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Abstract

Log-concavity is an important property in the context of optimization,
Laplace approximation, and sampling; Bayesian methods based on Gaus-
sian process priors have become quite popular recently for classification,
regression, density estimation, and point process intensity estimation.
Here we prove that the predictive densities corresponding to each of these
applications are log-concave, given any observed data. We also prove
that the likelihood is log-concave in the hyperparameters controlling the
mean function of the Gaussian prior in the density and point process in-
tensity estimation cases, and the mean, covariance, and observation noise
parameters in the classification and regression cases; this result leads to
a useful parameterization of these hyperparameters, indicating a suitably
large class of priors for which the corresponding maximum a posteriori
problem is log-concave.

Introduction

Bayesian methods based on Gaussian process priors have recently become quite popular
for machine learning tasks (1). These techniques have enjoyed a good deal of theoretical
examination, documenting their learning-theoretic (generalization) properties (2), and de-
veloping a variety of efficient computational schemes (e.g., (3–5), and references therein).
We contribute to this theoretical literature here by presenting results on the log-concavity of
the predictive densities and likelihood associated with several of these methods, specifically
techniques for classification, regression, density estimation, and point process intensity es-
timation. These results, in turn, imply that it is relatively easy to tune the hyperparameters
for, approximate the posterior distributions of, and sample from these models.

Our results are based on methods which we believe will be applicable more widely in ma-
chine learning contexts, and so we give all necessary details of the (fairly straightforward)
proof techniques used here.



Log-concavity background

We begin by discussing the log-concavity property: its uses, some examples of log-concave
(l.c.) functions, and the key theorem on which our results are based. Log-concavity is
perhaps most important in a maximization context: given a real function f ofsome vector
parameter ~θ, if g(f(~θ)) is concave for some invertible function g, and the parameters ~θ live
in some convex set, then f is unimodal, with no non-global local maxima. (Note that in
this case a global maximum, if one exists, is not necessarily unique, but maximizers of f
do form a convex set, and hence maxima are essentially unique in a sense.) Thus ascent
procedures for maximization can be applied without fear of being trapped in local maxima;
this is extremely useful when the space to be optimized over is high-dimensional. This
logic clearly holds for any arbitrary rescaling g; of course, we are specifically interested in
g(t) = log t, since logarithms are useful in the context of taking products (in a probabilistic
context, read conditional independence): log-concavity is preserved under multiplication,
since the logarithm converts multiplication into addition and concavity is preserved under
addition.

Log-concavity is also useful in the context of Laplace (central limit theorem - type) ap-
proximations (3), in which the logarithm of a function (typically a probability density or
likelihood function) is approximated via a second-order (quadratic) expansion about its
maximum or mean (6); this log-quadratic approximation is a reasonable approach for func-
tions whose logs are known to be concave.

Finally, l.c. distributions are in general easier to sample from than arbitrary distributions,
as discussed in the context of adaptive rejection and slice sampling (7, 8) and the random-
walk-based samplers analyzed in (9).

We should note that log-concavity is not a generic property: l.c. probability densities nec-
essarily have exponential tails (ruling out power law tails, and more generally distributions
with any infinite moments). Log-concavity also induces a certain degree of smoothness;
for example, l.c. densities must be continuous on the interior of their support. See, e.g., (9)
for more detailed information on the various special properties implied by log-concavity.

A few simple examples of l.c. functions are as follows: the Gaussian density in any dimen-
sion; the indicator of any convex set (e.g., the uniform density over any convex, compact
set); the exponential density; the linear half-rectifier. More interesting well-known exam-
ples include the determinant of a matrix, or the inverse partition function of an energy-
based probabilistic model (e.g., an exponential family), Z−1(~θ) = (

∫

ef(~x,~θ)d~x)−1, l.c. in
~θ whenever f(~x, ~θ) is convex in ~θ for all ~x. Finally, log-concavity is preserved under taking
products (as noted above), affine translations of the domain, and/or pointwise limits, since
concavity is preserved under addition, affine translations, and pointwise limits, respectively.

Sums of l.c. functions are not necessarily l.c., as is easily shown (e.g., a mixture of Gaus-
sians with widely-separated means, or the indicator of the union of disjoint convex sets).
However, a key theorem (10, 11) gives:

Theorem (Integrating out preserves log-concavity). If f(~x, ~y) is jointly l.c. in (~x, ~y), for
~x and ~y finite dimensional, then

f0(~x) ≡
∫

f(~x, ~y)d~y

is l.c. in ~x.

