Undersmoothed kernel entropy estimators MAIN RESULTS
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(for clarity, we will restrict our attention here to the case that the base
Abstract— We develop a “plug-in” kernel estimator for the differential measurels is Lebesgue measure on a finite one-dimensional interval

entropy that is consistent even if the kernel width tends to ero as quickly ~ x of lengthu(X), though extensions of the following results to more
as1/N, where N is the number of i.i.d. samples. Thus, accurate density general measure spaces are possible.)

estimates are not required for accurate kernel entropy esthates; in fact, . . . . .
it is a good idea when estimating entropy to sacrifice some astacy in We will consider kernel entropy estimators of the following form:

the quality of the corresponding density estimate. .
i = [ go()ds

where we define the kernel density estimate

Index Terms— Approximation theory, bias, consistency, distribution-
free bounds, density estimation.
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INTRODUCTION P = ;k(s #):

The estimation of the entropy and of related quantities (mutugdth k(.) the kernel; as usualf kds = 1 andk > 0. The standard
information, Kullback-Leibler divergence, etc.) from i.i.d. samples iglug-in” estimator for the entropy is obtained by setting
a very well-studied problem. Work on estimating the discrete entropy
began shortly after the appearance of Shannon’s original work (Miller
1955; Basharin, 1959; Antos and Kontoyiannis, 2001; Paninskiyr basic plan is to optimizg(.), in some sense, to obtain a better
2003). A variety of nonparametric approaches for estimating tlstimate than the plug-in estimate.
differential entropy have been studied, including histogram-basedOur development begins with the standard bias-variance decompo-
estimators, “plug-in” kernel estimators, resampled kernel estimatositjon for the squared error of the estimator:
and nearest-neighbor estimators; see (Beirlant et al., 1997) foea nic
review.

In particular, this previous work has established the consistengjth the approximation error
of several kernel- or nearest-neighbor-based estimators of the dif-
ferential entropy, under certain smoothness or tail conditions on the Eapp = H(p* k) — H(p),
underlying (unknown) distributiom. In the kernel case, consistency,ng the bias term
is established under the assumption that the kernel width scales more A .
slowly than1/N (Beirlant et al., 1997); this is the usual assump- B(H) = Ep(H) — H(p* k)
tion guaranteeing that the corresponding kernel density estimate,i

: . . Sined relative to the smoothed measure
consistent (not “undersmoothed”). While these consistency results

g(u) = h(u) = —ulogy;

E(H - I:I)Q = (Eapp + B(ﬁ))2 + V([:[)»

are well-understood, worst-case error bounds — i.e., bounds on the p*k(s) = Ep(p(s)) = /k(s — x)dp(z).
estimator’'s average error over a large class of underlying probability
measure® — are more rare. Note thatE,,, is generically positive and increasing with the kernel

Our main result here is an adaptation of the discrete (histogramidth (since smoothing tends to increase entropy), while the bias
based) techniques of (Paninski, 2003; Paninski, 2004) to the kerd#|H) of the standard plug-in estimatoy(() = h(.)) is always
estimator case. This earlier work established universal consistencyregative, by Jensen’s inequality.

a histogram-based estimator of the entropy assuming that the numbeElearly, it is impossible to obtain any nontrivial risk bounds on
of histogram bins;n = my, obeyed the scalingny = O(N); the expected mean-square error of any estimator of the differential
in addition, nonparametric error bounds were established for aegtropy, since we might havél = —oo (in the case thap is
(m,N) pair. To adapt these results here we decompose the ersorgular). Thus, instead of trying to obtain bounds on the full error
of the kernel estimator into three parts: a (deterministic) smoothidg(H (p) — H)?, our goal will be to bound the estimation error

error, and an estimation error consisting of the usual bias and variance Ao Ao N

terms. Smoothing error generically decreases with kernel width, and E(H(pxk) — H)” = B(H)" + V(H),
therefore it is beneficial to make the kernel width as small as possibigid then choose the kerrielso that the smoothing errdt.,, is as

on the other hand, in the classical plug-in entropy estimators, makisgall as possible, under the constraint that the worst-case expected
the kernel width too small can make the estimation error componesidtimation error is acceptably small.

