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Abstract

Adaptive stimulus design methods can potentially improve the efficiency of sensory neuro-
physiology experiments significantly; however, designingoptimal stimulus sequences in real time
remains a serious technical challenge. Here we describe twoapproximate methods for generating
informative stimulus sequences: the first approach provides a fast method for scoring the infor-
mativeness of a batch of specific potential stimulus sequences, while the second method attempts
to compute an optimal stimulus distribution from which the experimenter may easily sample. We
apply these methods to single-neuron spike train data recorded from the auditory midbrain of
zebra finches, and demonstrate that the resulting stimulus sequences do in fact provide more in-
formation about neuronal tuning in a shorter amount of time than do more standard experimental
designs.

Introduction

Adaptive stimulus optimization methods hold a great deal of promise for improvingthe efficiency
of sensory neurophysiology experiments (Tzanakou et al., 1979; Mackay, 1992; deCharms et al.,
1998; Anderson and Micheli-Tzanakou, 1998; Foldiak, 2001; Machens, 2002; Edin et al., 2004;
Machens et al., 2005; O’Connor et al., 2005; Chen et al., 2005; Paninski, 2005; Benda et al., 2007;
Yamane et al., 2008). We previously developed methods for efficiently computing the stimulus that
will provide the most information about a neuron’s tuning properties (Lewiet al., 2007; Lewi et al.,
2009). These methods were tested in a variety of simulated examples, and demonstrated the potential
to speed convergence in our parameter estimates (and therefore reducethe total experimental time
needed to characterize neural tuning) by an order of magnitude.

However, we face two major problems when applying these methods directly in real experimental
settings. First, often stimuli need to be presented in “batches,” instead of one stimulus frame at a
time. In auditory experiments, for example, we typically do not present a single 10 ms “frame” of an
auditory stimulus; instead, we usually present longer stimuli (e.g., bird song,or other naturalistic se-
quences) with strong temporal correlations, since auditory neurons integrate information over longer
timescales to detect acoustic features. Thus, we need a method to optimize temporally-coherentse-
quences of stimuli, instead of choosing the best stimulus on a frame-by-frame basis, since the latter
approach will typically lead to choppy, temporally-incoherent, highly non-naturalistic stimuli.

Second, the methods described in (Lewi et al., 2007; Lewi et al., 2009) require the development
of highly-optimized, real-time software; in particular, for the real-time adaptive stimulus design ap-
proach to be feasible, the stimulus generation and spike detection software necessarily need to be
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tightly integrated. This may be quite challenging, depending on the recording setup available in a
given sensory neurophysiology lab. Thus, it would be very helpful torelax our goals somewhat: in-
stead of computing the optimal stimulus one presentation frame at a time, we would liketo develop
related methods to compute a highly-informative “batch” of stimuli that can be presented over the
next (possibly large) set of presentation frames. This greatly reducesthe requirement for real-time in-
tegration of stimulus generation and spike detection, since the necessary processing can be done over
large batches of presentation frames instead of single frames (which will typically require processing
on a time scale of milliseconds).

In this paper we present methods for solving both of these problems and demonstrate their appli-
cability to single-neuron spike train data recorded from the auditory midbrainof songbirds.

1 Overview and review

Our setting is as follows. We are recording from a neuron which responds to a vector inputst presented
at timet according to some conditional distributionp(rt|θ, st), wherert is the response at timet and
θ denotes the vector of parameters that control the neuron’s response properties. As in (Paninski et al.,
2007; Lewi et al., 2009), we will focus our attention on a generalized linear model (GLM) for the
neural responses:

rt|θ, st ∼ Poiss
[

f(θT st)dt
]

, (1)

with the rectifying functionf(.) chosen to be convex and log-concave; as discussed in more detail
in (Paninski, 2004), these constraints ensure that the loglikelihood in this model will be a concave
function of the parameterθ. We will describe an example implementation of the GLM in much more
detail in section 2.1.1 below.

Given thet previously-observed input-response pairs(s1:t, r1:t), our knowledge aboutθ is sum-
marized by the posterior distributionp(θ|s1:t, r1:t). Our main goal when choosing the next sequence
of b inputsst+1:t+b is to reduce the entropy (uncertainty) of this conditional distribution as much as
possible; more precisely, we want to choosest+1:t+b to optimize the conditional mutual information
(Cover and Thomas, 1991) between the parameterθ and the response sequencert+1:t+b given the
input sequencest+1:t+b,

I
(

θ; rt+1:t+b|{s1:t+b, r1:t}
)

= H
[

p(θ|s1:t, r1:t)
]

− H
[

p(θ|s1:t+b, r1:t+b)
]

, (2)

whereH[p] denotes the entropy of the distributionp. The conditional mutual information is the differ-
ence between our parameter uncertainty at timet, H[p(θ|s1:t, r1:t)], and our expected uncertainty at
time t+ b, H[p(θ|st+1:t+b, rt+1:t+b)], and therefore this quantity measures the amount of information
we expect an experiment to provide aboutθ.

As discussed at length in (Lewi et al., 2009), it is quite difficult to compute and optimize this mu-
tual information exactly. However, good approximations are available. In particular, we approximate
the posterior distributionp(θ|s1:t, r1:t) as a Gaussian density with respect to the parameterθ,

p(θ|s1:t, r1:t) ≈ Nµt,Ct(θ), (3)

whereµt andCt denote the posterior mean and covariance ofθ given (s1:t, r1:t); intuitively, µt rep-
resents our “best guess” aboutθ given the data observed in the firstt responses, andCt summarizes
our posterior uncertainty aboutθ. This Gaussian approximation turns out to be asymptotically precise
in the large-sample limitt → ∞ (Paninski, 2005), and is also fairly accurate even for finitet for the
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log-concave neural response models we consider here (Paninski etal., 2007; Lewi et al., 2009). Using
this Gaussian approximation, we can simplify the posterior entropy:

I(θ; rt+1:t+b|s1:t+b, r1:t) ≈ H
[

p(θ|s1:t, r1:t)
]

+
1

2
EθErt+1:t+b|s1:t+b,r1:t,θ log

∣

∣

∣

∣

∣

C−1
t +

b
∑

i=1

Jobs(rt+i, st+i)

∣

∣

∣

∣

∣

+ const., (4)

whereExf(x) denotes the expectation off(x) under the distribution of the random variablex. Since
the first term on the right hand side is constant with respect to the input sequencest+1:t+b, we will
focus our attention on the second term. We have already discussed the posterior covarianceCt;
Jobs(rt+i, st+i) denotes the observed Fisher information matrix aboutθ in the responsert+i, given
the inputst+i:

Jobs(rt+i, st+i) = −∇∇θ log p(rt+i|θ, st+i), (5)

where∇∇θ denotes the Hessian matrix with respect toθ.
Now, with these preliminaries out of the way, we consider three different cases:

1. The single-stimulus case,b = 1;

2. The finite-sequence case,1 < b < ∞;

3. The long-sequence limit,b → ∞.

Note that case 1,b = 1, which was considered in depth in (Lewi et al., 2009), is essentially a special
case of case 2. We will discuss case 2 in section 2 and case 3 in section 3 below. In neither case
are we able to solve the information-maximization problem exactly with the full desired generality.
Instead, for case 2, we develop a useful lower bound for the information in a sequence of stimuli
which is easier to optimize than the original expression. This lower bound turns out to be closely
related to theb = 1 case. We will see that optimizing this lower bound leads to significantly more
efficient experiments. Similarly, we will show that we can simplify the problem byletting b → ∞.
Unfortunately, even in this limiting case it appears that optimizing the information is ingeneral still
quite difficult. Therefore we focus our attention on a useful special case; again, we find that the
resulting optimized experimental designs are more efficient. Before moving onto the details of these
latter two cases, we briefly review our approach to case 1.