Think of ~y as a latent variable or hyperparameter we want to marginalize over. This
very useful fact has seen applications in various branches of statistics and operations re-
search, but does not seem well-known in the machine learning community. The theorem
implies, for example, that convolutions of l.c. functions are l.c.; thus the random vectors



with l.c. densities form a vector space. Moreover, indefinite integrals of l.c. functions are
l.c.; hence the error function, and more generally the cumulative distribution function of
any l.c. density, is l.c., which is useful in the setting of generalized linear models (12) for
classification. Finally, the mass under a l.c. probability measure of a convex set which
is translated in a convex manner is itself a l.c. function of the convex translation parame-
ter (11).

Gaussian process methods background

We now give a brief review of Gaussian process methods. Our goals are modest; we will
do little more than define notation. See, e.g., (1) and references for further details. Gaus-
sian process methods are based on a Bayesian “latent variable” approach: dependencies
between the observed input and output data {~ti} and {~yi} are modeled as arising through a
hidden (unobserved) Gaussian process G(~t). Recall that a Gaussian process is a stochastic
process whose finite-dimensional projections are all multivariate Gaussian, with means and
covariances defined consistently for all possible projections, and is therefore specified by
its mean µ(~t) and covariance function C(~t1,~t2).

The applications we will consider may be divided into two settings; “supervised” and “un-
supervised” problems. We discuss the somewhat simpler unsupervised case first (however,
it should be noted that the supervised cases have received significantly more attention in
the machine learning literature to date, and might be considered of more importance to this
community).

Density estimation: We are given unordered data {~ti}; the setup is valid for any sample
space, but assume ~ti ∈ <d, d < ∞, for concreteness. We model the data as i.i.d. samples
from an unknown distribution p. The prior over these unknown distributions, in turn, is
modeled as a conditioned Gaussian process, p ∼ G(~t): p is drawn from a Gaussian process
G(~t) of mean µ(~t) and covariance C (to ensure that the resulting random measures are
well-defined, we will assume throughout that G is moderately well-behaved; almost-sure
local Lebesgue integrability is sufficient), conditioned to be nonnegative and to integrate
to one over some arbitrarily large compact set (the latter by an obvious limiting argument,
to prevent conditioning on a set of measure zero; the introduction of the compact set is to
avoid problems of the sort encountered when trying to define uniform probability measures
on unbounded spaces) with respect to some natural base measure on the sample space (e.g.,
Lebesgue measure in <d) (13). It is worth emphasizing that this setup differs somewhat
from some earlier proposals (5,14,15), which postulated that nonnegativity be enforced by,
e.g., modeling log p or

√
p as Gaussian, instead of the Gaussian p here; each approach has

its own advantages, and it is unclear at the moment whether our results can be extended to
this context (as will be clear below, the roadblock is in the normalization constraint, which
is transformed nonlinearly along with the density in the nonlinear warping setup).

Point process intensity estimation: A nearly identical setup can be used if we assume the
data {~ti} represent a sample from a Poisson process with an unknown underlying intensity
function (16–18); the random density above is simply replaced by the random intensity
function here (this type of model is known as a Cox, or doubly-stochastic, process in the
point-process literature). The only difference is that intensity functions are not required to
be normalized, so we need only condition the Gaussian process G(~t) from which we draw
the intensity functions to be nonnegative. It turns out we will be free to use any l.c. and
convex warping of the range space of the Gaussian process G(~t) to enforce positivity;
suitable warpings include exponentiation (corresponding to modeling the logarithm of the
intensity as Gaussian (17)) or linear half-rectification.

The supervised cases require a few extra ingredients. We are given paired data, inputs {~ti}



with corresponding outputs {~yi}. We model the outputs as noise-corrupted observations
from the Gaussian process ~G(~t) at the points {~ti}; denote the additional hidden “observa-
tion” noise process as {~n(~ti)}. This noise process is not always taken to be Gaussian; for
computational reasons, {~n(~ti)} is typically assumed i.i.d., and also independent of ~G(~t),
but both of these assumptions will be unnecessary for the results stated below.

Regression: We assume ~y(~ti) = ~G(~ti) + σi~n(~ti); in words, draw ~G(~t) from a Gaussian
process of mean ~µ(~t) and covariance C; the outputs are then obtained by sampling this
function ~G(~t) at ~ti and adding noise ~n(~ti) of scale σi.