(the bias plus the variance) large. We provide an estimator whoseror this class of kernel entropy estimators, we have some simple
estimation error term may be bounded by a term which goes B@unds on the bias and variance (adapted from bounds derived in
zero even if the kernel width scales sN. Thus, accurate density (Antos and Kontoyiannis, 2001; Paninski, 2003)). We may bound
estimates are not required for accurate kernel entropy estimatestha varianceV(I?Ig,N) using McDiarmid's technique (Devroye et al.,
fact, it is a good idea when estimating entropy to sacrifice som®96; McDiarmid, 1989):

accuracy in the quality of the corresponding density estimate (i.e., to )

undersmooth). Some comparisons on simulated data are provide€Mmma 1 (Variance bound, general kernel)

. k(s) 2
< 3 - —= .
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In the special case thaj(.) is Lipschitz,sup, , [g(s) — g(s +t)| < the derivation of this formula exactly follows that in the discrete case,
clt|, for somel < ¢ < oo, the bound simplifies considerably: as described in (Paninski, 2003) (all that is required is an interchange
N 9 of an integral and a finite sum). From this we may easily derive the
V(Hgn) < c”/N. following approximation-theoretic bound:
Proof: McDiarmid’s variance inequality (Devroye et al., 1996’Lemma 3 (Bias bound) *
McDiarmid, 1989) says that if we may bound the maximal coordi-

natewise difference

sup|B(Hy.x)| < p(X) max

N
1 J
(e Hog =3 o(F0) B ).

sup ﬁ (331,...7.Z'j,...,$N) p 9 - 0<u<1
T1,.eny m]-,l‘;.,.”,a:N -
—fIg,N(ml,...,x;-,... zn)| < ¢, . . . .
Proof. We apply the simple inequality [, f(z)du(z)] <
where H, x (z 2x) denotes the estimator evaluated on som‘é )sup,, | f(z)| to the expression for the bias in equation (1). First
C S g NP - BN We rewrite
arbitrary configuration of the observed sampfes }1<;<n, then ) )
V(H, ) < EZCJZ /h[p*kw(x)]dx = /h[awp*kw(x)]dx = logw+a/h[wp*kw(x)]dx.
' Now
We have here that;, as defined above, may be chosen as N .
B(H, n) = —/ <1ogw+lh[wp*k @)= 9(=L) By, v [wpsk (x)})dx
9, - w 7y w )
¢ = 2/Sup’g(y) <y+ (S)Nd& v = Nw
Yy
plugging in, we obtain the the general bound in the lemma. s0 |B(H,,~)| is bounded above by
In the Lipschitz case, 1 N j
K(s) 2 . 2 p(X) sup [logw + —hlwp * ku(@)] = > 9(57=) Bj.n [wp * ku(2)]
N(/sup ‘g(y) -9 <y + 7) ‘ ds) < N(/ —k(s)ds) ¢ j=0
Yy N N N .
= N(¢/N)*=c*/N, = p(¥X) max |logw+ h Zg 5 ()]
<u< =

where the first inequality follows by the Lipschitz condition and the

first equality by the fact that the kernlintegrates to one. since 0 < wp * kuy(z) < 1. The maximum is obtained, by
Exponential tail bounds are also available (McDiarmid, 198§ompactness and continuity 6{u) and B;,n (u).

Devroye et al., 1996; Antos and Kontoyiannis, 2001; Paninski, 2003)Note that each of the above bounds is distribution-free, that is,

in case almost-sure results are desired, but these bounds will notiporm over all possible underlying distributiopsWe may combine

necessary here. these to obtain uniform bounds on the mean-square error:
th_a now.spemallze to the simplest possible kernel, the step kernel sup E(-Hg,N —H(p+ kw))2
of width w: 1 P
kw(s) = El(s € [~w/2,w/2]). — sup [B(gg,N)2 I V(HQ?N)]
In this case we only need to defing¢u) at the N + 1 pointsu = ; 2
{0, %+ 7, --» ~}, and we have the following simplification of < (sup\B(Hg,N)|) +sup V(Hg,n)
Lemma 1: P P
) 1 N ] 2
Lemma 2 (Variance bound, step kernel) < wx)? Jmax |- —h(u) + logw — ZQ(W)BJ’N(U)
; > j+1 i\]? =,
< EEM I i . .
sl;pV(Hg,N),Nw Jmax [9<Nw> Q(Nw)} Nw? max g(g)_g(i)
0<j<N Nw Nw
. L X))\ 2 ; 2
Proof: In this case it is easy to see that — (M) max h(u) + wlogw — ng N L )\Bj n(u)
fsupy g9(y) — (y + ku (b))’ds is bounded above by w Osusl =0
. . 2
. J+1 J
J+1 7\, +N max (wg(i) —wg(—)) . 2
worsr;a<XN g( Nw) g(Nw) ’ 0=J<N Nw Nw
the result now follows directly f[om Lemma 1. If we define N = N 1
We may compute the biaB(H, ) exactly in this special step- a(j/N) = wlg(j/N) —logw],
kernel case: then expression (2) simplifies to
B(I:IQN):E(I{IQN) (p*k ) )\ 2 N . 2 . N
, +1
<%) max | h(u)- a(%)ij(u) +N max (a(%)—a(%)) .
/ ( [P * kuw (5)] —Zg ~N[wp * k(s )])ds, )} Sus =0 <