1.1 Case 1: the single-frame case,b = 1

The special structure of the GLM (eq. 1) allows us to compute the Gaussian information (eq. 4)
fairly explictly. In particular, since the firing rate in the GLM at timet + 1 depends only on the one-
dimensional projectionρt+1 = θT st+1 of the input onto the parameter vectorθ, the Fisher information
matrix Jobs(rt+1, st+1) is guaranteed to have rank one. Thus, by applying the Woodbury matrix
lemma toC−1

t + Jobs(rt+1, st+1) we can derive an expression for the mutual information which
depends on just two scalar variables,µρ = sT

t+1µt andσ2
ρ = sT

t+1Ctst+1:

I(θ; rt+1|s1:t+1, r1:t) ≈
1

2
Eθ|µt,Ct

Ert+1|st+1,θ log
(

1 + D(rt+1, ρt+1)σ
2
ρ

)

+ const. (6)

=
1

2
Eρt+1|µρ,σ2

ρ
Ert+1|ρt+1

log
(

1 + D(rt+1, ρt+1)σ
2
ρ

)

+ const., (7)
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whereρt+1 is a linear projection of the Gaussian variableθ and is therefore itself Gaussian with mean
µρ and varianceσ2

ρ, and we have abbreviated the Fisher information along the projectionρt,

D(rt, ρt) = −
∂2 log p(rt|ρ)

∂ρ2

∣

∣

∣

∣

ρ=ρt

. (8)

In the special case thatf(.) = exp(.) (in the GLM literature, this is referred to as the “canonical” link
function for Poisson responses, so we will refer to this as the “canonical Poisson” case), the Fisher
information does not depend on the observed responsert+1, and we can compute the above quantities
directly to obtain

I(θ; rt+1|s1:t+1, r1:t) =
1

2
Eρt+1|µρ,σ2

ρ
log
(

1 + exp(ρt+1)σ
2
ρ

)

+ const., (9)

which can be further reduced and computed analytically, via standard Gaussian formulae, when the
approximationlog(1 + x) ≈ x (for x small) is valid forx = exp(ρt+1)σ

2
ρ. Given this relatively

simple formula for the stimulus informativeness, we can choose a good stimulus,present this stimulus
to the neuron and record the responsert, update our approximate meanµt and covarianceCt using
the online maximum a posteriori methods described in (Lewi et al., 2009), andthen choose a new
stimulus according to our now-updated objective function, in a closed loop. Again, see (Lewi et al.,
2009) for further details.

2 Case 2: constructing a tractable lower bound for the informativeness
of stimulus sequences of finite lengthb

Now we turn to the question of computing the second term on the right-hand sideof eq. (4) forb > 1.
We have not been able to develop efficient algorithms for computing this term directly. However,
we can easily derive a tractable lower bound on this term: we use Jensen’sinequality applied to the
concave log-determinant function (Cover and Thomas, 1991) to move the summation over stimuli
outside the determinant:

log

∣

∣

∣

∣

∣

C−1
t +

b
∑

i=1

Jobs(rt+i, st+i)

∣

∣

∣

∣

∣

= log

∣

∣

∣

∣

∣

C−1
t +

b
∑

i=1

D(rt+i, ρt+i)st+is
T
t+i

∣

∣

∣

∣

∣

(10)

= log

∣

∣

∣

∣

∣

b
∑

i=1

1

b
C−1

t +
b

b
D(rt+i, ρt+i)st+is

T
t+i

∣

∣

∣

∣

∣

(11)

≥
b
∑

i=1

1

b
log
∣

∣C−1
t + bD(rt+i, ρt+i)st+is

T
t+i

∣

∣ (12)

=

b
∑

i=1

1

b

(

log
∣

∣C−1
t

∣

∣+ log(1 + bD(rt+i, ρt+i)s
T
t+iCtst+i)

)

(13)

= log |C−1
t | +

1

b

b
∑

i=1

log
(

1 + bD(rt+i, ρt+i)s
T
t+iCtst+i)

)

(14)

= log |C−1
t | +

1

b

b
∑

i=1

log
(

1 + bD(rt+i, ρt+i)σ
2
ρ,t+i)

)

, (15)
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where we have applied the Woodbury lemma and in the last line defined

σ2
ρ,t+i = sT

t+iCtst+i, (16)

with the projected Fisher informationD(rt+i, ρt+i) defined as in the last section. Whenb = 1 this
inequality is an equality and is exactly the same expression we discussed above (c.f. the term inside the
expectation in eq. 7; thelog |C−1

t | term is cancelled when we subtract this conditional entropy from the
prior entropy to form the mutual information). Whenb > 1 this expression may be plugged into the
expectation in eq. (4) to obtain a sum of terms which are essentially similar to the objective function
in theb = 1 case. As a result, we may use the methods in (Lewi et al., 2009) to efficiently compute
the terms in the summation. As before, the key insight is that for the GLM under consideration here,
each term in the resulting summation is simply a function of the two scalar variables(µρ,t+i, σ

2
ρ,t+i),

so to efficiently evaluate the bound we can simply precompute this function on some suitable range of
(µρ,t+i, σ

2
ρ,t+i); alternatively, in the canonical Poisson case, as discussed above, these formulas may

be simplified even further and in some cases computed analytically1. Again, see (Lewi et al., 2009)
for full details.

We can use this result to optimize our experiments in a straightforward manner.Suppose we are
givenn stimulus sequences, each of lengthb, and we want to choose the best sequence from among
thesen examples. Using the above expression, we compute the lower bound evaluated for each of
these sequences, and then we select the sequence which maximizes this lower bound2, present the
sequence, and update our posterior parametersµt and Ct based on the observed responses, as in
(Lewi et al., 2009). See Fig. 1 for an illustration, and the following section for further details. This
lower bound can also be applied in more elaborate receding-horizon settings(Kwon and Han, 2005),
where we update our chosen stimulus sequence every time step (instead of everyb time steps), but we
will stick to the simpler case (update everyb steps) below for clarity.

