
Optimal decoding of stimulus velocity using a

probabilistic model of ganglion cell populations in

primate retina.

Edmund C. Lalor,1,∗ Yashar Ahmadian,2 and Liam Paninski2

1Department of Electronic and Electrical Engineering and Institute of Neuroscience,

Trinity College Dublin,

College Green, Dublin 2, Ireland
2Department of Statistics, Columbia University,

1255 Amsterdam Avenue, New York, N.Y. 10027, USA
∗Corresponding author: edlalor@tcd.ie

A major open problem in systems neuroscience is to understand the re-

lationship between behavior and the detailed spiking properties of neural

populations. In this work, we assess how faithfully velocity information

can be decoded from a population of spiking model retinal neurons whose

spatiotemporal receptive fields and ensemble spike-train dynamics are closely

matched to real data. We describe how to compute the optimal Bayesian

estimate of image velocity given the population spike train response, and

show that, given complete information about the displayed image, the spike

train ensemble signals speed with an average relative precision of about

2% across a specific set of stimulus conditions. We further show how to

compute the Bayesian velocity estimate in the case where we only have some

a priori information about the (naturalistic) correlation structure of the

image, but do not know the image explicitly. As expected, the performance

of the Bayesian decoder is shown to be less accurate with decreasing prior

image information. There turns out to be a close mathematical connection

between a biologically-plausible “motion energy” method for decoding the

velocity and the optimal Bayesian decoder in the case that the image is not

known. Simulations using the motion energy method reveal that it results

in an average relative precision of only 10% across the same set of stimulus

conditions. Estimation performance is rather insensitive to the details of the

precise receptive field location, correlated activity between cells, and spike

timing. c© 2009 Optical Society of America

OCIS codes: 330.4060, 330.4150, 330.7310, 330.5310.
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1. Introduction

The question of how different attributes of a visual stimulus are represented by populations of

cells in the retina has been addressed in a number of recent studies [10,13,14,23,24,29,30,32].

This field has received a major boost with the advent of methods for obtaining large-scale

simultaneous recordings from multiple retinal ganglion neurons that almost completely tile a

substantial region of the visual field [20,31]. The utility of this new method for understanding

the encoding of behaviorally-relevant signals was exemplified by [14], who examined how

reliably visual motion was encoded in the spiking activity of a population of macaque parasol

cells. These authors used a simple velocity stimulus and attempted to estimate the stimulus

velocity from the resulting spike train ensemble; this analysis pointed to some important

constraints on the visual system’s ability to decode image velocity given noisy spike train

responses. We will explore these issues in more depth in this paper.

In parallel to these advances in retinal recording technology, significant recent advances

have also been made in our ability to model the statistical properties of populations of spik-

ing neurons. [29] recently described a statistical model of a complete population of primate

parasol retinal ganglion cells (RGCs). This model was fit using data acquired by the array

recording techniques mentioned above and includes spike-history effects and cross-coupling

between cells of the same kind and of different kinds (i.e. ON and OFF cells). [29] demon-

strated that this model accurately captures the stimulus dependence and spatio-temporal

correlation structure of RGC population responses, and allows several insights to be made

into the retinal neural code. One such insight concerns the role of correlated activity in pre-

serving sensory information. Using pseudo-random binary stimuli and Bayesian inference, [29]

reported that stimulus decoding based on the spiking output of the model preserved 20%

more information when knowledge of the correlation structure was used than when the re-

sponses were considered independently.

At the psychophysical level, Bayesian inference has been established as an effective frame-

work for understanding visual perception [17]; some recent notable applications to under-

standing visual velocity processing include [3, 33, 35, 42, 43]. In particular, [42] argued that

a number of visual illusions actually arise naturally in a system that attempts to estimate

local image velocity via Bayesian methods (though see also [15,39]).

Links between retinal coding and psychophysical behavior have also been recently exam-

ined using Bayesian methods; [37], for example, examine the contribution of turtle RGC

responses to velocity and acceleration encoding. This study reported that the instantaneous

firing rates of individual turtle RGCs contain information about speed, direction and accel-

eration of moving patterns. The firing rate-based Bayesian stimulus reconstruction carried

out in this study involved a couple of key approximations. These included the assumptions

that RGCs generate spikes according to Poisson statistics and that they do so independently
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of each other. The work of [29] emphasizes that these assumptions are unrealistic, but the

impact of detailed spike timing and correlation information on velocity decoding remains

uncertain.

The primary goal of this paper is to investigate the fidelity with which the velocity of

a visual stimulus may be estimated, given the detailed spiking responses of the primate

population RGC model of [29], using an optimal Bayesian decoder, with and without full

prior knowledge of the image. We begin by describing the mathematical construction of this

optimal decoder, and then compare the optimal estimates to those based on a “net motion

signal” derived directly from the spike trains without any prior image information [14]. We

derive a mathematical connection between these two decoders and investigate the decoders’

performance through a series of simulations.

2. Methods

2.A. Model

The generalized linear model (GLM) [8,21] for the spiking responses of the sensory network

used in this study was described in detail in [29]. It consists of an array of ON and OFF

retinal ganglion cells (RGC) with specific baseline firing rates. Given the spatiotemporal

image movie sequence, the model generates a mean firing rate for each cell, taking into

account the temporal dynamics and the center-surround spatial stimulus filtering properties

of the cells. Then, incorporating spike history effects and cross-coupling between cells of the

same type and of the opposite type, it generates spikes for each cell as a stochastic point

process.

In response to the visual stimulus I, the i-th cell in the observed population emits a spike

train, which we represent by a response function

ri(t) =
∑

α

δ(t − ti,α), (1)

where each spike is represented by a delta function, and ti,α is the time of the α-th spike of

the i-th neuron. We use the shorthand notation ri and r, for the response function of one

neuron and the collective spike train responses of all neurons, respectively. The stimulus, I,

represents the spatiotemporal luminance profile, I(n, t), of a movie as a function of the pixel

position, n, and time t.

In the GLM framework, the intensity functions (instantaneous firing rate) of the responses

ri are given by [25,26,29,40]

λi(t) ≡ f

(

bi + Ji(t) +
∑

j,β

hij(t − tj,β)

)

, (2)
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where f(·) is a positive, strictly increasing rectifying function (in this case, f(·) = exp(·)). The

bi represents the baseline firing rate of the cell, the coupling terms hij model the within- and

between-neuron spike history effects noted above, and the stimulus input, Ji(t), is obtained

from I by linearly filtering the spatiotemporal luminance,

Ji(t) =

∫ ∫

ki(t − τ,n)I(τ,n)d2n dτ, (3)

where ki(t,n) is the spatio-temporal receptive field of the cell i. Given Eq. (2), we can write

down the point process log-likelihood in the standard way [34]

log p(r|I) ≡
∑

i,α

log λ(ti,α) −
∑

i

∫ T

0

λi(t)dt. (4)

For movies arising from images rigidly moving with constant velocity v we have

I(t,n) = x(n − vt), (5)

where x(n) is the luminance profile of a fixed image. Substituting Eq. (5) into Eq. (3), and

shifting the integration variable n by vτ , we obtain

Ji(t) =

∫

Ki,v(t;n)x(n) d2n, (6)

where we defined

Ki,v(t;n) ≡
∫

ki(t − τ,n + vτ) dτ. (7)

In the following we replace p(r|I) with its equivalent p(r|x,v) (since, via Eq. (5), I is given

in terms of x and v), and use the short-hand matrix notation J i = Ki,v ·x for Eq. (6).

2.B. Decoding

In order to estimate the speed of the moving bar given the simulated output spike trains, r,

of our RGC population, we employed three distinct methods. The first method involved a

Bayesian decoder with full image information, the second method utilized a Bayesian decoder

with less than full image information, while the third method involved an “energy-based”

algorithm introduced by [14] which used no explicit prior knowledge of the image.