In (Paninski, 2004) we proved that there exists a sequence of
where we have abbreviated the binomial functions functions ay (defined implicitly as the solution to a certain

Bjn(u) = N uj(l — U)N*j; A direct generalization to the infinite(X') case is not possible without
J some restrictions on the decay @f We will not pursue such bounds here.



approximation-theoretic convex optimization problem) such that True Density p(x) (N=5)

N . 2 . . 2 2y
i o 003 () By +N e (v h-en)
= 21
converges to zero a¥ — oo for any sequenceuy satisfyingmy = A
O(N).2
Now, settingmy = u(X)/wn, we may now easily deduce the O'B 0.2 0.4 06 0.8 1
main result of this paper: ' ‘ ‘ ‘
. . . Smoothed Density p*k(x) (N=5, w=1/4N)
Theorem 4} Let Nwny > ¢ > 0, uniformly in N. There exists an o1
estimator H,, v for the entropy H which is uniformly smoothed-
consistent in mean square; that is, %
supE(l’-ifg,z\;—H(p>klch))2 < €(e, N), é !
P

with e(¢, N) \, 0 as N — oo, and the supremum is taken over all Ok
probability measure®.

Proof: We need only apply the main result of (Paninski, 2004)

guaranteeing the existence of the sequengedescribed above, and Fig- 1. Top: True density used for the simulations described in the test a
then takeg(j/N) = %az\r (j/N) + logw. in Fig. 2. Bottom: Smoothed density.

As a corollary, it is easy to show that a uniformly consistent
estimator exists ifNwy — 0 sufficiently slowly; as in (Paninski,
2004), this follows by a straightforward diagonalization argument. Tg compare the performance of the estimators, it is useful to
Note thatwy = O(N~') (and certainlywy = o(N~')) does choose a bounded, absolutely continuous density whose entropy is
not lead to consistent density estimates, even under smoothn‘@q‘] vulnerable to oversmoothing, that is, a dengifpr which H (p)

restrictions onp (Paninski, 2003; Braess and Dette, 2004; Paninskind H (p« k) are very different and therefore the approximation error
2005). Thus the content of the theorem is that we can Undersmo@(l;]pp is large. One such density is of the one-dimensional sawtooth
the density and still estimate entropy well. In fact, undersmoothing figrm
a good idea because it generically decreases the approximation bias
Bapo: p(e) = pv (@) = { AR
Finally, it is worth noting that an identical result may be obtained 0 <z <

in the multidimensional case; the only difference in the statement a\pvﬂ
proof of the result is that in the general case the inverse measurg Q
the support of our step kernel must BE V), whereas in the one-
dimensional case (theorem 4) we restrict the invdesgth wy to
be O(N).

ren =1,2,--- , N (Fig. 1). (More generally, any density with
e fluctuations on a/w scale will induce a large approximation
error E,,p; the densityp chosen here just has a particularly con-
venient form.) The entropy (p) of this distribution can easily be
calculated as- log(2).

The smoothed entrop¥ (p x k) may also be computed explicitly
here. The density * k is simply a sum of trapezoids, of the form
Sample-spacing estimators also have the “undersmoothing” prop-

NUMERICAL RESULTS

erty — consistent density estimates are not required for consistent 2x— (%t - %) 1P -Y <zt 4y
entropy estimates (Beirlant et al., 1997). Thus it makes sense to =~ |2 nlpu gl
compare the performance of the estimator introduced here with tR&f*(*) = M- Lz— (sl —w)) ol _wp ol
of these sample-spacing estimators. 0 2%1 te<z<n

The m-sample spacing estimator is defined as follows. Giyén
real-valued sampleX’;, we may form the usual order statistid3;). \here we have assumed that < 1/N. Thus for the smoothed
The gaps between thieth and (i + m)-th order statisticsX(i+m) =  entropy we obtain
X (), are called then-spacings. It is easy to form a density estimator

based on theser-spacings (Beirlant et al., 1997), and plugging thi%(p ¥k) = 7/ p* k(z) logp  k(z)da

estimator into the differential entropy formula (and performing a bias R

correction) gives the following estimator for the entropy: B _N/Q}VE; 2 lox 2 IN /w 2i1 2—xd )
N-—-m o % 08 v 0 w 08 w v