Classification: y(~ti) = 1
(

G(~ti) + σin(~ti) > 0
)

, where 1(.) denotes the indicator function
of an event. This case is as in the regression model, except we only observe a binary-
thresholded version of the real output.

Results

Our first result concerns the predictive densities associated with the above models: the pos-
terior density of any continuous linear functional of G(~t), given observed data D = {~ti}
and/or {yi}, under the Gaussian process prior for G(~t). The simplest and most impor-
tant case of such a linear projection is the projection onto a finite collection of coor-
dinates, {~tpred}, say; in this special case, the predictive density is the posterior density
p({G(~tpred)}|D). It turns out that all we need to assume is the log-concavity of the dis-
tribution p(G,~n); this is clearly more general than what is needed for the strictly Gaussian
cases considered above (for example, Laplacian priors on G are permitted, which could
lead to more robust performance). Also note that dependence of (G,~n) is allowed; this
permits, for example, coupling of the effective scales of the observation noise ~ni = ~n(~ti)
for nearby points ~ti. Additonally, we allow nonstationarity and anisotropic correlations in
G. The result applies for any of the applications discussed above.

Proposition 1 (Predictive density). Given a l.c. prior on (G,~n), the predictive density is
always l.c., for any data D.

In other words, conditioning on data preserves these l.c. processes (where an l.c. process,
like a Gaussian process, is defined by the log-concavity of its finite-dimensional projec-
tions). This represents a significant generalization of the obvious fact that in the regression
setup under Gaussian noise, conditioning preserves Gaussian processes.

Our second result applies to the likelihood of the hyperparameters corresponding to the
above applications: the mean function µ, the covariance function C, and the observation
noise scales {σi}. We first state the main result in some generality, then provide some
useful examples and interpretation below. For each j > 0, let Aj,~θ denote a family of linear

maps from some finite-dimensional vector space Gj to <NdG , where dG = dim( ~G(~ti)),
and N is the number of observed data points. Our main assumptions are as follows: first,
assume A−1

j,~θ
may be written A−1

j,~θ
=

∑

θkKj,k, where {Kj,k} is a fixed set of matrices

and the inverse is defined as a map from range(Aj,~θ) to Gj/ker(Aj,~θ). Second, assume

that dim(A−1

j,~θ
(V )) is constant in ~θ for any set V . Finally, equip the (doubly) latent space

Gj × <NdG = {(GL, ~n)} with a translation family of l.c. measures pj,µL
(GL, ~n) indexed

by the mean parameter µL, i.e., pj,µL
(GL, ~n) = pj((GL, ~n)−µL), for some fixed measure

pj(.). Then if the sequence pj(G,~n) induced by pj and Aj converges pointwise to the joint
density p(G,~n), then:

Proposition 2 (Likelihood). In the supervised cases, the likelihood is jointly l.c. in the
latent mean function, covariance parameters, and inverse noise scales (µL, ~θ, {σ−1

i }), for



all data D. In the unsupervised cases, the likelihood is l.c. in the mean function µ.

Note that the mean function µ(~t) is induced in a natural way by µL and Ai,~θ, and that we
allow the noise scale parameters {σi} to vary independently, increasing the robustness of
the supervised methods (19) (since outliers can be “explained,” without large perturbations
of the underlying predictive distributions of G(~t), by simply increasing the corresponding
noise scale σi). Of course, in practice, it is likely that to avoid overfitting one would want
to reduce the effective number of free parameters by representing µ(~t) and ~θ in finite-
dimensional spaces, and restricting the freedom of the inverse noise scales {σi}. The log-
concavity in the mean function µ(~t) demonstrated here is perhaps most useful in the point
process setting, where µ(~t) can model the effect of excitatory or inhibitory inputs on the
intensity function, with spatially- or temporally-varying patterns of excitation, and/or self-
excitatory interactions between observation sites ~ti (by letting µ(~t) depend on the observed
points ~ti (16, 20)).

In the special case that the l.c. prior measure pj is taken to be Gaussian with covariance
C0, the main assumption here is effectively on the parameterization of the covariance C;
ignoring the (technical) limiting operation in j for the moment, we are assuming roughly
that there exists a single basis in which, for all allowed ~θ, the covariance may be written
C = A~θC0A

t
~θ
, where A~θ is of the special form described above.