2.B.1. Bayesian Velocity Estimation

To compute the optimal Bayesian velocity decoder we need to evaluate the posterior prob-

ability for the velocity, p(v|r), conditional on the observed spike trains r. Given a prior

distribution pv(v), from Bayes’ rule we obtain

p(v|r) =
p(r|v)pv(v)

∑

v
′ p(r|v′)pv(v

′)
. (8)
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If the image x (e.g. a narrow bar of nonzero contrast) is known to the decoder, then we can

replace p(r|v) with the likelihood function p(r|x,v), obtaining

p(v|r,x) =
p(r|x,v)pv(v)

∑

v
′ p(r|x,v′)pv(v

′)
. (9)

p(r|x,v) is provided by the forward model Eq. (4), and therefore computation of the the

posterior probability is straightforward in this case.

Alternatively, if the image is not fully known, we represent the decoder’s uncertain a priori

knowledge regarding x with an image prior distribution px(x). In this case, p(r|v) is obtained

by marginalization over x

p(r|v) =

∫

p(r,x|v)dx =

∫

p(r|x,v)px(x)dx. (10)

Hence, we will refer to p(r|v) as the marginal likelihood. Given the marginal likelihood,

Eq. (8) allows us to calculate Bayesian estimates for general velocity priors. The prior dis-

tribution, px(x), which describes the statistics of the image ensemble, can be chosen to have

a naturalistic correlation structure. In our simulations in Sec. 3 we used a Gaussian image

ensemble with power spectrum matched to observations in natural images [7, 12].

In general, the calculation of the high-dimensional integral over x in Eq. (10) is a difficult

task. However, when the integrand p(r,x|v) is sharply peaked around its maximum (which

is the maximum a posteriori (MAP) estimate for x — as the integrand is proportional to the

posterior image distribution p(x|r,v), by Bayes’ rule) the so-called “Laplace” approximation

(also known as the “saddle-point” approximation) provides an accurate estimate for this

integral (for applications of this approximation in the Bayesian setting, see e.g., [16]). The

Laplace approximation in the context of neural decoding is further discussed in, e.g., [2,4,9,

18,28]. We briefly review this approximation here.

Following [7], we consider Gaussian image priors with zero mean and covariance, Cx, chosen

to match the power spectrum of natural images [12]. Let us define the function

L(x, r,v) ≡ log px(x) + log p(r|x,v) +
1

2
log (2π)d|Cx|, (11)

where d represents the number of pixels in our simulated image, and rewrite Eq. (10) as

p(r|v) =
1

√

(2π)d|Cx|

∫

eL(x,r,v)dx. (12)

Using Eq. (4) and px(x) = N (0, Cx), we obtain the expression

L(x, r,v) = −1

2
x

TC−1
x x +

∑

i

[

∑

α

log λi(ti,α; x, r) −
∫

λi(t; x, r)dt

]

, (13)
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where λi are given by Eqs. (2) and (6)–(7), and we made their dependence on x and r

manifest. To obtain the Laplace approximation, for fixed r, we first find the value of x

that maximizes L (i.e., the image MAP, x
MAP

). When the integrand is sharply concentrated

around its maximum, we can Taylor expand L, around x
MAP

, to the first non-vanishing order

beyond the zeroth order (i.e. its maximum value) and neglect the rest of the expansion. Since

at the maximum the gradient of L and hence the first order term vanish, we obtain

L(x, r) ≈ L(x
MAP

, r,v) − 1

2
(x − x

MAP
)
T

H(r,v)(x − x
MAP

), (14)

where the negative Hessian matrix

H(r,v) ≡ −∇x∇xL(x, r,v)

∣

∣

∣

∣

x=x
MAP

, (15)

is positive semidefinite due to the maximum condition. Exponentiating this yields the Gaus-

sian approximation (up to normalization)

eL(x,r,v) ∝ p(x|r,v) ≈ N (x
MAP

(r,v), Cx(r,v)), (16)

where N (µ,C) denotes a Gaussian density with mean µ and covariance C, for the integrand

of Eq. (12). (An important technical point here is that this Gaussian approximation is

partially justified by the fact that the log-posterior (13) is a concave function of x [25,26,28],

and therefore has a single global optimum, like the Gaussian (16).) Here, the posterior

image covariance, Cx(r,v), is given by the inverse of the Hessian matrix H(r,v). (Note the

dependence on both the observed responses r and the putative velocity v.) The elementary

Gaussian integration in Eq. (12) then yields

p(r|v) ≈ e−L(x
MAP

(r,v),r,v)

√

|CxH(r,v)|
, (17)

for the marginal likelihood or its logarithm

log p(r|v) ≈ −L(x
MAP

(r,v), r,v) − 1

2
log |CxH(r,v)|. (18)

The MAP itself is found from the condition ∇xL = 0, which in the case of exponential GLM

nonlinearity, f(·) = exp (·), yields the equation

x
MAP

(n; r,v) =

∫

d2n′ Cx(n,n′)
∑

i

∫

Ki,v(t;n′) [ri(t) − λi(t; xMAP
, r)] dt. (19)

Notice that this equation is nonlinear due to the appearance of x
MAP

inside the GLM non-

linearity on the right hand side. For the case of convex and log-concave GLM nonlinearity,

f(·), (conditions that are true for our f(·) = exp (·)) the objective function Eq. (11) becomes
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concave and can be efficiently optimized using gradient-based optimization algorithms, such

as the Newton-Raphson method. Once x
MAP

is found, the Hessian at MAP and Eq. (17) can

be calculated easily, and using Eq. (17), the approximate computation of p(r|v) is complete.

To recapitulate, in the case of an a priori uncertain image, given the observed spike trains

r, we numerically find x
MAP

(r,v) for a range of putative velocities, v, and using Eq. (17),

we compute p(r|v), from which we may obtain p(v|r), via Eq. (8). We then take the value

of velocity, v⋆, that maximizes p(v|r) as the estimate; i.e., we use the MAP estimate for the

velocity. As discussed in the Introduction, our goal here was to critically examine the role

of the detailed spiking structure of the GLM in constraining our estimates of the velocity;

since the spiking network model structure only enters here via the likelihood term p(r|v),

we did not systematically examine the effect of strong a priori beliefs p(v) on the resulting

estimator (as discussed at further length, e.g., in [42]). Instead we used a simple uniform prior

on velocity, which renders the MAP velocity estimate equivalent to the maximum (marginal)

likelihood estimate, i.e. the value of v that maximizes p(r|v) given by the approximation

Eq. (17) (or equivalently, its logarithm Eq. (18)). Similarly, in the case of a priori known

image, x, we choose the velocity, v, which maximizes the likelihood p(r|x,v).

2.B.2. Velocity Estimation using the Energy Method

In order to assess the precision of our Bayesian estimates of velocity, we compared our esti-

mates to those obtained using the correlation-based algorithm described in [14]. This algo-

rithm closely resembles the spatiotemporal energy models for motion processing introduced

by [1]. In order to understand the rationale behind this method, assume, hypothetically,

that all the cells have exactly the same receptive fields up to the positioning of their centers,

and that they respond reliably and without noise to the stimulus. Then the RGCs’ spike

trains, ri, in response to moving images would clearly be identical up to time translations.

In other words, ri(t+ni/v) would be equal for all i, where ni is the center position of the i-th

cell’s receptive field along the axis of motion, and v is the magnitude of v. Thus even in the

realistic, noisy situation, we expect the ri for different i’s to have a large overlap if they are

shifted in time as described, and in principle, we should be able to recover the true velocity

by maximizing a smoothed version of this overlap. Inspired by this observation, an energy

function is constructed as follows. First, the spike trains are convolved with a Gaussian filter

w(t) ∝ exp(−t2/2τ 2) (we chose τ to be 10 ms - see below and [14]). Let us define

r̃i(t) = w ⋆ ri =
∑

α

e−
(t−ti,α)2

2τ2 . (20)
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Then, the “energy” function for the entire population of cells is determined by the sum of

the overlaps of the shifted and smoothed responses of all cells [11]

E(v, r) =
∑

i,j

∫

r̃i

(

t +
ni

v

)

r̃j

(

t +
nj

v

)

dt =

∫

[

∑

i

r̃i

(

t +
ni

v

)

]2

dt. (21)

In order to cancel the effect of spontaneous activity of the cells, in reference [14] a “net

motion signal”, N(v, r), was obtained by subtracting energy of the left-shifted spike trains

from that of the right-shifted responses: N(v, r) ≡ E(v, r) − E(−v, r). Finally, N(v, r) is

calculated for v across a range of putative velocities, and the value that maximizes the net

motion signal is taken as the velocity estimate. Fig. 1 illustrates the basic idea of this method.