2.1 Application to zebra finch auditory data

One key question left unanswered by our previous work (Lewi et al., 2009) was how well our tech-
niques will work with real data. We can use the methods presented above to begin to address this
question. The idea is to take the set of stimulus-response pairs obtained during an actual experiment
and check whether the infomax approach leads to a more informative ordering of the data. A more in-
formative ordering of the data is one for which our parameter estimates converge faster (as a function
of the number of stimulus sequences presented) to the final estimate of the model trained using all the
data. Here we will not choose stimuli arbitrarily, from the space of all possible auditory stimuli, but
rather we will restrict our attention to stimuli which were actually presented, i.e.,to simple reorderings
of the trials, because we want to use the actual neural response observed with each presented stimulus.

We begin by describing the physiological experiments and data collected. Experimental details
have been previously described in (Woolley and Casseday, 2004; Woolley and Casseday, 2005). We
played auditory stimuli to adult male zebra finches while recording the responses of neurons in the

1The careful reader will have noticed that eq. 15 depends on the futureresponsesrt+i, through the projected Fisher
informationD(rt+i, ρt+i). However, recall that we are taking the expectation of eq. (15), by plugging into eq. (4), and the
expectation of each term in eq. (15) may be computed directly using the methods described above, without violating any
causality constraints.

2In (Lewi et al., 2009), we discuss analytical methods for computing theoptimal stimuli over sets of infinite cardinality,
e.g., ellipsoidal sets of bounded squared norm in stimulus space. These methods relied strongly on the one-dimensional
nature of the projected stimulusρt and are unfortunately not applicable in theb > 1 case, where the projected stimulus is
b-dimensional instead of just one-dimensional.
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Figure 1: A schematic of the online experimental design approach.Top: an illustration of how
stimulus sequences and the associated responses are obtained from the actual data. Each input,~st,
consists oftk + 1 columns of the spectrogram (with each column of widthdt = 2.5 ms here) as
indicated by the black boxes on the spectrogram (note the boxes are not drawn to scale, for improved
visibility). Each input also consists of the recent spike history as indicated by the red box on the raster
plot. On each iteration we pick a sequence ofb consecutive inputs. Taken together theseb inputs
yield one possible stimulus sequence~si:i+b−1 in the set of possible input sequences,S. The responses
to these stimuli, indicated by the black box in the raster plot, are the responses that we will observe
when this stimulus sequence is chosen.Bottom: the iterative loop that describes our experiment. At
each timestep we rank all remaining sequences inS that have not been selected yet. The sequences
are ranked according to the lower bound of the mutual information (pluggingEqn. 15 into Eqn. 4)
using our current posteriorp(θ|st:t, rt:t). The sequence which optimizes this objective function is
chosen and the neuron’s response to this sequence is used to update our Gaussian approximation of
the posterior (Eqn. 3). Using our updated posterior we then re-rank theremaining stimuli inS, having
removed the stimulus sequence we just presented, and continue the process.
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mesencephalicus lateralis pars dorsalis (MLd) using extracellular electrodes; for further details, see
(Woolley et al., 2006). MLd is a midbrain auditory nucleus which is the avian homolog of the mam-
malian inferior colliculus. The set of stimuli consisted of samples of the songs of 20 different adult
zebra finches and 10 modulation-limited noise stimuli (ml-noise), which is described below. Each
stimulus had a duration of approximately 2 seconds and was repeated 10 different times to the bird in
a random order. Before and after each stimulus was played there was a randomized period of silence
of 1200 − 1600 milliseconds. This period of silence allowed the neuron to return to its resting state
before the next stimulus was played, thereby minimizing the effects of adaptation.

Examples of each stimulus type and an accompanying raster plot for one neuron are shown in Fig-
ure 2. For comparison, ml-noise stimuli were also presented to the birds; this isa form of broadband
noise which is designed to have the same power and maximum spectral and temporal modulations that
occur in the songs of adult zebra finches (Hsu et al., 2004; Woolley et al., 2006) Thus, ml-noise can
be used to contrast the responses to conspecific vocalizations comparedto noise stimuli with a similar
spectral range.

2.1.1 Fitting the GLM to birdsong data

In this section we describe our efforts to estimate the receptive field of MLd neurons using GLM
methods. We used the canonical Poisson model (f(.) = exp(.)) for simplicity; in this case, as dis-
cussed above, the expected Fisher information is exponential and independent of the responsert. This
property makes the computations required to optimize the design much more tractable, and the results
in (Paninski, 2004; Lewi et al., 2009) indicate that the results should be fairly robust with respect to
the choice of the rectifying nonlinearityf(.) here. Finally, we have found in (Calabrese et al., 2010)
that the canonical Poisson model provides good predictions of spike trainresponses in this system.

The canonical Poisson model assigns a probability to the number of spikes we expect to observe
in some window of time, as a function of the stimulus, past responses, and background firing rate.
The log-likelihood of the response at timet is

log p(rt|st, θ) = − log rt! + rts
T
t θ − exp(sT

t θ)dt

sT
t = {~xT

t−tk
, . . . , ~xT

t , rt−ta , . . . , rt−1, 1}. (17)

The response,rt, is the number of spikes observed in a single trial in some small time window of
lengthdt. The input,st, consists of the most recenttk +1 stimuli, {~xt−tk , . . . , ~xt}, the most recentta
responses of the neuron, and a constant term that allows us to include a bias which sets the background
firing rate of the neuron. The stimulus~xt is defined more explicitly below.

For auditory neurons, the receptive field of the neuron is typically represented in the spectrotem-
poral domain because the early auditory system is known to perform a frequency decomposition.
Furthermore, transforming the input into the power spectral domain is a nonlinear transformation
which generally improves the accuracy of the linear model for auditory data(Gill et al., 2006). The
spectro-temporal receptive field (STRF) of the neuron,θx(τ, ω), is a two-dimensional filter which re-
lates the firing rate at timet to the amount of energy at frequencyω and timet−τ in the stimulus. The
subscript onθ is used to distinguish the elements ofθ which measure the dependence of the response
on the stimulus, spike-history, and bias terms respectively.

The stimuli and responses were computed from the experimental data by dividing the recordings
into time bins of2.5 ms. The time bin was small enough that more than one spike was almost never
observed in any bins. To construct the corresponding stimulus,~xt, we computed the power spectrum
over a small interval of time centered ont (Gill et al., 2006). The power was computed for frequencies

7



2

4

6

F
re

qu
en

cy
 (

K
hz

)

Bird song

 

 

T
ru

e

0 0.5 1 1.5 2 2.5
Time(s)

P
re

di
ct

ed

0

20

40

60

80

(a)

2

4

6

F
re

qu
en

cy
 (

K
hz

)

ML noise

 

 

T
ru

e

0 0.5 1 1.5 2 2.5
Time(s)

P
re

di
ct

ed

0

20

40

60

80

(b)