We may simplify further by assuming that C0 is white and stationary. One important
example of a suitable two-parameter family of covariance kernels satisfying the condi-
tions of Proposition 2 is provided by the Ornstein-Uhlenbeck kernels (which correspond to
exponentially-filtered one-dimensional white noise):

C(t1, t2) = σ2e−2|t1−t2|/τ

For this kernel, one can parameterize C = A~θA
t
~θ
, with A−1

~θ
= θ1I − θ2D

∗, where I

and D denote the identity and differential operators, respectively, and θk > 0 to ensure
that C is positive-definite. (To derive this reparameterization, note that C(|t1 − t2|) solves
(I − aD2)C(|t1 − t2|) = bδ(t), for suitable constants a, b.) Thus Proposition 2 gener-
alizes a recent neuroscientific result: the likelihood for a certain neural model (the leaky
integrate-and-fire model driven by Gaussian noise, for which the corresponding covariance
is Ornstein-Uhlenbeck) is l.c. (21, 22) (of course, in this case the model was motivated by
biophysical instead of learning-theoretic concerns).

In addition, multidimensional generalizations of this family are straightforward: corre-
sponding kernels solve the Helmholtz problem,

(I − a∆)C(~t) = bδ(~t),

with ∆ denoting the Laplacian. Solutions to this problem are well-known: in the isotropic
case, we obtain a family of radial Bessel functions, with a, b again setting the overall mag-
nitude and correlation scale of C(~t1,~t2) = C(||~t1 − ~t2||2). Generalizing in a different
direction, we could let A~θ include higher-order differential terms, A−1

~θ
=

∑

k=0 θkDk; the
resulting covariance kernels correspond to higher-order autoregression process priors.

An even broader class of kernel parameterizations may be developed in the spectral domain:
still assuming stationary white noise inputs, we may diagonalize C in the Fourier basis,
that is, C(~ω) = OtP (~ω)O, with O the (unitary) Fourier transform operator and P (~ω) the
power spectral density. Thus, comparing to the conditions above, if the spectral density
may be written as P (~ω)−1 = |∑k θkhk(~ω)|2 (where |.| denotes complex magnitude),
for θk > 0 and functions hk(~ω) such that sign(real(hk(~ω))) is constant in k for any ~ω,
then the likelihood will be l.c. in ~θ; A~θ here may be taken as the multiplication operator



Ot(
∑

k θkhk(~ω))−1). Remember that the smoothness of the sample paths of G(~t) depends
on the rate of decay of the spectral density (1,23); thus we may obtain smoother (or rougher)
kernel families by choosing

∑

k θkhk(~ω) as more rapidly- (or slowly-)increasing.

Proofs

Predictive density. This proof is a straightforward application of the Prekopa theorem (10).
Write the predictive distributions as

p({LkG}|D) = K(D)

∫

p({LkG}, {G(ti), n(ti)})p({yi, ti}|{LkG}, {G(ti), n(ti)}),

where {Lk} is a finite set of continuous linear functionals of G, K(D) is a constant that
depends only on the data, the integral is over all {G(ti), n(ti)}, and {ni, yi} is ignored in
the unsupervised case. Now we need only prove that the multiplicands on the right hand
side above are l.c. The log-concavity of the left term is assumed; the right term, in turn,
can be rewritten as

p({yi, ti}|{LkG}, {G(ti), n(ti)}) = p({yi, ti}|{G(ti), n(ti)}),
by the Markovian nature of the models. We prove the log-concavity of the right individually
for each of our applications.

In the supervised cases, {ti} is given and so we only need to look at p({yi}|{G(ti), n(ti)}).
In the classification case, this is simply an indicator of the set

⋂

i

(

G(ti) + σini

{

≤ 0, yi = 0

> 0, yi = 1

)

,

which is jointly convex in {G(ti), n(ti)}, completing the proof in this case.

The regression case is proven in a similar fashion: write p({yi}|{G(ti), n(ti)}) as the limit
as ε → 0 of the indicator of the convex set

⋂

i

(|G(ti) + σini − yi| < ε) ,

then use the fact that pointwise limits preserve log-concavity. (The predictive distributions
of {y(t)} will also be l.c. here, by a nearly identical argument.)