2.B.3. Connection between the Bayesian and energy-based methods

A surprising connection can be drawn between Bayesian velocity decoding and the method

of Sec. 2.B.2 based on the energy function Eq. (21). For simplicity, imagine that spike trains

are generated not by the GLM, but rather by a simpler linear-Gaussian (LG) model. In

this case, it turns out that the marginal likelihood method is closely related to the energy

function method described above. Specifically, we model the output spike trains as

ri = bi + Ki,v · x + ǫi (22)

where the noise term is Gaussian ǫi ∼ N (0, Σ). In the case that this noise terms for different

cells are independent, we have p
LG

(r|x,v) =
∏

i N (bi +Ki,v ·x, Σ), though the generalization

to correlated outputs is straightforward. We show in the appendix that in a certain regime

the logarithm of the LG marginal likelihood is given by (see Eqs. (31)–(32) and Eq. (42))

log p
LG

(r|v) =
1

2

∑

i,j

∫

Ri

(

t +
ni

v

)

Rj

(

t +
nj

v

)

dt + A(v), (23)

where A(v) has no dependence on the observed spike trains, and only a weak dependence

on v1. The resemblance of the remaining term to equation (21) above is clear. Here, Ri are

smoothed versions of the spike trains ri (with the baseline firing rate subtracted out) and

are given, as in Eq. (20), by

Ri = w
LG

∗ (ri − bi), (24)

where here the optimal smoothing filter w
LG

is determined by the receptive fields ki, the

prior image correlation statistics, and the velocity (its explicit form is given in Eq. (45) in

the appendix), as we discuss in more depth below.

1We find empirically that the term A(v) in Eq. (23) grows with velocity, and therefore its inclusion shifts

value of the maximum likelihood estimate towards higher velocities. Conversely, its absence in the energy

function Eq. (21) causes the energy method estimate to have a negative bias. See Fig. 5 for an illustration

of this effect.

8



A

Raw responses at 14.4°/s, ON cells

Time (sec)

C
el

l #

0 1

1

100

B Putative speed 7.2°/s, ON cells
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Putative speed 14.4°/s, ON cells
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D Putative speed 28.8°/s, ON cells
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F Putative speed 14.4°/s, OFF cells
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Fig. 1. Ensemble motion signals. (A) moving bar stimulus and cell layout. (B)

and (F) show the raw responses from the ON and OFF cells, respectively, for

a moving bar with speed 14.4 ◦/s. Each tick represents one spike and each row

represents the response of a different cell. (C-E) and (G) plot the same spike

trains circularly shifted by an amount equal to the time required for a stimulus

with the indicated putative speed to move from an arbitrary reference location

to the receptive field center.
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Thus maximizing the marginal likelihood Eq. (23) is, to a good approximation, equivalent

to maximizing the energy Eq. (21). The major difference between Eq. (21) and Eq. (23) is in

the filter we apply to the spike trains: r̃i has been replaced by Ri. The key point is that Ri

depends on the stimulus filters, ki, the velocity v, and the image prior in an optimal manner,

unlike the smoothing in Eq. (20). The dependence of this optimal filter as a function of v

can be explained fairly intuitively, as we discuss at more length in the appendix, following

Eq. (45). We find that τw, the time scale of the smoothing filter w
LG

, is dictated by three

major time scales, some of which depend on the velocity v: τk, the width of the time window

in which each RGC integrates its input, lk/v where lk is the spatial width of the receptive

field, and lcorr/v where lcorr is the correlation length of natural images. At low velocities, lk/v

and lcorr/v are large, and the smoothing time scale τw is also large, since in this case we gain

more information about the underlying firing rates by averaging over a longer time window.

At high velocities, on the other hand, τk dominates lk/v and lcorr/v, and τw ∼ τk. This

setting of τw makes sense because although the image movie I can vary quite quickly here,

the filtered input Ji(t) induces a firing rate correlation time of order τk, and examining the

responses at a temporal resolution finer than τk only decreases the effective signal-to-noise.

Fig. 2 illustrates these effects by plotting the optimal smoothing filters w
LG

for a few

different values of the velocity v. Interestingly, in the high-velocity limit, the analytically-

derived optimal temporal filter width τw is on the order of 10 ms, which was the value chosen

empirically for the optimal Gaussian filter used in [14]. We recomputed the optimal empirical

filter for our simulated data here, by plotting the standard deviation of the velocity estimates

obtained using the net motion signal against the filter width (Fig. 3). For this velocity

(28.8 ◦/s) the optimal filter is of the order of 10 ms; thus, we used a filter of width 10 ms when

comparing the energy method to the Bayesian decoder.

To summarize, maximizing the likelihood, marginalized over the unknown image, is very

closely related to maximizing the energy function introduced by [14], if we replace the GLM

with the simpler linear Gaussian model. Since the actual spike train generation is much better

modeled by the GLM than by the Gaussian model, we expect Bayesian velocity estimation

(even with uncertain prior knowledge of the image) based on the correct GLM to be more

accurate. This expectation was borne out by our simulations, though it is worth noting that

the improvement was significantly smaller than when the Bayesian decoder had access to

the exact image.

2.C. Simulations

We simulated the presentation of a bar moving across the gray background of a CRT monitor

refreshing at 120 Hz. The spatial profile of the bar in the direction of motion was a Gaussian

function with a SD of 96µm. The visual field was represented by a grid of 100 x 100 pixels
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−2000 −1000 0 1000 2000
time(ms)

Fig. 2. Optimal linear spike train filter wLG for velocities ranging from 0.2 ◦/s

(top) to 9.8 ◦/s (bottom) in steps of 1.2 ◦/s. The y axes are scaled in dimen-

sionless units for clarity here. As discussed in section 2.B.3, there are three

time scales that determine the time scale of our filter wLG. At low velocities,

shown in the upper panels, the width of w(t) is determined by the two scales

xk/v and xcorr/v and is thus quite wide (since the denominator v is small).

At the higher velocities shown in the lower panels, the optimal filter width is

dominated by the time scale of the receptive field τk, and is of the order of τk,

which is ∼ 10–20 ms. For even higher velocities the shape of this filter remains

essentially the same.
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Fig. 3. Effect of filter width τw on the standard deviation of velocity estimates

(obtained using the net motion signal described in section 2.B.2) across 100

presentations of a bar with luminance 0 moving at a speed of 28.8 ◦/s. Note

that a filter width of about τw ≈ 10 ms is optimal, in agreement with the

findings of [14].
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covering the receptive fields of 2 layers of cells each arranged in a uniform 10 x 10 grid.

One layer consisted of ON cells, while the other represented OFF cells. The pixel resolution

used was 10 times that used in [29] resulting in a pixel size of 12µm. The bar moved across

the visual field in discrete steps of v pixels/refresh, although v was not restricted to integer

values. On each trial, the bar traversed the entire visual field once at a constant velocity.

(Therefore, low-velocity trials lasted longer than high-velocity trials; this will affect some

of our analyses below.) Stimulus dimensions and speeds were converted to ◦/s using the

approximation 200 µm/◦ [27] with a pixel size of 12 x 12µm. This meant that, with a refresh

rate of 120 Hz, a speed of 1 pixel/refresh corresponded to a speed of 7.2 ◦/s.