Figure 2: a) The top plot shows the spectrogram of one of the bird songsused during the experiments
(color scale is in units of sound intensity). The middle plot shows the raster plot of the recorded
neuron’s spiking in response to this stimulus, over ten identical repetitions. The bottom plot shows
the predicted raster plot computed using a GLM fitted to the training set. Each row of the raster plots
shows the firing of the neuron on independent presentations of the input.(Note that these responses to
repeated stimuli are useful for validating any model we fit to the observed data, but repeated responses
are not necessary for the stimulus-design procedures developed here.) The training set did not include
this song or the ml-noise stimulus shown in (b). b) The same as panel a), except the stimulus is ml-
noise instead of birdsong. When fitting a GLM, the stimulus,~xt, corresponds to one column of the
spectrogram matrix; the “input”st corresponds totk + 1 adjacent columns, as illustrated in Fig. 1.
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Figure 3: The receptive fields for two different neurons estimated with cutoff frequenciesnfc = 10
andntc = 4; see Appendix A for details. a) The STRF for the first neuron. b) The spike history
coefficients (the curve shows the values of the filter coefficients at different delays). The bias in this
case was -4.3. The error bars indicate plus and minus one standard deviation for each coefficient. c)
The STRF for the second neuron. d) The spike history for the second neuron. The bias in this case
case was -4.6.
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in the range300 − 8000 Hz, in intervals of approximately100Hz; previous work has suggested that
this frequency spacing is suitable for computing the STRF in this context (Singh and Theunissen,
2003; Gill et al., 2006).

We initially estimated a GLM with a STRF that had a duration of50 ms (tk + 1 = 20 time bins)
and hadta = 8 spike history terms as well as a bias term, for a total of1589 unknown parameters3.
The durations of the STRF and spike history dependence were chosen based on prior knowledge that
these durations were long enough to capture most of the salient features of the STRF and spike history
dependence (Woolley et al., 2006). Examples of the estimated STRF, spike-history, and bias terms
are shown in Figure 3. The STRFs have similar temporal and frequency tuning to the STRFs trained
on ml-noise using reverse-correlation methods presented in previous work (Woolley et al., 2006); see
(Calabrese et al., 2010) for further details. Also plotted is the estimated spikehistory filter. The largest
coefficients are negative and occur for delays close to zero; thus the effect of the spike-history terms is
to inhibit spiking immediately after the neuron fires (i.e., a relative refractory effect). The bias terms
were also significantly negative, corresponding to low background firing rates; for the neurons shown
in Fig. 3 the background firing rates are≈ 3 − 5 Hz.

To produce the STRFs shown in Figure 3 we incorporated a regularizer inthe fitting procedure to
remove high-frequency noise (Theunissen et al., 2000; Theunissen et al., 2001; Machens et al., 2003;
Smyth et al., 2003; Theunissen et al., 2004). Our preliminary results (data not shown) indicated that
removing this regularization led to over-fitting, which is unavoidable given thedimensionality of the
STRF and the size of the dataset: the30 stimuli, each≈ 2 s in duration, translate into≈ 20, 000
distinct inputs when using a50 ms STRF. Furthermore, most of these inputs are highly correlated due
to the temporal structure of birdsong and the fact that we generate the inputs~st by sliding a window
over the spectrogram. To deal with this issue efficiently, we represent theSTRF in the frequency
domain and incorporate a prior on the amplitudes of the frequency coefficients; fitting the STRF by
maximum penalized likelihood (instead of maximum likelihood) biases the STRF towards smoother
features when the available data are limited. This regularization procedure isdiscussed in detail in
Appendix A.

2.1.2 Quantifying the improvement due to infomax stimulus design

Our goal now is to measure how many fewer trials an infomax design would require to accurately
estimate these neurons’ receptive fields. We simulated a closed-loop infomaxexperiment by iterating
the following steps. First, we initialized our Gaussian prior given no observed stimulus-response
data; this Gaussian corresponds to the exponent of the quadratic low-pass regularizing penalty term
described in Appendix A. Next, we considered all sequences ofb consecutive stimuli and computed
the lower bound on the informativeness of each sequence, given all ofthe previously-presented stimuli
and corresponding responses, using equation (15). In these experiments we choseb = 20, so that
each subsequence had a duration of roughly50 ms, the approximate length of most relevant auditory
features in the zebra finch song. We then selected the stimulus sequence which maximized this lower
bound on the informativeness. To update our posterior meanµt and covariance matrixCt we used
the actual responses recorded given this sequence of inputs; using this data(st+1:t+b, rt+1:t+b), we
updated the posterior (eq. 3) via the methods described in (Lewi et al., 2009). We then recomputed
the informativeness of the remaining stimulus segments (excluding all previously chosen inputs),
using the new, updated posterior meanµt+b and covarianceCt+b. We repeated these steps until
all of the stimulus-response segments were processed. Below we will compare the performance of

379x20 coefficients of the STRF+8 spike history coefficients+1 bias term= 1589 unknown parameters.
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Figure 4: Quantifying the relative performance of the info. max. vs. the shuffled experimental design.
Each panel shows the expected log-likelihood, up to a normalization constant, computed on the test
sets for a different neuron. The test set for each neuron consistedof one bird song and one ml-noise
stimulus. The expected log-likelihood is plotted as a function of the number of time bins used to
train a model using inputs chosen by either an info. max. or shuffled designas described in the text.
The results clearly show that the info. max. design achieves a higher levelof prediction accuracy
using fewer trials. We quantify the improvement as the “speedup” factor defined in the main text; see
Figure 5(b) and Table 1 for details and quantitative comparisons. As notedin the text, the expected
log-likelihood is proportional to the amount of variability of the observations that can be explained
by knowingθ and s. In this case, a larger number means more of the variability can be explained by
knowingθ and s. The units are nats.
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Figure 5: a) A plot illustrating the quantities used to compute the speedup due to the infomax ap-
proach. For each design, we make a plot ofexp[Q(t)] (as defined in eq. (18)) vs.t. The maximum
value,Vmax, is the horizontal asymptote that both traces converge to.Vmax measures how well we
can predict the neuron’s responses using a GLM if we train on all the data. For any value,Ve, we can
read off the number of stimuli,tinfo. max. andtshuffled, required by each design to train a GLM that can
account forVe percent of the response variability. The ratiotshuffled

tinfo. max.
is the Speedup as a function ofVe.

b) A plot of the speedup achieved by using the info. max. design instead ofa shuffled design. The
speedup is plotted as a function of% Converged, as described in the text following eq. (18). The solid
blue line shows the average speedup across all 11 neurons and the dashed green lines show plus and
minus one standard deviation. The results show that using a shuffled design would require roughly 3
times as many trials to achieve the same level of prediction accuracy as the info.max. design.
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this procedure against a “shuffled” procedure in which stimulus-response pairs were drawn without
replacement from the true data set at each time step; i.e., the same data are presented, just in a shuffled
order.