Fr(m) — 1 N
=1

1 w [?
~N|— —w)2log2-2N— 1
<2N w> og 2/0 ylog ydy

1 Nw 2 1 5
= _N(— —w)2log2 - ¥ (2logy — =
<2N w> o8 2 (y o8y 2y>

N = —log2+ Nw.

where we have abbreviated the digamma function

W) = 0 logtf (t)

2

0

chIr(]j-(PantinSki' tz)ogﬁn was defined as the ﬁ”itedm,’\lm?erthc;tzgmi_on W][“Ch We illustrate the performance of the new kernel estimator (which
e discrete probability measure was supported. Note inition o . o » .. ”

m is consistent with the definition ofx in the case of a histogram—basedwe will 'refe.r to by the initials “BUB, 'for be§t upper.bound, as
method, in which we divide the spaée into m bins and the effective kernel IN (Paninski, 2003)) versus thai-spacing estimator withn = 1

width w is exactly u(X)/m. (this value ofm led to the best performance here; data not shown)



in Fig. 23 The idea was to choose to be as small as possible (to ‘
make the smoothing erraff (p x k) — H(p) as small as possible), B n
within the constraint that the maximal errarax,[H — H(p * k)]? -0.21 H(p*k) |
is decreasing as a function of (to ensure smoothed-consistency o BUB
the estimatel). This behavior is illustrated in Fig. 2: we see that th o3 m-space| |
error bound does in fact tend to zero (albeit slowly), implying the - — —H(p)
H — H(p* k) in mean square; at the same time, sind&y — 0,
H(p « k) — H(p), and we have thaf{ is not only smoothed-
consistent in mean-square but in fact mean-square consistent
H(p). On the other hand thei-spacing estimator has an asymptotic
bias; since them-spacing estimator is constructed from a densit
estimate whose kernel width, roughly speaking, would correspond
1/[Np(z)], this estimator cannot detect the structure ondtie/ V)
scale which is necessary to consistently estindig) here. (But
note that them-spacing estimator can be superior in the case of ¢ -0.7
unbounded density, where the smoothing errdd (p * k) — H(p)

of the kernel estimator is large but where the small effective wid! s s s s s s
1/[Np(z)] of the m-spacing estimator can lead to a much smalle 0 0.2 0.4 0.6 0.8 1
bias; data not shown.) N x 10’

entropy (nats)
)
(6]

-0.6

Fig. 2. Comparison of the performance of thespacing fn = 1) and
CONCLUSIONS BUB estimators applied to the densjtyshown in Fig. 1. For each of several
values of the sample siz&, we choseN i.i.d. samples fromp (with N
We have presented a kernel density estimator of the entropy (bagethe definition ofp chosen to equal the sample size in each case; i.e., the

on a simple step kernel) which can be applied even when the kerAember of sawtooths in the definition pfincreases linearly withV), then

: ; : licated the experiment ten times, in order to obtain ridiabtimates of the
undersmooths the true underlying density (that is, when the keré%?mple mean and standard deviation of the two estimates. Thigeanean,

width tends to zero as quickly ak/N). This kernel estimator is p,s'and minus a single standard deviation, is plotted fomthepacing and
shown to have better numerical performance than the classieal BUB estimates (dotted and solid black traces, respectivélp}e the large
spacing estimators when the underlying dengitg very jagged. We positive asymptotic bias of_thm-spacing es;imator (thg variance of both
anticipate that this new estimator will be useful in applications thé{}e m-spacing and BUB estimators are relatively negligible). Tre value
. . . . . of the entropy,H (p) = —log 2, is indicated by the dashed line; the gray
require the estimation of differential entropy of a random vector, Qace shows the true smoothed entropy, plus or minus the squaref the
of the mutual information between two random variables. maximal mean-squared error of the BUB estimator. Note that thisimza
error tends to zero a8’ — oo, as doesH (p * k) — H(p), for the values
of wy chosen here, implying mean-square consistency dbr H(p).
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3Kernel density estimators are typically computationally engive, re-
quiring O(N't) time to compute, where denotes the number of points at
which we evaluate the integrand in the definition of the gmtrestimate;
the m-spacing estimates, on the other hand, may be computed after a
simple sorting operation which requirg3(N log N) time (typically ¢ is
taken to be significantly larger thdong N; i.e., them-spacing estimator is
computationally cheaper). However, in the case of the stepekaised here,
applied to one-dimensional data, it is possible to computel¢msity estimate,
and therefore, in O(N log N) time: we need only sort the sample points
(as in the case of then-spacing estimator), then to compute the integral in
the definition of H we need only keep track of tH&V points at which the
density estimaté_, k(z;) jumps up or down (at the pointge; —w/2} and
{z; +w/2}, respectively); the whole computation requires just a celipes
of code.