Then, to investigate the fidelity with which speed was encoded by our model, we ran

simulations using a variety of stimulus parameter settings. Specifically, we conducted 100

trials at each of 48 stimulus conditions. These 48 conditions were made up of 8 speeds (10.8,

14.4, 21.6, 28.8, 36.0, 43.2, 50.4 and 57.6 ◦/s) by 6 luminance levels (0, 0.125, 0.25, 0.75, 0.875

and 1 on a gray-scale level where 0 is black, 1 is white and the background level was set at

0.5). For each of these trials, we obtained a set of spike trains r. From these spike trains,

it was possible to estimate the speed of the stimulus used. Thus, we could compare speed

estimates across stimulus conditions, by examining the standard deviation (SD) of estimates

across the 100 trials performed for each condition. As in [14], we focused on the fractional

SD (SD divided by stimulus speed) of estimates to assess the fidelity of retinal speed signals,

as any systematic bias in speed estimate can in principle be compensated for by downstream

processing. However, we will also present the dependence of the estimate bias on stimulus

conditions. As will be seen, the fractional bias and the fractional SD are roughly on the same

order and thus both contribute to the total root mean square fractional error of the velocity

estimate. The latter is given by the square root of the sum of the squared fractional bias and

squared fractional SD. It should be noted that other luminance levels between 0.25 and 0.75

were also tested but are not presented, as for some combinations of decoder and speed, the

velocity estimation performance at these low contrasts was not above chance.

As outlined above, we used three different decoding methods to estimate the stimulus

velocity from the simulated spike train ensembles. Specifically, we compare Bayesian veloc-

ity decoding, with and without complete prior information about the image, with velocity

estimation using the energy method. In particular, we discuss the effect of prior image uncer-

tainty on the performance of the Bayesian decoder in more detail. In order to parametrically

vary the prior information available to the decoder, the image was flashed a number of times

to the cells while it was held fixed, and the image prior p(I) was updated according to the

observed spike train data elicited by the flashes. See Fig. 6B for an illustration of this pro-

cedure. Short flashes were used instead of a continuous uninterrupted presentation, because

in the latter case, the cells immediately filter out the fixed image contrast, and thus after
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a brief interval (∼ 20-30 ms), the spike trains cease to carry extra information about the

image. The more times the image is flashed, the smaller the decoder’s uncertainty Cx when

the image starts moving. This allows the decoder to better estimate the velocity when it

finally sees the same image in motion.

3. Results

3.A. Comparison of the different velocity decoders

In this section we compare the performance of the energy model with Bayesian velocity de-

coding, with and without complete prior image information, as described in Sec. 2. Fig. 4(A)

plots the velocity posterior p(v|r,x) for the case of an a priori known image (the moving

bar described above), given a specific observed population spike train, r, in response to the

moving bar stimulus, as a function of putative stimulus speed v. Here, the true stimulus

speed was 36.0 ◦/s. Fig. 4(B) shows the value of the net motion signal N as a function of

putative speed for the same stimulus. The Bayesian decoder with an a priori known image

successfully estimated the speed in the trial shown, however the energy method resulted in

a velocity estimate of 37.44 ◦/s.

The lower panels of Fig. 4 show the distribution of speed estimates across 100 presentations

of a bar of luminance 1 moving at a speed of 36.0 ◦/s using both the Bayesian decoder with

known image (C) and energy method (D). Also plotted are Gaussian fits to the distributions

with a mean ± SD of 36 ± 0.3 ◦/s for the optimal decoder and 36 ± 0.9 ◦/s for the net motion

signal. The fractional SD averaged across all conditions simulated in this study was 1.6%

of the stimulus speed for the Bayesian decoder with full prior knowledge of the image, and

10% of the stimulus speed for the energy method. Since the estimators are not unbiased,

their root mean square error is larger than their SD, as the error receives a contribution

from the bias as well. The root mean square fractional errors, averaged across all stimulus

conditions, were 2% and 11%, for the Bayesian decoder with fully known image and the

energy method, respectively. Velocity estimation based on the energy method does not make

use of the image profile at any stage, and therefore we expect its performance to be closer to

that of the Bayesian decoding with unknown image. Indeed, the fractional SD and the root

mean square fractional error of the Bayesian decoder with uncertain prior image information

averaged across all simulated stimulus conditions, were 6.4% and 6.9%, respectively.

3.A.1. Accuracy as a function of stimulus speed

Because in our simulations the moving bar stimulus only makes one pass over the “visual

field”, more time is spent traversing the field and more spike train information is obtained

for slower moving stimuli. Fig. 5(A) illustrates the fractional SD of 100 speed estimates for

both of the Bayesian methods and the energy method, at each of the 8 stimulus speeds,
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Fig. 4. The Bayesian method leads to more precise velocity estimates than

does the energy-based “net motion signal” method. (A) Posterior, p(r|v) and

(B) net motion signal, N , as a function of putative stimulus speed v for spike

trains generated using a stimulus with speed 36.0 ◦/s. Distribution of speed

estimates across 100 presentations of a bar moving at a speed of 36.0 ◦/s using

the posterior probability (C) and net motion signal (D). Also plotted are a

Gaussian fits to the distributions with mean ± SD of 35.8 ± 0.34 for the

optimal decoder and 36.2 ± 0.89 for the net motion signal.
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averaged across the 6 luminance levels. As expected, performance declines with increasing

speed for all three methods. The Bayesian decoders provide more precise estimates than the

energy method at all speeds. As expected, the advantage of the Bayesian decoder over the

energy method is partly lost when its prior information about the image is uncertain.

3.A.2. Accuracy as a function of stimulus luminance

Lowering the luminance of the moving bar causes a reduction in the number of stimulus-

related spikes generated by the GLM model, according to Eqs. (2) and (3). As with increas-

ing stimulus speed, this obviously results in a reduction in stimulus related information with

which to estimate the stimulus speed. (Note that the model of [29] lacks explicit luminance-

or contrast-gain control effects; thus, these results should be interpreted in terms of local

modifications around a fixed luminance pedestal which are sufficiently small to avoid engag-

ing classical luminance gain-control mechanisms.) To examine this relationship, we averaged

the SD of the 100 speed estimates at each of the 6 luminance levels across the 8 stimulus

speeds. The results are shown in Fig. 5(B) and illustrate the expected increase in perfor-

mance with increasing stimulus contrast. Again, the Bayesian decoders clearly outperform

the energy method at all levels.

3.A.3. Effect of luminance and speed on mean speed estimate

While we were primarily concerned with the precision of speed estimates in the current study,

a number of well researched visual phenomena concerning the relationship between the mean

visual speed perceived, i.e., the bias, and the properties of the visual stimulus prompted us to

investigate this in our simulations. The first phenomenon of interest was that where humans

tend to choose the slowest motion that explains the incoming information [41], i.e., we have a

bias toward slower speeds. As can be seen in Fig. 5(C), the energy method is biased towards

lower velocity estimates at higher stimulus speeds. The Bayesian decoder with full image

information shows a very slight tendency in this direction also. On the other hand, the

Bayesian decoder without full prior knowledge of image has a positive bias towards higher

velocities. The second phenomenon of interest was that where stimuli with low contrast are

typically perceived as moving slower than those with high contrast [36, 38]. Fig. 5(D) plots

the fractional bias of the speed estimate, i.e., the difference between the true stimulus speed,

v, and the mean estimated speed, 〈v⋆〉 normalized by v versus the stimulus luminance for

both the Bayesian decoder and the energy method against the stimulus luminance, averaged

across all speeds tested in our simulations. There appears to be a slight trend towards greater

bias at low contrast, although it should be noted that this is due to a strong bias at low

negative contrast, while at low positive contrast, the bias is close to zero. The fact that the

fractional SD of the speed estimate at this low negative contrast value is so large makes it
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Fig. 5. Fractional standard deviation of speed estimates versus: (A) stimulus

speed and (B) stimulus luminance, for the Bayesian decoder with full image

information, the Bayesian decoder with incomplete image information and the

energy method. (C) and (D) plot the difference between the mean estimated

speed, 〈v⋆〉, and the true stimulus speed, v, normalized by v versus the true

stimulus speed and stimulus luminance, respectively. Note that the Bayesian

decoder provides more precise estimates than the energy method at all levels,

with performance improving with prior image information.
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difficult to say anything definitive about a relationship between stimulus contrast and speed

estimate bias.