We used28 different training stimulus files to generate input/response pairs(st, rt). Each stimulus
was presented10 times to the bird. The total number of spikes in the training sets ranged from roughly
300− 4000 per neuron. For each neuron, we trained a single model on all the trainingdata (including
both ml-noise and bird song stimuli), as opposed to fitting separate GLMs on the bird song and ml-
noise training sets, so that the training set would span the input space as much as possible. For
each neuron, the responses to one bird song and one ml-noise stimuli wereheld out as test stimuli to
evaluate the fitted models. The expected log-likelihood (averaged over ourposterior uncertainty about
the model parameters,p(θ|µt, Ct)) provides a measure of how well the model predicts the responses
to novel stimuli:

Q(t) =
1

T

T
∑

i=1

Eθ|~µt,Ct
log p(ri|si, θ), (18)

where the summation overi is over each stimulus-response pair in the test set andT is the number
of stimuli in the test set. Note that if the neuron’s response is perfectly predictable, and the GLM
achieves a perfect level of prediction, thenQ(t) = 0 (since in this case the conditional entropy of
the responsert will be zero). In practice,Q(t) will converge to some value less than0, since neural
responses are noisy and the GLM is an imperfect model. The results of this analysis are shown in
Figure 4 for two different neurons. In each case, the infomax design reduces the number of trials
needed to accurately estimate the neuron’s receptive field.

To quantify the improvement in efficiency over a larger neural population,we exponentiated the
expected log-likelioodQ(t) to obtain a quantity bounded between0 and1. We then examined the
ratio of the number of trials needed to achieve a given level of accuracy (as measured byexp(Q(t)),
normalized by its asymptotic maximum value computed using the full dataset) for each neuron, com-
paring the infomax approach to the original (random) order in which the stimuliwere presented. This
ratio (measured in units of % improvement) is summarized in Figure 5(b), which plots the average
and standard deviation of the speedup over all of the neurons in our dataset. The results show that on
average the shuffled design required three times as many trials to produce amodel that fit the data as
well as a model trained using the information maximizing design. Table 1 lists the median as well as
maximum and minimum speedup for all11 neurons examined here.

It is also worth noting that we expect the results in Figure 5(b) to underestimate the potential
improvement in actual experiments, because in our simulations the infomax design could only pick
inputs which were actually presented to the birds. We know from (Lewi et al., 2009) that restricting the
input to a poorly chosen set of stimuli can dramatically reduce the relative advantage of the infomax
design. Therefore, we would expect an infomax design which is allowed tochoose stimuli from a
much larger stimulus space than the relatively small set of songs and ml-noise stimuli considered in
these experiments to perform significantly better.

3 Case 3: constructing informative random sequences in the long-sequence
limit, b → ∞

In the previous section we chose informative stimuli with complex temporal features by optimizing
sequences ofb inputs. However, even for values ofb for which the stimulus segment is reoptimized

13



bird song ml-noise
Median 330% 310%

Min 160% 200%
Max 630% 480%

Table 1: A table listing the median as well as minimum and maximum values of the speedup evaluated
over all 11 neurons. The statistics are computed separately on the bird song and ml-noise stimuli in
the test set. The statistics were computed at50% converged (c.f. Fig. 5(b)).

just once every50 ms or so, a good deal of real-time computation is required. Thus it is natural to
ask whether the computations may be simplified if we letb become even larger. In particular, can we
form some convenient approximation of our objective function asb → ∞? This would correspond
to a situation in which we re-optimize our stimuli only occasionally during an experiment, and would
greatly reduce the required computational overhead. In addition, once we pick an arbitrarily long
sequence of inputs, we can continue the experiment indefinitely. Thus, while we are computing an
updated, optimized sequence using the most recent data, we can continue our experiment using the
previously chosen sequence, further reducing any real-time computational requirements.

How can we evaluate thisb → ∞ limit? If we look at the form of eq. (4) once again, we see that
the log-determinant term involves the inverse prior covarianceC−1

t plus a sum of Fisher information
matricesJobs over b responses. Thus we might hope that we can neglect the prior termC−1

t and
apply the law of large numbers to more easily evaluate the summed information matrices Jobs in the
large-b limit. This idea is well-known in the experimental design literature (Fedorov, 1972); see also
(Paninski, 2005) for some concrete results related to the setting discussedhere.

Unfortunately, the resulting limiting objective function (eq. (19) below) is still not very tractable.
Thus we relax our problem further, in three steps:

1. We restrict our consideration to stimulus sequences with a Gaussian distribution. Thus, instead
of searching over infinitely long stimulus sequences, we just need to optimize our objective
function over the much more tractable space of mean vectors and covariance functions.

2. We restrict our attention to the canonical Poisson GLM, which allows us to compute the objec-
tive function explicitly.

3. We construct a lower bound on this objective function to arrive at a function we can optimize
tractably.

3.1 Deriving a tractable objective function in the large-b limit

We begin by showing that asb → ∞ maximizing the mutual information is equivalent to maximizing
the average information per trial. If we think of the mutual information as measuring the total infor-
mation acquired fromb trials then the average information per trial (or the information rate) is just the
mutual information normalized by the number of trials. More concretely, let’s rewrite eq. (4) slightly:

EθErt+1:t+b|st+1:t+b,θ log

∣

∣

∣

∣

∣

C−1
t +

t+b
∑

i=t+1

Jobs(ri, si)

∣

∣

∣

∣

∣

= EθErt+1:t+b|st+1:t+b,θ log

∣

∣

∣

∣

∣

C−1
t

b
+

1

b

t+b
∑

i=t+1

Jobs(ri, si)

∣

∣

∣

∣

∣

+ dim(θ) log b.
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Thedim(θ) log b term does not depend on the input sequence, and may therefore be ignored. If Ct

is invertible and the average Fisher information1
b

∑t+b
i=t+1 Jobs(ri, si) is of full rank4, then(1/b)C−1

t

will be negligible asb → ∞, and

lim
b→∞

EθErt+1:t+b|st+1:t+b,θ log

∣

∣

∣

∣

∣

C−1
t

b
+

1

b

t+b
∑

i=t+1

Jobs(ri, si)

∣

∣

∣

∣

∣

= lim
b→∞

EθErt+1:t+b|st+1:t+b,θ log

∣

∣

∣

∣

∣

1

b

t+b
∑

i=t+1

Jobs(ri, si)

∣

∣

∣

∣

∣

.

(19)

The result is that maximizing the average Fisher information per trial is asymptotically equivalent to
maximizing the total information. See e.g. (Chaloner and Verdinelli, 1995) for background on the re-
sulting “Bayesian D-optimal” design criterion. As discussed in (Paninski, 2005), this log-determinant
of the average Fisher information is a concave function of the input distribution, p(st), and therefore
in principle we can optimize this function by ascent methods over the convex space of all possible
input distributionsp(st). Unfortunately, since we are considering very high-dimensional inputsst

here (e.g., bird songs), this optimization overp(st) will not be tractable in general, and we have to
search for a simpler relaxation of our problem.

