (Ĥg,N ) using McDiarmid’s technique (Devroye et al.,
1996; McDiarmid, 1989):

Lemma 1 (Variance bound, general kernel).

V (Ĥg,N ) ≤ N

„
Z

sup
y

˛

˛

˛

˛

g(y) − g

„

y +
k(s)

N

«˛

˛

˛

˛

ds

«2

.
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In the special case thatg(.) is Lipschitz,sups,t |g(s) − g(s+ t)| ≤
c|t|, for some0 < c <∞, the bound simplifies considerably:

V (Ĥg,N ) ≤ c2/N.

Proof: McDiarmid’s variance inequality (Devroye et al., 1996;
McDiarmid, 1989) says that if we may bound the maximal coordi-
natewise difference

sup
x1,...,xj ,x′

j
,...,xN

˛

˛

˛

˛

Ĥg,N (x1, . . . , xj , . . . , xN )

−Ĥg,N (x1, . . . , x
′
j , . . . , xN )

˛

˛

˛

˛

≤ cj ,

whereHg,N (x1, . . . , xN ) denotes the estimator evaluated on some
arbitrary configuration of the observed samples{xj}1≤j≤N , then

V (Ĥg,N ) ≤
1

4

X

j

c2j .

We have here thatcj , as defined above, may be chosen as

cj = 2

Z

sup
y

˛

˛

˛

˛

g(y) − g

„

y +
k(s)

N

«˛

˛

˛

˛

ds;

plugging in, we obtain the the general bound in the lemma.
In the Lipschitz case,

N

„
Z

sup
y

˛

˛

˛

˛

g(y) − g

„

y +
k(s)

N

«˛

˛

˛

˛

ds

«2

≤ N

„
Z

c

N
k(s)ds

«2

= N(c/N)2 = c2/N,

where the first inequality follows by the Lipschitz condition and the
first equality by the fact that the kernelk integrates to one.

Exponential tail bounds are also available (McDiarmid, 1989;
Devroye et al., 1996; Antos and Kontoyiannis, 2001; Paninski, 2003)
in case almost-sure results are desired, but these bounds will not be
necessary here.

We now specialize to the simplest possible kernel, the step kernel
of width w:

kw(s) =
1

w
1
`

s ∈ [−w/2, w/2]
´

.

In this case we only need to defineg(u) at theN + 1 pointsu =
{0, 1

Nw
, 2

Nw
, . . . , 1

w
}, and we have the following simplification of

Lemma 1:

Lemma 2 (Variance bound, step kernel).

sup
p

V (Ĥg,N ) ≤ Nw2 max
0≤j<N

»

g

„

j + 1

Nw

«

− g

„

j

Nw

«–2

.

Proof: In this case it is easy to see that
R

supy

˛

˛

˛
g(y) − g

“

y + kw(s)
N

”˛

˛

˛
ds is bounded above by

w max
0≤j<N

˛

˛

˛

˛

g

„

j + 1

Nw

«

− g

„

j

Nw

«˛

˛

˛

˛

;

the result now follows directly from Lemma 1.
We may compute the biasB(Ĥg,N ) exactly in this special step-

kernel case:

B(Ĥg,N ) = Ep(Ĥg,N ) −H(p ∗ kw)

= −

Z
„

h[p ∗ kw(s)] −

N
X

j=0

g(
j

Nw
)Bj,N [wp ∗ kw(s)]

«

ds, (1)

where we have abbreviated the binomial functions

Bj,N (u) ≡

 

N

j

!

uj(1 − u)N−j ;

the derivation of this formula exactly follows that in the discrete case,
as described in (Paninski, 2003) (all that is required is an interchange
of an integral and a finite sum). From this we may easily derive the
following approximation-theoretic bound:

Lemma 3 (Bias bound). 1

sup
p

|B(Ĥg,N )| ≤ µ(X ) max
0≤u≤1

˛

˛

˛

˛

1

w
h(u)+logw−

N
X

j=0

g(
j

Nw
)Bj,N (u)

˛

˛

˛

˛

.