3.A.4. Effect of prior image information

As mentioned above, the more times the image is flashed or “shown” to the cells, the less

will be the decoder’s uncertainty about it and the better the velocity estimate made by the

decoder when it finally sees the same image in motion. This effect is shown in Fig. 6, where

panel A shows the decrease in the relative error of the velocity estimate, as the number of

flashes increases. For a large number of flashes the error asymptotically reaches the level for

fully known image (shown by dashed lines). Panel B shows the convergence of the estimated

luminance profile, x
MAP

, to that of the actual bar image as the number of preview flashes

increases.

As seen here and above, the efficiency of the GLM-based Bayesian decoder can be signif-

icantly deteriorated when the prior information about the image is too incomplete. As we

showed in Sec. 2.B.3, Bayesian decoding with uncertain prior image information is, except

for the replacement of the GLM with the LG model, closely related to the energy model.

Indeed, in our simulations, the disparity between the performances of the energy model and

the GLM-based Bayesian decoder was largely lost when the latter decoder’s prior knowledge

of the image became too uncertain.

3.B. Effects of manipulating model parameters

3.B.1. Importance of correlation between cells

In order to investigate the importance of correlated activity between cells, we wished to

remove the interaction between neighboring spike trains without reducing the overall spiking

rate. We used a straightforward trial-shuffling approach: we generated 200 individual spike

trains, one for each cell, using 200 distinct presentations of the stimulus to the full model.

We then constructed a single trial surrogate population spike train by serially assigning each

independent spike train recorded on simulated trial i as the observed spike train in cell i. We

repeated this 100 times to obtain spike ensembles representing 100 trials, for each of the 48

conditions mentioned above (i.e., 8 different speeds and 6 different luminance levels). This

allowed us to determine the fractional standard deviation of the speed estimate for each

of the 48 different stimulus conditions. It should be noted that this (somewhat involved)

procedure was carried out in preference to simply removing the coupling between cells, as

that would have resulted in a different average number of population wide spikes compared

to the output from the full model, which would have had a confounding effect on the results.

The results are shown in Fig. 7(A) and 7(B) for the Bayesian decoder and the energy

method, respectively, and are plotted versus the fractional standard deviation of the speed
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Fig. 6. Effect of decreasing image uncertainty on accuracy of Bayesian velocity

estimation. See section 2.C for a detailed description of this simulation. A)

The solid line with error bars shows the drop in the fractional rms error of the

velocity estimate for an a priori unknown image, as the number of preview

flashes increases. The dashed line is the fractional error for the case of a priori

known image. The true velocity was 28.8 ◦/sec and the image contrast, 0.3. B)

The plots show the maximum a posteriori estimate of the image luminance

profile (solid line) in four trials with different numbers of preview flashes (in-

dicated below each plot). The gray areas indicate the marginal uncertainty of

the estimated luminance, and the dashed line shows the actual image profile.
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estimate for the same 48 conditions using the spike train ensembles obtained directly from

the model. The diagonal lines in Fig. 7(A) and 7(B) indicate equality between the fractional

SD of the speed estimates obtained using the shuffled responses and that obtained directly

from the model. Somewhat surprisingly given the significant correlations in this data (c.f.

Fig. 2 in [29]), this trial-shuffling procedure did not significantly hurt the performance of

either velocity estimator; in fact, if anything, there is a slight bias in Fig. 7(A) and 7(B),

with data points tending to lie a bit below the identity line in both plots, indicating that the

shuffling procedure happened to lead to velocity estimates with slightly reduced variability.

3.B.2. Timing structure of spike trains

The question of whether cell spiking activity can be accurately modeled as a simple Poisson

process with a time-varying rate or whether the intrinsic temporal structure of retinal spike

trains plays an important role in communication has a long history in systems neuroscience.

Simulations with the retinal ganglion cell model used in this study have demonstrated that

preserving the spike history and cross-coupling effects can increase stimulus decoding per-

formance by up to 20% [29]. We wished to examine the effect of removing the specific timing

information of the individual spike trains. This was carried out using the method of [14].

Specifically, we generated a spike train for each cell for 100 trials of the moving bar stimu-

lus. We then randomly selected spike times for each cell, with replacement, from that cell’s

spike distribution, such that the number of spikes in each resampled spike train was equal

to the average number of spikes in the corresponding original spike trains. This results in a

spike train for each cell where spikes occur according to the marginal mean firing rate only,

with no consideration given to spike history effects such as action potential refractoriness.

Note that this process is even more disruptive of spike timing information than the shuffling

procedure described in the last subsection, since now we are destroying spike train structure

both between and within cells. Again, this convoluted process was carried out in preference

to simply removing the spike history filters hij from the model before generating the spike

trains, as removal of those filters would have resulted in a greater number of total spikes and

would thus have resulted in a misleadingly good speed estimation performance. This process

of generating a spike train ensemble through resampling was carried out for each of the 48

stimulus conditions mentioned above.

The results are shown in Fig. 7(C) and 7(D) for the Bayesian decoder and the energy

method, respectively, and are plotted versus the fractional standard deviation of the speed

estimate for the same 48 conditions using spike train ensembles obtained directly from the

model. Once again, the effects of this spike timing disruption on the performance of the

velocity estimators was fairly minimal, with the resampled spike trains appearing to give

a marginally worse performance as indicated by the preponderance of data points slightly
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Fig. 7. Effect of correlated activity and spike timing structure on speed esti-

mates. Fractional SD of speed estimates using shuffled responses plotted as a

function of that obtained using regular simulated data for the Bayesian decoder

(A) and energy method (B). Fractional SD of speed estimate using resampled

spike trains plotted as a function of that obtained using regular simulated data

for the Bayesian decoder (C) and energy method (D). Diagonal lines indicate

equality. Note that the performance of the decoders is relatively uneffected by

these rather drastic manipulations of spike timing.

21



above the identity line.

3.B.3. Parameters of cell population

In the simulations above, two simple assumptions were made about the parameters of the

cell population. First, the cells were arranged in an oversimplistic grid as in Fig. 8(A).

And second, all ON cells were given a baseline firing rate (bi in Eq. (2)) of 2 and all OFF

cells a baseline firing rate of 3, corresponding to the mean values obtained when fitting

the model [29]. In order to examine a somewhat more biologically realistic case we jittered

the center location of the cells as in Fig. 8(B) and randomly selected the baseline firing

rates of the ON and OFF cells from uniform distributions on interval 1 to 3 and 1.5 to 4.5,

respectively.

Fig. 8(C) and (D) illustrates the speed estimates over 100 trials for a stimulus with speed

of 28.8 ◦/s and luminance of 0 using the regular cell arrangement and uniform baseline firing

rates (left) versus the jittered cell arrangement and random baseline firing rates (right). No

significant difference in performance is apparent.

While randomly jittering the baseline firing rates around the mean caused no change in

estimation accuracy, this does not allow us to comment on the possible effects of changes

in the mean baseline firing rate. To assess this, we also carried out 100 simulations, using

a stimulus with speed of 28.8 ◦/s and a luminance of 0, where the cells were arranged in

the original simple grid and the ON and OFF cells were given baseline firing rates of 4

and 6, respectively. This was compared to the distribution of speed estimates for 100 trials,

using the same stimulus and cell arrangement, but where the baseline firing rates were 2

and 3 for the ON and OFF cells, respectively. Fig. 8(E) illustrates the significantly improved

estimation performance obtained by inflating the baseline firing rates compared to the fitted

values used throughout the rest of this study.

4. Discussion

The model of [29] employed stochastic checkerboard stimuli in order to accurately capture

both the stimulus dependence and detailed spatio-temporal correlation structure of responses

from a population of retinal ganglion cells. In this study, we have examined responses from

this model to a somewhat more behaviorally relevant coherent velocity stimulus. Specifically,

we have used these responses to assess how faithfully speed is encoded in a population of

neurons using an optimal Bayesian decoder, with complete knowledge of the stimulus image.