3.1.1 Restricting our attention to Gaussian stimulus sequences

The first simplification is to restrict our attention to Gaussian stimulus distributionsp(st). The ad-
vantage here is obvious: Gaussian distributions are easy to sample from, and are specified completely
by their mean vectorµs and covariance matrixCs. Thus, ifst is d-dimensional, we can reduce our
original infinite-dimensional problem (search over all possible distributions p(st)) to a much sim-
pler O(d2)-dimensional problem (search over the space of allowable(µs, Cs)). So our optimization
problem is reduced from maximizing eq. (19) over all input distributionsp(st) to

max
µs,Cs

Eθ log

∣

∣

∣

∣

∣

Es|µs,Cs
Er|s,θ

1

b

b
∑

i=1

Jobs(ri, si)

∣

∣

∣

∣

∣

. (20)

3.1.2 Specializing to the canonical Poisson case

As emphasized above, computations involving Fisher information simplify dramatically in the canon-
ical Poisson model, since the observed Fisher information does not depend on the responsert. In fact,
the Fisher information has a particularly simple form here:

Jexp(s
T θ) = Er|s,θJobs(r, s) = exp(sT θ)ssT . (21)

4If Ct is low-rank thenC−1
t is infinite in some directions, and the derivation will not hold because the contribution

of C−1
t will not become negligible asb → ∞. In this case we can simply use a truncated design: i.e., we maximize

the information in directions for which our prior uncertainty is not zero. Toaccomplish this we simply projectθ into the
lower-dimensional space corresponding to the space spanned by non-zero eigenvectors ofCt. Alternately, in the case that
Ct has some very small but positive eigenvalues, it may be possible to approach the full objective function directly, though
we have not pursued this direction systematically.
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Note that eq. (20) involves a Gaussian integral over the Fisher information;the simple exponential
form of Jexp allows us to evaluate this expectation analyically here:

Eθ log
∣

∣Es|µs,Cs
Er|s,θJobs(r, s)

∣

∣ = Eθ log
∣

∣Es|µs,Cs
exp(sT θ)ss

∣

∣ (22)

= Eθ log

∣

∣

∣

∣

exp(θT µs +
1

2
θT Csθ)

(

(µs + Csθ)(µs + Csθ)
T + Cs

)

∣

∣

∣

∣

(23)

= Eθ

(

dθT µs +
d

2
θT Csθ + log |Cs| + log

(

1 + (µs + Csθ)
T C−1

s (µs + Csθ)
)

)

(24)

= d~µT
t µs +

d

2
Tr(Cs~µt~µ

T
t + CsCt) + log |Cs|

+ Eθ log(1 + (µs + Csθ)
T C−1

s (µs + Csθ)) (25)

(Note that we have incorporated the sum oversi in eq. (20) into the expectation overs in the first
line here.) More generally, for other GLMs, the expected Fisher information Ep(s)Jexp(s

T θ) may be
computed in terms of a rank-2 perturbation of the stimulus covariance matrixCs (see Appendix B).
This is still tractable in principle, but we have not explored this direction systematically.

3.1.3 Computing a tractable lower bound

Computing the last term in eq. (25) is difficult. However, it is easy to see that this term must be
nonnegative, since

(µs + Csθ)
T C−1

s (µs + Csθ) ≥ 0 ⇒ log(1 + (µs + Csθ)
T C−1

s (µs + Csθ)) ≥ 0. (26)

Thus, by dropping the log term5 we obtain a rather simple lower bound:

Eθ log |Es exp(sT θ)ss| ≥ d~µT
t µs +

d

2
Tr(Cs~µt~µ

T
t + CsCt) + log |Cs|. (27)

Qualitatively, this lower bound leads to a reasonable objective function foroptimizing the design.
Our goal is to pick inputs which maximize the amount of new information provided by the experiment.
The utility of an input is thus a function of 1) the informativeness of the experiment as measured by the
Fisher information, which is independent of what we already know, and 2) our posterior covariance,
which quantifies what we already know. We can interpret each of the termsin eq. (27) as reflect-
ing these goals. For example, in the canonical Poisson model the Fisher information increases with
exp(sT

t θ). Thus, to increase the Fisher information of the inputs we want to maximize the projection
of the inputs onθ. Clearly, maximizingTr(Cs~µt~µ

T
t ) = ~µT

t Cs~µt and~µT
t µs entails placing as much

stimulus power as we can in the direction of~µt, which is our best estimate ofθ at timet. As a result,
the first two terms quantify the extent to which the design picks inputs with large Fisher information.

In contrast, the effect of thelog |Cs| term is to whiten the design, since this term is maximized
(given a bound onTr(Cs), i.e., a bound on the total mean square power ofCs) when all the eigen-
values ofCs are equal. Similarly, theTr(CsCt) term is directly related to our prior uncertainty and
the Fisher information. TheTr(CsCt) term forces us to explore areas of uncertainty: maximizing

5It is also worth noting that the log term will typically be much smaller than the otherterms when the stimulus dimension
ds is large, since the first three terms in eq. (25) scale linearly withds.
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Tr(CsCt) subject to a constraint onTr(Cs) entails putting all stimulus power along the largest eigen-
vector ofCt. Thus, maximizingTr(CsCt) favors designs which explore regions ofθ space where our
uncertainty is high.

All of these terms may be increased trivially by increasing the magnitude of the stimuli. Therefore,
we must constrain the stimuli in order to get a well defined optimization problem. A reasonable
constraint is the average power of the stimuli,

E(sT s) = Tr(Cs) + µT
s µs. (28)

Thus, finally, we arrive at our desired optimization problem:

max
(µs,Cs):Tr(Cs)+µT

s µs<m

(

d~µT
t µs +

d

2
Tr(Cs~µt~µ

T
t + CsCt) + log |Cs|

)

, (29)

over the space of semi-positive definite stimulus covariance matricesCs. It turns out to be fairly
straightforward to solve this optimization problem semi-analytically; only a one-dimensional numer-
ical search over a Lagrange multiplier is required. See Appendix C for thedetails.

3.2 Results

We tested our methods using simulated experiments in which we generated synthetic responses from
a GLM whose parameters were estimated directly from the data described in section 2.1.1 above.
In particular, for the simulations shown here, we used the STRF and bias term fit to the neuron
shown in Fig. 3a; similar results were observed with parameters estimated fromother neurons (data
not shown). We chose stimuli either by sampling from an optimized Gaussian process using the
methods discussed above, or by sampling i.i.d. stimuli from a Gaussian distribution with mean zero
and covariance proportional to the identity matrix; the proportionality constant was chosen so that both
Gaussian processes were subject to the same average power constraint. The priorp(θ) was chosen as
discussed in the previous section.

In Figure 6 we compare the posterior mean estimate of the parameters using the two designs as
a function oft. In Figure 7 we compute the expected error

Eθ|µt,Ct
||θ − θo||2,

where the expectation is computed using our posterior onθ andθo is the true parameter vector. While
the posterior mean parameter estimatesµt qualitatively seem to converge at a similar rate in Figure
6, it is clear that the uncertainty in our estimates converges to zero faster when we use the optimized
Gaussian stimulus distribution.

In Figure 8 we plot the observed firing rate as a function of time for the synthetic neuron. This
plot shows that the optimized design ends up picking inputs which drive the neuron to fire at a higher
rate; recall that for the canonical Poisson the Fisher information increases with the firing rate.