Proof: We apply the simple inequality|
R

X
f(x)dµ(x)| ≤

µ(X ) supx |f(x)| to the expression for the bias in equation (1). First
we rewrite
Z

h[p∗kw(x)]dx =

Z

h[
1

w
wp∗kw(x)]dx = logw+

1

w

Z

h[wp∗kw(x)]dx.

Now

B(Ĥg,N ) = −

Z
„

logw+
1

w
h[wp∗kw(x)]−

N
X

j=0

g(
j

Nw
)Bj,N [wp∗kw(x)]

«

dx,

so |B(Ĥg,N )| is bounded above by

µ(X ) sup
x

˛

˛

˛

˛

˛

logw +
1

w
h[wp ∗ kw(x)] −

N
X

j=0

g(
j

Nw
)Bj,N [wp ∗ kw(x)]

˛

˛

˛

˛

˛

= µ(X ) max
0≤u≤1

˛

˛

˛

˛

logw +
1

w
h(u) −

N
X

j=0

g(
j

Nw
)Bj,N (u)

˛

˛

˛

˛

,

since 0 ≤ wp ∗ kw(x) ≤ 1. The maximum is obtained, by
compactness and continuity ofh(u) andBj,N (u).

Note that each of the above bounds is distribution-free, that is,
uniform over all possible underlying distributionsp. We may combine
these to obtain uniform bounds on the mean-square error:

sup
p

E(Ĥg,N −H(p ∗ kw))2

= sup
p

h

B(Ĥg,N )2 + V (Ĥg,N )
i

≤

„

sup
p

|B(Ĥg,N )|

«2

+ sup
p

V (Ĥg,N )

≤ µ(X )2 max
0≤u≤1

˛

˛

˛

˛

1

w
h(u) + logw −

N
X

j=0

g(
j

Nw
)Bj,N (u)

˛

˛

˛

˛

2

+Nw2 max
0≤j<N

„

g(
j + 1

Nw
) − g(

j

Nw
)

«2

=

„

µ(X )

w

«2

max
0≤u≤1

˛

˛

˛

˛

h(u) + w logw −
N
X

j=0

wg(
j

Nw
)Bj,N (u)

˛

˛

˛

˛

2

+N max
0≤j<N

„

wg(
j + 1

Nw
) − wg(

j

Nw
)

«2

. (2)

If we define
a(j/N) = w [g(j/N) − logw] ,

then expression (2) simplifies to
„

µ(X )

w

«2

max
0≤u≤1

˛

˛

˛

˛

h(u)−
N
X

j=0

a(
j

N
)Bj,N (u)

˛

˛

˛

˛

2

+N max
0≤j<N

„

a(
j + 1

N
)−a(

j

N
)

«2

.

In (Paninski, 2004) we proved that there exists a sequence of
functions aN (defined implicitly as the solution to a certain

1A direct generalization to the infiniteµ(X ) case is not possible without
some restrictions on the decay ofp. We will not pursue such bounds here.
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approximation-theoretic convex optimization problem) such that

m2
N max

0≤u≤1

˛

˛

˛

˛

h(u)−
N
X

j=0

aN (
j

N
)Bj,N (u)

˛

˛

˛

˛

2

+N max
0≤j<N

„

aN (
j + 1

N
)−aN (

j

N
)

«2

converges to zero asN → ∞ for any sequencemN satisfyingmN =
O(N).2

Now, settingmN = µ(X )/wN , we may now easily deduce the
main result of this paper:

Theorem 4. Let NwN ≥ c > 0, uniformly inN . There exists an
estimator Ĥg,N for the entropyH which is uniformly smoothed-
consistent in mean square; that is,

sup
p

E(Ĥg,N −H(p ∗ kwN
))2 < ǫ(c,N),

with ǫ(c,N) ց 0 asN → ∞, and the supremum is taken over all
probability measuresp.