We have also shown how to compute the Bayesian velocity estimate in the case where we

only have a limited amount of information about the stimulus image, and how the Bayesian

estimate, in this case, is closely related to a biologically plausible motion energy based

method [1,6].
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Fig. 8. Simple rectangular grid cell arrangement (A), jittered cell arrangement

(B). Histograms illustrating the velocity estimates over 100 trials for a stimulus

with velocity 28.8 ◦/s and luminance of 0 using the regular cell arrangement and

uniform baseline firing rates (C) and the jittered cell arrangement and random

baseline firing rates (D). Similar performance was obtained with both the

rectangular-grid and randomized spatial layouts. (E) illustrates the improved

estimation performance obtained by doubling the baseline firing rates from 2

and 3 to 4 and 6 for the ON and OFF cells respectively.
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A connection between Bayesian velocity estimation and the energy method of [1] has been

noted before [33]. In that work, a Bayesian model of local motion information was described.

It was shown that this model could be represented using a number of mathematical “building

blocks” that qualitatively resembled direction-selective complex cells. Given that models of

those cells have been based on the energy method of [1], a link was drawn between the two

methods. To the best of our knowledge, however, a mathematical solution to the Bayesian

GLM decoding problem we solve here has not been previously described. Furthermore, we

believe our work on the marginal likelihood decoding of static images in the LG case to be

novel.

Because of the connection between the two methods, we have compared the precision of

speed estimates obtained using the optimal Bayesian decoder, with full image knowledge, to

that obtained using the energy method. In all simulations performed in the present study,

the optimal Bayesian decoder outperforms the energy method. Using our particular set of

48 stimulus conditions, we found that the optimal decoder achieved an average relative

precision of 2%, with the energy method only realizing 10% relative precision. This result

is not surprising given the extra image information available to the former. It is interesting,

however, to compare the estimation performance using our model to that obtained using

similar stimuli with real cells [14]. The authors of that study reported that the ensemble

activity of around 100 RGCs signaled speed with a precision of the order of 1%. The precision

of 10% obtained using the same decoder on our model output spike trains is somewhat higher

than that result. One likely reason for this is that our stimulus range included much lower

contrast stimuli. If we restrict our precision estimate to those conditions that most closely

resemble those used by [14], i.e., speeds of (10.8, 14.4, 28.8, and 57.6 ◦/s) and luminance levels

(0 and 1), we obtain a value of 2.8% which is of the same order as their result.

Also reported in [14] was the finding that the optimal filter for velocity estimation from

cell population responses was of the order of 10 ms. This implies that the elementary motion

signal was conveyed in a timespan comparable to the interspike interval of RGCs. In the

present study, our analytically-derived optimal filter is shown to be of similar width in the

case where stimulus velocities are above about 5 ◦/s (Fig. 2). Replicating the finding of [14],

an optimal width of 10 ms was also demonstrated using simulations on our model (Fig. 3).

We examined the precision of our speed estimates as a function of both stimulus speed

and stimulus luminance. As expected, decoding performance improves with increasing lumi-

nance and with decreasing speed (Fig. 5). Fig. 5(A) illustrates that our model approximately

followed a Weber-Fechner law with visual speed discrimination being roughly proportional

to speed [22]. As discussed in Sec.3.A.1, the faster the moving bar traverses the retina, the

less time spent stimulating the cells, and the smaller the total number of spikes we have with

which to decode the stimulus speed. If the bar moves twice as fast, we might reasonably
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expect to have approximately half as much “signal” and, thus, the fact that the relationship

between speed and estimated speed precision appears to be roughly linear is not surprising.

Supporting this notion, [14] presented a simple model of speed estimate precision that pro-

posed a quadratic relationship between estimated speed variability and speed, i.e., a linear

relationship between fractional SD and speed. Similarly, the precision of the speed estimate

improves with increasing absolute contrast, which increases the effective signal-to-noise of

the retinal output (see Fig. 5.B). The nonlinear function, f(·), used in Eq. (2) for this study

was chosen to be exp(·). Given that, in determining the firing intensities, λi(t), this func-

tion operates on the stimulus input (as well as the baseline firing rates and spike history

and cross-coupling effects), any increase in stimulus contrast would be expected to have a

strong impact on the stimulus-related firing rates; similar conclusions may be drawn from

an analysis of the Fisher information in this model [26].

As mentioned earlier, Bayesian modeling has been employed in a number of studies in-

vestigating how visual speed perception is affected by properties of the visual stimulus. [35]

used an optimal Bayesian observer model to examine human psychophysical data in terms

of stimulus noise characteristics and prior expectations. They reported that the perception

that low contrast stimuli move more slowly than high contrast stimuli was well modeled by

an ideal Bayesian observer. This was due to the fact that the broader likelihood (based on

psychophysical measurements), when multiplied by a prior favouring low speeds [5], resulted

in a larger shift towards zero than multiplication by a narrower likelihood. Thus, low con-

trast stimuli, giving noisier measurements, result in an underestimation of stimulus speed,

agreeing with psychophysical reports [36]. In the present study, a uniform prior was used

for the speed of the moving bar. Thus, we would not expect a widening of the likelihood

distribution by lowering the stimulus contrast to shift the location of the posterior probabil-

ity distribution. As such, we would not expect any relationship between stimulus contrast

and the mean (or median) of the speed estimate distribution. This appeared to be the case,

with no straightforward relationship seen to exist between speed estimate bias and contrast

Fig. 5(D). There did appear to be a very slight trend towards greater bias to low speeds

at low contrasts for the energy method, but given the much higher variance in the speed

estimate at this contrast (Fig. 5(B)), we are disinclined to draw any deeper conclusions from

these results.

In terms of a relationship between speed estimate bias and stimulus speed, however, our

results indicate a clear trend. Specifically, there appears to be a systematic bias in speed

estimation tending to underestimate speed at high stimulus velocities for both the energy

method and the Bayesian decoder with known image, while tending to overestimate speed at

the same high stimulus velocities for the Bayesian decoder with uncertain image (Fig. 5(C)).

It is worth emphasizing that this is not the same phenomenon as described in the Bayesian
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model of [42], where the bias in the Bayesian estimate was due to a strong prior term which

preferentially weighted slow speeds; as discussed in the Methods section, we are employing

a MAP estimator with a uniform prior, which is equivalent to using a maximum likelihood

estimator and ignoring the prior term completely. Instead, the results shown here can be

explained by the well-known fact that likelihood-based estimators can display bias in low-

information settings (as the high-speed setting is here, since effectively less time is available to

observe spiking data during the stimulus presentation). In the low-speed, high-information,

setting, the bias of the likelihood-based estimator is negligible, as expected. The discrepancy

between the biases of the unknown image Bayesian decoder and the energy-based estimate

is clarified by the connection between these two methods as described in Sec. 2.B.3 and the

appendix. Specifically, see the discussion after Eqs. (23)–(24) of Sec. 2.B.3, and Eqs. (31)–(32)

of the appendix).

[29] found that, when comparing the full RGC model with an uncoupled version (re-

taining spike history effects), Bayesian stimulus decoding recovered 20% more information,

using pseudo-random stimuli. They also noted that additionally ignoring spike history ef-

fects further reduced the recovered information by 6%. Thus, we wished to examine the

importance of correlations between cells and of the intrinsic timing structure of the spike

trains to speed estimation precision. We followed the procedure employed in [14] and, as in

that study, it appeared that the shuffled, uncorrelated spike trains surprisingly resulted in a

weak improvement in estimation precision. We also replicated their test of how precise spike

timing might effect speed estimation precision [14]. Again, as in their study, we found simi-

lar results. Specifically, decoding speed using the resampled spike trains resulted in a slight

decrease in performance. However, despite the fact that we have completely abolished the

intra-and inter-neuronal non-stimulus-driven correlation structure here, these decreases in

performance were quite small, indicating that velocity decoding does not depend strongly on

the fine spike train structure here. It should be noted that for the results plotted in Fig. 7, all

spike train ensembles were decoded using the full model. That is, coupling filters and spike

history effects were assumed and accounted for when calculating λi in the decoding step.