4 Conclusion

In this work we have developed two methods for choosing informative stimulussequences for use in
on-line, adaptive sensory neurophysiology experiments. Our primary goal was to extend the methods
introduced in (Lewi et al., 2007; Lewi et al., 2009), which focused on the problem of choosing a
stimulus for which the corresponding response (measured as the spike count in a single short time

17



op
t. 

gp
.

Time bin
 300

Time bin
  2k

Time bin
  4k

Time bin
 10k

Time bin
 30k

Time bin
 100k

Time bin
 300k true

 

 

−40−20 0

1

2

3

4

5

6

7

w
hi

te
 n

oi
se

Time(ms)

−2

−1

0

1

2

x 10
−3

STRF

Figure 6: Simulation results comparing the posterior mean estimates of the STRF estimated using a
white vs. optimized Gaussian process. The STRF used to generate the data was the STRF fitted to the
neuron in Fig. 3a. In this case the posterior mean estimates seem to convergeto the true STRF at the
same qualitative rate; however, as shown in Fig. 7 below, the uncertainty ofour estimate shrinks more
rapidly under the optimized Gaussian process design.
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Figure 7: Plots of the expected squared error between the posterior meanand the corresponding true
value ofθ. The error is only computed for the stimulus coefficients (i.e the spike history and bias terms
were not included). The expected error is normalized by the square of the magnitude of the STRF.
For the optimal design, we tried several different designs in which we varied the interval over which
we updated our Gaussian stimulus distribution. The interval correspondingto each trace is shown in
the legend. The results show that we can achieve an improvement over an i.i.d. design even if we only
update the Gaussian process every200 timesteps (≈ 500 ms in this case); no major improvement is
seen (relative to the i.i.d. design) if we only update every2000 timesteps. For each design, we repeated
the simulation10 times, using the same real STRF each time (shown in Fig. 3a), and computed the
mean and standard deviation of the expected squared error. The resultsdid not depend strongly on the
STRF used to simulate the data. The plot shows the mean of the error and the errorbars show plus one
standard deviation.
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Figure 8: A plot of the projection of the stimulus mean onto the posterior mean estimate µt, for
the design using the optimized Gaussian process. The projection tends to increase witht, which
corresponds to an increase in the expected firing rate and in the informativeness of each stimulus.

bin) will provide as much information as possible about the observed neuron’s response properties.
The extension pursued here — to the problem of choosing asequence of stimuli whose corresponding
sequence of responses will be as informative as possible — turns out to be computationally quite
challenging, and so we have taken a more modest approximate approach instead. In sections 2 and 3
we developed two lower bounds on our original information-theoretic objective function; these bounds
provide rather natural extensions of the single-stimulus objective functionto the stimulus-sequence
case, and are much more computationally tractable than the full stimulus-sequence informativeness.
The first method (described in section 2) leads to efficient scoring of sequences of stimuli, so we can
quickly pick the most informative stimulus sequence out of a large batch of candidate sequences. The
second method (section 3) finds a good distribution over sequences, from which we may then draw
sample stimuli quite easily. In each case, despite a number of approximations and simplifications
to ensure the tractability of the resulting algorithm, the chosen stimulus sequences decreased the
error significantly faster than did standard experimental designs when tested on real and simulated
birdsong auditory responses. We emphasize that the methods described here are simple enough to be
implemented in on-line experiments without extraordinary effort, as comparedto the single-stimulus
methods discussed in (Lewi et al., 2009), which require implementation of rather sophisticated real-
time spike train processing and stimulus generation methods.

We close by noting a few attractive directions for future work. First, as emphasized in section 3.1
and in the appendix, it should be possible to develop tighter lower bounds and better approximations
for the informativeness, perhaps at the expense of some computational tractability. By maximizing
better approximations to the original information-theoretic objective function,we would hope to ob-
tain even better performance. Second, it would be very useful to extendthese methods to compute
informative stimulus sequences in the context of multiple-neuron recordings, which have proven es-
pecially powerful in studying the early visual system (Segev et al., 2004;Ohki et al., 2005; Pillow
et al., 2008) and which hold great promise in other sensory modalities (Luczak et al., 2007). Third,
higher-level neurons often show nonlinear selectivity for specific feature conjunctions, which makes
discovering optimal stimuli difficult, but ripe for efficient stimulus optimization methods. While the
simple GLM approach we have pursued here is poorly suited for such neurons, it may be possible to
adapt the nonlinear methods described in our previous work (Lewi et al.,2008; Lewi et al., 2009) to
handle these cases. Similarly, central neurons frequently exhibit strongresponse adaptation, which
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is often partially stimulus-specific. The method discussed in section 3 tends to drive sampling to-
ward stimuli that have a strong projection onto the cell’s receptive field, leading to an increasingly
strongly-driving and homogeneous subset of stimuli (cf. Fig. 8). Incorporating more profoundly
stimulus-dependent adaptation terms into our approach remains an important open challenge. Finally,
we are currently pursuing applications to real online experiments, in orderto better understand the
role of plasticity and spectral filtering in the songbird auditory system.
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A Using a frequency representation to smooth the STRF

To represent the STRF in the Fourier domain, we applied the Fourier transform separately to the
spectral and temporal dimensions of the STRF. Applying the separable Fourier transform to the STRF
is just a linear transformation. This transformation maps the STRF into a coordinate system in which
the basis functions are rank one matrices. Each of these matrices is the product of 1-dimensional
sine-waves in the spectral and temporal directions of the STRF. Using these basis functions we can
write the STRF such that each row and column of the STRF is a linear combinationof 1-d sine-waves,

θ(i, j) =

mf
∑

α=1

mt
∑

β=1

γ1
α,β sin(2π · fo,f · α · i) sin(2π · fo,t · β · j) (30)

+

mf
∑

α=1

mt
∑

β=0

γ2
α,β sin(2π · fo,f · α · i) cos(2π · fo,t · β · j) (31)

+

mf
∑

α=0

mt
∑

β=1

γ3
α,β cos(2π · fo,f · α · i) sin(2π · fo,t · β · j) (32)

+

mf
∑

α=0

mt
∑

β=0

γ4
α,β cos(2π · fo,f · α · i) cos(2π · fo,t · β · j). (33)

The functionssin(2π · fo,f · α · i) andcos(2π · fo,f · α · i) determine how each basis function varies
across the spectral dimension of the STRF while the functionssin(2π ·fo,t ·β ·j) andcos(2π ·fo,t ·β ·j)
determine how the basis functions vary across time in the STRF. Each pair of sine-waves measures the
amount of energy at particular frequencies in the spectral and temporaldimensions. The amplitude of
each frequency is determined by the coefficientsγi

α,β . To form an orthogonal basis for the STRF we
need to project the STRF onto sinusoids with frequencies

{0, fo,f , 2fo,f , . . .mffo,f} {0, fo,t, 2fo,t, . . . , mtfo,t} (34)

fo,f =
1

nf
fo,t =

1

nt
(35)

mf = ⌈
1

2fo,f
− 1⌉ mt = ⌈

1

2fo,t
− 1⌉; (36)

fo,f andfo,t are the fundamental frequencies and are set so that one period corresponds to the di-
mensions of the STRF (nt andnf denote the dimensions of the STRF in the time and frequency
dimensions, respectively), andmf andmt are the largest integers such thatmffo,f andmtfo,t are
less than the Nyquist frequency. We subtract 1 and take the ceiling to make sure the frequencies of
our basis functions are less than the Nyquist frequency. The unknownparameters in this new coordi-
nate system are the amplitudes,~γ = {γ1

α,β , γ2
α,β , γ3

α,β , γ4
α,β}. For simplicity, we will continue to refer

to the unknown parameters asθ, realizing that the STRF is represented using this new basis. Since
this transformation is linear we can continue to apply our methods for fitting the GLM and optimizing
the stimuli.