Proof: We need only apply the main result of (Paninski, 2004)
guaranteeing the existence of the sequenceaN described above, and
then takeg(j/N) = 1

w
aN (j/N) + logw.

As a corollary, it is easy to show that a uniformly consistent
estimator exists ifNwN → 0 sufficiently slowly; as in (Paninski,
2004), this follows by a straightforward diagonalization argument.
Note thatwN = O(N−1) (and certainlywN = o(N−1)) does
not lead to consistent density estimates, even under smoothness
restrictions onp (Paninski, 2003; Braess and Dette, 2004; Paninski,
2005). Thus the content of the theorem is that we can undersmooth
the density and still estimate entropy well. In fact, undersmoothing is
a good idea because it generically decreases the approximation bias
Eapp.

Finally, it is worth noting that an identical result may be obtained
in the multidimensional case; the only difference in the statement and
proof of the result is that in the general case the inverse measure of
the support of our step kernel must beO(N), whereas in the one-
dimensional case (theorem 4) we restrict the inverselengthwN to
beO(N).

NUMERICAL RESULTS

Sample-spacing estimators also have the “undersmoothing” prop-
erty — consistent density estimates are not required for consistent
entropy estimates (Beirlant et al., 1997). Thus it makes sense to
compare the performance of the estimator introduced here with that
of these sample-spacing estimators.

Them-sample spacing estimator is defined as follows. GivenN
real-valued samplesXi, we may form the usual order statisticsX(i).
The gaps between thei-th and(i+m)-th order statistics,X(i+m) −
X(i), are called them-spacings. It is easy to form a density estimator
based on thesem-spacings (Beirlant et al., 1997), and plugging this
estimator into the differential entropy formula (and performing a bias
correction) gives the following estimator for the entropy:

Ĥ(m) ≡
1

N

N−m
X

i=1

log

„

N

m
(X(i+m) −X(i))

«

− ψ(m) + logm,

where we have abbreviated the digamma function

ψ(x) =
∂ log Γ(t)

∂t

˛

˛

˛

˛

t=x

.

2In (Paninski, 2004)m was defined as the finite number of points on which
the discrete probability measure was supported. Note that this definition of
m is consistent with the definition ofm in the case of a histogram-based
method, in which we divide the spaceX into m bins and the effective kernel
width w is exactlyµ(X )/m.
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Fig. 1. Top: True density used for the simulations described in the text and
in Fig. 2. Bottom: Smoothed density.

To compare the performance of the estimators, it is useful to
choose a bounded, absolutely continuous density whose entropy is
very vulnerable to oversmoothing, that is, a densityp for whichH(p)
andH(p∗k) are very different and therefore the approximation error
Eapp is large. One such density is of the one-dimensional sawtooth
form

p(x) = pN (x) ≡



2 n−1
N

≤ x ≤ 2n−1
2N

0 2n−1
2N

≤ x ≤ n

N
,

wheren = 1, 2, · · · , N (Fig. 1). (More generally, any density with
large fluctuations on a1/w scale will induce a large approximation
error Eapp; the densityp chosen here just has a particularly con-
venient form.) The entropyH(p) of this distribution can easily be
calculated as− log(2).

The smoothed entropyH(p ∗ k) may also be computed explicitly
here. The densityp ∗ k is simply a sum of trapezoids, of the form

p∗k(x) =

8

>

>

>

<

>

>

>

:

2
w

(x− (n−1
N

− w
2
)) n−1

N
− w

2
≤ x ≤ n−1

N
+ w

2

2 n−1
N

+ w
2
≤ x ≤ 2n−1

2N
− w

2

2[1 − 1
w

(x− ( 2n−1
2N

− w
2
))] 2n−1

2N
− w

2
≤ x ≤ 2n−1

2N
+ w

2

0 2n−1
2N

+ w
2
≤ x ≤ n

N
,

where we have assumed thatw < 1/N . Thus for the smoothed
entropy we obtain

H(p ∗ k) = −

Z

ℜ

p ∗ k(x) log p ∗ k(x)dx

= −N

Z 1

2N
− w

2

w
2

2 log 2dx− 2N

Z w

0

2x

w
log

2x

w
dx}

= −N

„

1

2N
− w

«

2 log 2 − 2N
w

2

Z 2

0

y log ydy

= −N

„

1

2N
− w

«

2 log 2 −
Nw

2

„

y2 log y −
1

2
y2

« ˛

˛

˛

˛

2

0

= − log 2 +Nw.