Given that coupling effects were removed by our shuffling procedure and that both coupling

effects and spike history effects were removed by our resampling procedure, it is possible

that decoding the spike trains with an appropriately reduced model might provide more ac-

curate speed estimation for these manipulated spike train ensembles. To that end, we used a

model without coupling filters to decode the speed of the shuffled spike train ensembles and

a model with all hij set to zero to decode the speed of the resample spike train ensembles.

It is interesting to note that incorporating this knowledge about the presence or absence of

cell coupling and spike history effects into the decoding made virtually no difference to the

accuracy of the estimated velocity (not shown).
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For the majority of the simulations performed in the present study, the model cells were

arranged in a simplistic grid pattern (Fig. 8(A)), all ON cells were assigned one baseline firing

rate and all OFF cells were assigned another. In order to make our model more biologically

realistic we manipulated both the physical arrangement and the baseline spiking rate of

the cells (Fig. 8(B)). We tested the speed estimation performance of the optimal Bayesian

decoder using cell location’s which were randomly jittered around their original location

and whose baseline firing rates were randomized around the original values. No change in

performance was apparent (Fig. 8(C,D)). This is not surprising given that the decoder was

furnished with the locations of the cells in the new arrangement and that the total number

of spikes generated by the model was not altered. [14] found improved speed estimation

performance using a cell arrangement where cells were more dispersed along the axis of

motion, however there was no difference between the amount of dispersal along the axis of

motion in our two cell arrangements. While randomizing the baseline firing rates around

the data-fitted values did not result in any change in estimation performance, a population-

wide increase in firing rate caused a significant improvement. Fig. 8(E,F) illustrates the

improvement obtained by doubling the baseline firing rates. Again, this is the expected

result considering that the increased spiking rate leads to a higher signal to noise ratio and

results in a greater amount of information about the stimulus in the spiking activity.

It is unlikely that the brain performs optimal Bayesian inference with full knowledge

of the image in order to estimate velocity. This is supported by a recent study, in which

[13] employed the energy method (Sec. 2.B.2) to examine the efficiency of the code from a

population of primate RGCs. They did this by comparing the estimate of the velocity of a

stimulus using the spiking activity in the cell population with psychophysical estimates made

by human observers. While the energy model consistently outperformed the human observers,

it was shown that at very brief presentation times, i.e. < 100 ms the difference in estimation

performance between the energy method and the human behavior was much smaller than

at longer presentation times, suggesting that readout of the retinal population code can be

extremely efficient when exposure to the moving stimulus is very brief. In this study, having

used longer presentation times 125–675 ms, and given that the optimal Bayesian decoder

significantly outperforms even the energy method, it seems clear that human observers do

not decode using a known image in this task. Instead a strategy based on marginalization

over the uncertain image seems to be more consistent with the available data.

As in the present study, Bayesian inference was recently used to estimate properties,

including velocity, of a visual motion stimulus from ensemble spike train responses [19, 37].

This study reported that individual ganglion cells in the turtle retina encode velocity and

even acceleration. The authors employed Bayesian inference to determine the MAP estimate

of the stimulus speed using the stimulus speed prior and the response likelihood, based on
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average firing rates in specified time bins in response to different speeds. They assumed that

cell responses were independent of each other and determined the likelihood as the product

of single-neuron likelihoods. Our study differs in a number of ways. First of all, our Bayesian

decoder does not operate on binned firing rates but on individual spike times. This allows for

greater investigation of the importance of the specific spike timing structure in determining

stimulus velocity. Secondly, our study explicitly takes account of both spike history effects

and correlations between cells in estimating speed. Finally, the lone, relatively low spatial

frequency stimulus used in our study was chosen to investigate the fidelity of global velocity

encoding across the entire population of RGCs. [37] used a stimulus with a much higher

spatial frequency content. Using such a stimulus, an increase in translation speed equates

to an increase in the number of on/off and off/on stimulus transitions seen by each cell,

per unit time. Presumably, this would cause a corresponding increase in firing rate in a

certain percentage of cells. Given that the Bayesian decoder used is based on average binned

firing rates, the possibility exists that the reported encoding of velocity by individual cells is

somewhat influenced by the change in the number of discrete stimulus events occurring per

unit time that accompanies a change in velocity. Further work using our model may serve

to address this issue.

5. Conclusion

Optimal Bayesian decoding with full image information has been shown to outperform a

“motion energy” method that uses no prior image information, which in turn was shown to

outperform human psychophysical performance [13]. A mathematical description of the con-

nection between these two decoders indicates that, in addition to the extra information about

the image used by the Bayesian estimator, information about the network’s spatio-temporal

stimulus filtering properties also plays an important role in optimal velocity estimation. The

results of a number of simulations indicate a good correspondence between the speed en-

coding performance of the model and that of a population of real RGCs. This work thus

provides a rigorous framework with which to explore the factors limiting the estimation of

velocity in vision.
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Appendix: Marginal Likelihood in the Linear Gaussian Model

In this appendix we show that the logarithm of the marginal likelihood p(r|v) for a Linear

Gaussian (LG) model of the RGC’s is closely related to the energy function of the reference

[14], and thus for this model the Bayesian velocity decoding is nearly equivalent to the energy

model approach. In the linear Gaussian model, the response of cell i, ri, is given linearly in

terms of the image intensity profile, x, up to additive Gaussian noise with covariance Σ, as in

Eq. (22). Thus we have p
LG

(r|x,v) =
∏

i N (bi +Ki,v ·x, Σ). Using this and px(x) = N (0, Cx)

as the Gaussian image prior, we repeat the steps in Eqs. (11)–(19) of Sec. 2.B.1. For the LG

model, the log-posterior function is given by

LLG(x, r,v) ≡ log [px(x)p
LG

(r|x,v)] = (25)

−1

2
x

TC−1
x x − 1

2

∑

i

(ri − bi −Ki,v · x)
T

Σ−1(ri − bi −Ki,v · x) + const.,

instead of Eq. (11), and the marginal distribution, p
LG

(r|v), by

p
LG

(r|v) =

∫

eLLG(x,r,v)dx, (26)

similar to Eq. (10). As before, setting ∇xLLG
= 0 yields the equation for x

MAP
, which unlike

Eq. (19) is linear, and can be easily solved to yield

x
MAP

(r,v) = H(v)−1
∑

i

KT

i,v · Σ−1 · (ri − bi). (27)

Here, the negative Hessian is given by

H(v) = −∇x∇xLLG
= C−1

x +
∑

i

KT

i,v · Σ−1 · Ki,v, (28)

which is now independent of the observed spike trains r. Using Eqs. (27)–(28), we can

rearrange the terms in Eq. (25) to complete the square for x, and obtain

LLG(x, r,v) = − 1

2
(x − x

MAP
)
T

H(v)(x − x
MAP

)

− 1

2

∑

i

δr
T

i Σ−1δri +
1

2

∑

ij

X
T

i Cx(v)Xj + const.,
(29)

where Cx(v) = H−1(v) is the posterior covariance over the fixed image, and we defined the

mean-adjusted response δri ≡ ri − bi and the prefiltered response

X i ≡ KT

i,vΣ−1δri. (30)

The marginalization in Eq. (26) is thus a standard Gaussian integration, which yields

log p
LG

(r|v) =
1

2

∑

ij

X
T

i Cx(v)Xj −
1

2
log |CxH(v)| + const. (31)
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(the constant term is independent of v, and therefore irrelevant for estimating it). The

decomposition into the two terms on the right hand side of Eq. (31) is similar to that in

Eq. (18). In both equations the second term arose from a Gaussian integration over x (an

approximation in the case of Eq. (18)), and the first was (up to a constant in v) the value of

the logarithm of the joint distribution of x and r, given v, at x
MAP

(r,v). Unlike Eq. (18),

however, although the second term on the right hand side of Eq. (31) depends on v, it is

nevertheless independent of the observed response, r. The only term that modulates the

velocity posterior depending on r (through the implicit dependence of X i’s) is the first,

which we denote by E
LG

(v, r). We will see that this term corresponds closely to the energy

function introduced in [14]. More explicitly, we have

E
LG

(v, r) ≡ 1

2

∑

ij

X
T

i Cx(v)Xj =
1

2

∑

ij

∫ ∫

Xi(n1)Cx(n1,n2;v)Xj(n2) d2n1d
2n2. (32)

In the following we will rewrite Eq. (32) in a form which is explicitly akin to Eq. (21).