In the density estimation case, the term

p({ti}|{G(ti)}) =
∏

i

G(ti)

is obviously l.c. in {G(ti)}. However, recall that we perturbed the distribution of G(t)
in this case as well, by conditioning G(t) to be positive and normalized. The fact that
p({LkG}, {G(ti)}) is l.c. follows upon writing this term as a marginalization of densities
which are products of l.c. densities with indicators of convex sets (enforcing the linear
normalization and positivity constraints).

Finally, for the point process intensity case, write the likelihood term, as usual,

p({ti}|{G(ti)}) = e−
R

f(G(~t))d~t
∏

i

f(G(~ti)),

where f is the scalar warping function that takes the original Gaussian function G(~t) into
the space of intensity functions. This term is clearly l.c. whenever f(s) is both convex and
l.c. in s; for more details on this class of functions, see e.g. (20).



Likelihood. We begin with the unsupervised cases. In the density estimation case, write
the likelihood as

L(µ) =

∫

dpµ(G)1C({G(~t)})
∏

i

G(~ti),

with pµ(G) the probability of G under µ. Here 1C is the (l.c.) indicator function of the
convex set enforcing the linear constraints (positivity and normalization) on G. All three
terms in the integrand on the right are clearly jointly l.c. in (G,µ). In the point process
case,

L(µ) =

∫

dpµ(G)e−
R

f(G(~t))d~t
∏

i

f(G(~ti));

the joint log-concavity of the three multiplicands on the right is again easily demonstrated.

The Prekopa theorem cannot be directly applied here, since the functions 1C(.) and e−
R

f(.)

depend in an infinite-dimensional way on G and µ; however, we can apply the Prekopa the-
orem to any finite-dimensional approximation of these functions (e.g., by approximating
the normalization condition and exponential integral by Riemann sums and the positivity
condition at a finite number of points), then obtain the theorem in the limit as the approxi-
mation becomes infinitely fine, using the fact that pointwise limits preserve log-concavity.

For the supervised cases, write

L(µL, ~θ, {σ−1}) = lim
j

∫

dpj(GL, ~n)1

(

Aj,θ(GL + µG
L ) + ~σ.(~n + µn

L) ∈ V

)

= lim
j

∫

dpj(GL, ~n)1

(

(GL, ~n) ∈ (
∑

k

θkKj,kV, ~σ.−1.V ) + µL

)

,

with V an appropriate convex constraint set (or limit thereof) defined by the observed data
{yi}, µG

L and µn
L the projection of µL into Gj or <NdG , respectively, and . denoting point-

wise operations on vectors. The result now follows immediately from Rinott’s theorem on
convex translations of sets under l.c. probability measures (11, 22).

Again, we have not assumed anything more about p(GL, ~n) than log-concavity; as before,
this allows dependence of G and ~n, anisotropic correlations, etc. It is worth noting, though,
that the above result is somewhat stronger in the supervised case than the unsupervised; the
proof of log-concavity in the covariance parameters ~θ does not seem to generalize easily to
the unsupervised setup (briefly, because log(

∑

k θkyk) is not jointly concave in (θk, yk) for
all (θk, yk), θkyk > 0, precluding a direct application of the Prekopa or Rinott theorems
in the unsupervised case). Extensions to ensure that the unsupervised likelihood is l.c. in ~θ

are possible, but require further restrictions on the form of p(G|~θ) and will not be pursued
here.

Discussion

We have provided some useful results on the log-concavity of the predictive densities and
likelihoods associated with several common Gaussian process methods for machine learn-
ing. In particular, our results preclude the existence of non-global local maxima in these
functions, for any observed data; moreover, Laplace approximations of these functions will
not, in general, be disastrous, and efficient sampling methods are available.

Perhaps the main practical implication of our results stems from our proposition on the
likelihood; we recommend a certain simple way to obtain parameterized families of ker-
nels which respect this log-concavity property. Kernel families which may be obtained
in this manner can range from extremely smooth to singular, and may model anisotropies



flexibly. Finally, these results indicate useful classes of constraints (or more generally, reg-
ularizing priors) on the hyperparameters; any prior which is l.c. (or any constraint set which
is convex) in the parameterization discussed here will lead to l.c. a posteriori problems.

More generally, we have introduced some straightforward applications of a useful and in-
teresting theorem. We expect that further applications in machine learning (e.g., in latent
variable models, marginalization of hyperparameters, etc.) will be easy to find.
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