We illustrate the performance of the new kernel estimator (which
we will refer to by the initials “BUB,” for “best upper bound,” as
in (Paninski, 2003)) versus them-spacing estimator withm = 1
(this value ofm led to the best performance here; data not shown)
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in Fig. 2.3 The idea was to choosew to be as small as possible (to
make the smoothing errorH(p ∗ k) − H(p) as small as possible),
within the constraint that the maximal errormaxp[Ĥ −H(p ∗ k)]2

is decreasing as a function ofN (to ensure smoothed-consistency of
the estimateĤ). This behavior is illustrated in Fig. 2: we see that the
error bound does in fact tend to zero (albeit slowly), implying that
Ĥ → H(p ∗ k) in mean square; at the same time, sincenWN → 0,
H(p ∗ k) → H(p), and we have that̂H is not only smoothed-
consistent in mean-square but in fact mean-square consistent for
H(p). On the other hand them-spacing estimator has an asymptotic
bias; since them-spacing estimator is constructed from a density
estimate whose kernel width, roughly speaking, would correspond to
1/[Np(x)], this estimator cannot detect the structure on theo(1/N)
scale which is necessary to consistently estimateH(p) here. (But
note that them-spacing estimator can be superior in the case of an
unbounded densityp, where the smoothing errorH(p ∗ k) −H(p)
of the kernel estimator is large but where the small effective width
1/[Np(x)] of the m-spacing estimator can lead to a much smaller
bias; data not shown.)

CONCLUSIONS

We have presented a kernel density estimator of the entropy (based
on a simple step kernel) which can be applied even when the kernel
undersmooths the true underlying density (that is, when the kernel
width tends to zero as quickly as1/N ). This kernel estimator is
shown to have better numerical performance than the classicalm-
spacing estimators when the underlying densityp is very jagged. We
anticipate that this new estimator will be useful in applications that
require the estimation of differential entropy of a random vector, or
of the mutual information between two random variables.
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the definition ofĤ we need only keep track of the2N points at which the
density estimate

P

i k(xi) jumps up or down (at the points{xi −w/2} and
{xi +w/2}, respectively); the whole computation requires just a couple lines
of code.

0 0.2 0.4 0.6 0.8 1

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

N × 107

en
tr

op
y 

(n
at

s)

 

 

H(p*k)
BUB
m−space
H(p)

Fig. 2. Comparison of the performance of them-spacing (m = 1) and
BUB estimators applied to the densityp shown in Fig. 1. For each of several
values of the sample sizeN , we choseN i.i.d. samples fromp (with N
in the definition ofp chosen to equal the sample size in each case; i.e., the
number of sawtooths in the definition ofp increases linearly withN ), then
replicated the experiment ten times, in order to obtain reliable estimates of the
sample mean and standard deviation of the two estimates. This sample mean,
plus and minus a single standard deviation, is plotted for them-spacing and
BUB estimates (dotted and solid black traces, respectively). Note the large
positive asymptotic bias of them-spacing estimator (the variance of both
the m-spacing and BUB estimators are relatively negligible). Thetrue value
of the entropy,H(p) = − log 2, is indicated by the dashed line; the gray
trace shows the true smoothed entropy, plus or minus the squareroot of the
maximal mean-squared error of the BUB estimator. Note that this maximal
error tends to zero asN → ∞, as doesH(p ∗ k) → H(p), for the values
of wN chosen here, implying mean-square consistency ofĤ for H(p).
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