For simplicity, we assume that the noise covariance is white, i.e. Σ = σ21. Physiologically,

this implies that we are ignoring stimulus-conditional correlations and history dependences

in the network (as, e.g., in the uncoupled model discussed in [29]). From Eq. (30) and the

definition of Ki,v, Eq. (7), we then obtain the explicit form

Xi(n) =
1

σ2

∫

dt

∫

dτ ki(t − τ, τv + n) δri(t). (33)

If we further assume that the spike train observation has not revealed much information

about the identity of the fixed image (as happens, e.g., for low contrasts or short presentation

times), then the posterior distribution over x will not be very different from the prior px(x).

Therefore, we can use the approximation Cx(v) ≈ Cx. In the 1-d case, which we are studying

in this paper, the image profile x(n), and hence the prior image covariance, only depend on

the component of n parallel to the direction of motion, v̂ = v/|v|, and are constant in the

perpendicular direction. Denoting the former component by n (= n · v̂) and the latter by

n⊥(= n − nv̂), we can then perfom the integrals over n⊥ in Eq. (32), and rewrite it as

E
LG

(v, r) =
1

2

∑

ij

∫ ∫

X̃i(n1)Cx(n1, n2)X̃j(n2) dn1dn2, (34)

X̃i(n) ≡
∫

Xi(n)dn⊥ =
1

σ2

∫

dt

∫

dτ k̃i(t − τ, τv + n) δri(t), (35)

where v ≡ |v|, and we defined k̃i(t, n) ≡
∫

ki(t,n) dn⊥. For each cell i, we specify a fixed

point, ni, positioned at its receptive field center, so that ki(t,ni + ∆n) vanishes when |∆n|
gets considerably larger than the size of the receptive field surround (∼ 1◦). Hence, if we

define

qi(t, n) ≡ k̃i(t, n + ni) =

∫

ki(t,n + ni) dn⊥ (36)
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(where ni ≡ ni · v̂), qi(t, n) vanishes when |n| ≫ 1◦; for all cells, qi’s are localized (up to the

above scale) around the origin, as opposed to around the position of their respective receptive

field centers along v. In order to make the comparison with the energy model of Sec. 2.B.2

clearer, we also switch to the time domain (recalling that space n and time t are linked here

via the velocity v); we define R̃i(t) ≡ X̃i(ni − vt) (equivalently, X̃i(n) = R̃i((−n + ni)/v)),

and rewrite Eq. (34) by changing the integration variables from n1(2) to vt1(2):

E
LG

(v, r) =
1

2v2

∑

ij

∫ ∫

R̃i

(

−t1 +
ni

v

)

Cx(vt1, vt2)R̃j

(

−t2 +
nj

v

)

dt1dt2. (37)

Using Eq. (35) and the definiton (36), we write Ri(t1) explicitly as

R̃i(t1) ≡ X̃i(ni − vt1) =
1

σ2

∫

dt

∫

dτ k̃i(t − τ, vτ − vt1 + ni) δri(t)

=
1

σ2

∫

dt

∫

dτ qi(t − τ, v(τ − t1)) δri(t) . (38)

Exploiting the translation invariance of the prior image ensemble which dictates Cx(n1, n2) =

Cx(n1 − n2), we define Bx to be the operator square root of Cx, in the sense that

Cx(n1 − n2) =

∫

Bx(n1 − n)Bx(n2 − n)dn. (39)

In general, given an explicit form of Cx(n1 −n2), Bx can be computed in the Fourier domain

by taking the square root of the power spectrum [7]2. Substituting definition (39) (after

renaming the integration variable n to vt) in Eq. (37), we rewrite the latter as

E
LG

(v, r) = (40)

1

2v

∑

ij

∫ ∫ ∫

R̃i

(

−t1 +
ni

v

)

Bx(v(t1 − t))Bx(v(t2 − t))R̃j

(

−t2 +
nj

v

)

dt1dt2dt =

1

2v

∑

ij

∫ ∫ ∫

R̃i (t1)Bx

(

v
(

t +
ni

v
− t1

))

Bx

(

v
(

t +
nj

v
− t2

))

R̃j (t2) dt1dt2dt.

We derived the last line by renaming the integration variables as t1(2) → ni(j)/v − t1(2), and

t → −t. Finally, defining

Ri(t) ≡
1√
v

∫

Bx(v(t − t1))R̃i(t1)dt1, (41)

2In particular, for Cx(n1 − n2) = c2e−
|n1−n2|

lcorr , we have Bx(n) = c
√

2

lcorr
θ(n)e−n/lcorr , where c is the image

contrast, lcorr is the correlation length of typical images in the naturalistic prior ensemble, and θ(t) is the

Heaviside step function. In the simulations of Sec. 3.A.4 we used this particular form of Cx, as it yields (for

spatial frequencies, f , larger than the inverse of the correlation length lcorr, but smaller than the inverse

image pixel size) a power spectrum ∝ 1/f2, as observed in natural images.
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we obtain

E
LG

(v, r) =
1

2

∑

ij

Ri

(

t +
ni

v

)

Rj

(

t +
nj

v

)

dt. (42)

Equation (42) is akin to the energy function used in Frechette et al, and together with

Eq. (31) yields Eq. (23) of Sec. 2.B.3. To find the explicit form of the smoothing filter in

Eq. (24), we compare that equation, in the form

Ri(t) =

∫

w
LG

(t − t′)δri(t
′)dt′, (43)

with definition (41)

Ri(t) =
1

σ2
√

v

∫

dt1

∫

dt′
∫

dτ Bx(v(t − t1))qi(t
′ − τ, v(τ − t1)) δri(t

′) ,

=
1

σ2
√

v

∫

dt1

∫

dt′
∫

dτ Bx(v(t − t′ − t1))qi(−τ, v(τ − t1)) δri(t
′) , (44)

(where we used Eq. (38) to write the first line, and shifted τ and t1 by t′ to derive the

second), and obtain

w
LG

(t) =
1

σ2
√

v

∫

dt1

∫

dτ Bx(v(t − t1))qi(−τ, v(τ − t1)). (45)

Thus, Ri(t) is a version of the response function of the cell i, offset by its baseline firing

rate bi, and smoothed out on the time scale dictated by the largest of the spatio-temporal

scales of the receptive fields (via qi) or the correlation length of typical images (via Bx) —

with spatial scales converted to time scales by dividing by v. To see this more precisely,

let us define ∆τ1 ≡ τ , ∆τ2 ≡ t1 − τ , and ∆τ3 ≡ t − t1, such that t = ∆τ1 + ∆τ2 + ∆τ3.

On the other hand, due to the finite support of the factors of its integrand, the double

integral Eq. (45) receives nonzero contributions only when |∆τ1| . τk, |∆τ2| . lk/v, and

|∆τ3| . lcorr/v (where τk and lk are the typical temporal and spatial size of the receptive

field filters ki(t, n), respectively, and lcorr is the correlation length of typical images in the

naturalistic prior ensemble). Thus if |t| = |τ1 + ∆τ2 + ∆τ3| is much larger than the sum

of the three scales τk, lk/v and lcorr/v, the filter w(t) is bound to vanish. This leads to the

discussion of Sec. 2.B.3, following Eq. (24).
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