To low pass filter the STRF we can simply force the coefficients ofθ corresponding to high
frequencies to zero; i.e we pick cutoffsntc andnfc for the time and spectral directions respectively
and set

γi
α,β = 0 if α > nfc or β > ntc. (37)
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Decreasing the cutoff frequencies not only makes the estimated STRFs smoother, it also reduces the
dimensionality of the model. Reducing the dimensionality makes it easier to fit the GLMand optimize
the stimuli, but the risk is that the lower-dimensional model may be too simple to adequately model
auditory neurons. We can mitigate this risk by using a soft cutoff. Rather than force all high-frequency
components to zero, we can adjust our prior to reflect our strong belief that high frequencies should
have little energy; we simply set the prior mean of these coefficients to zero and decrease their prior
variance. If we now estimate the STRF using the maximum of the posterior then theamplitudes at
high frequencies will be biased by our prior towards zero. However, given sufficient evidence the
posterior mean will yield non-zero estimates for the amplitudes of high frequencies. See (Theunissen
et al., 2001) for details and (David et al., 2007; Calabrese et al., 2010) for further discussion.

We chose to impose a hard cutoff because we wanted to reduce the dimensionality to make online
estimation of the model and online optimization of the stimuli more tractable. To pick the cutoff
frequencies, we picked a single neuron and estimated the STRF using maximum-likelihood for a
variety of cutoff frequencies. We evaluated the quality of each model by computing the log-likelihood
of the bird’s responses to inputs in a test set. The test set consisted of one bird song and one ml-noise
stimulus which were not used to train the models. We chose the cutoff frequencies to benfc = 10
andntc = 4 because these values provided good predictive performance for boththe bird song and
ml-noise while keeping the number of unknown parameters tractable (in this case the STRF has 189
unknown parameters).

B Computing the average information for a Gaussian process

In this section we show how the average information per stimulus,

Eθ log
∣

∣Es exp(sT θ)ssT
∣

∣ ,

can be computed when the input distribution is a Gaussian process. For the GLM the expected Fisher
information matrixEsJexp(s, θ) has a simple 1-dimensional dependence onθ,

Jexp(s, θ) = Jexp(s
T θ)ssT (38)

Jexp(s
T θ) = −Er

∂2 log p(r|ρ = sT θ)

∂ρ2
ssT (39)

= Jexp(ρ = sT θ)ssT . (40)

This 1-dimensional structure along with the fact thatp(s) is Gaussian makes computing the expecta-
tions tractable. We start by defining a new coordinate system in which the first axis is aligned withθ.
This coordinate system is defined by the orthonormal matrix,Rθ. The first column ofRθ is θ

||θ||2
and

the remaining columns are a suitable set of orthonormal vectors. We can thusdefine the transformation
of s andθ into this new coordinate system,

θ
′

= RT
θ θ (41)

~w = RT
θ s. (42)

This coordinate system has the convenient properties

θ
′

i = 0 ∀i 6= 1 (43)

⇒ ~wT θ
′

= w1θ
′

1. (44)
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We can now rewrite our objective function

F(p(s)) = Eθ log |Ep(s)Jexp(ρ)ssT | (45)

= Eθ log |Ep(~w)Jexp(w1θ
′

1)~w~wT | (46)

= Eθ log |Ew1Jexp(w1θ
′

1)Ew2,...,wdim(s)|w1
~w~wT |. (47)

Sincep(s) is Gaussian and~w = RT
θ s, p(~w) is Gaussian with meanRT

θ µs and covariance matrix
RT

θ CsR
T
θ . Consequently,p(~w|w1) is also Gaussian and can be computed using the standard Gaussian

conditioning formulas,

p(~w|w1) = N (RT
θ µs +

1

σ2
ω1

RT
θ γ(w1 − µω1),R

T
θ CsRθ −

1

σ2
ω1

RT
θ γγTRθ) (48)

µω1 =
θT

||θ||2
µs (49)

σ2
ω1

=
θT

||θ||2
Cs

θ

||θ||2
(50)

γ = Cs
θ

||θ||2
. (51)

Using this distribution we can easily compute the conditional expectation,

E~w|w1
~w~wT = RT

θ

(

Cs −
1

σ2
ω1

γγT +

(

µs +
1

σ2
ω1

γ(w1 − µω1)

)(

µs +
1

σ2
ω1

γ(w1 − µω1)

)T
)

Rθ

(52)

= RT
θ

(

Cs +

(

µs +
1

σ2
ω1

γ(w1 − µω1) −
1

√

σ2
ω1

γ

)

×

(

µs +
1

σ2
ω1

γ(w1 − µω1) +
1

√

σ2
ω1

γ

)T )

Rθ (53)

= RT
θ

(

Cs +
(

~κw1 + ~δ
)

(~κw1 + ~η)T
)

Rθ (54)

~κ =
γ

σ2
ω1

(55)

~δ = µs −
γ

σ2
ω1

µω1 −
γ

√

σ2
ω1

(56)

~η = µs −
γ

σ2
ω1

µω1 +
γ

√

σ2
ω1

(57)

(58)
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The key point is that the expected value is just a rank-1 perturbation of a rotatedCs. We can now
evaluate the expectation overw1,

Ew1Jexp(w1θ
′

1)E~w|w1
~w~wT = RT

θ

(

Cs̟1 + ̟3

[

(~κ +
̟2

̟3

~δ)(~κ +
̟2

̟3
~η)T + (

̟1

̟3
− (

̟2

̟3
)2)~δ~ηT

])

Rθ

(59)

̟1 = Ew1Jexp(w1θ
′

1) (60)

̟2 = Ew1Jexp(w1θ
′

1)w1 (61)

̟2 = Ew1Jexp(w1θ
′

1)w
2
1; (62)

w1 = θT

||θ||2
s, andp(w1) is Gaussian with mean and variance(µω1 , σ

2
ω1

). The above are just 1-
dimensional expectations so for any value ofθ we could compute them numerically.

Eqn. 59 is a rank 2 update ofCs. Therefore we can use the matrix determinant lemma to compute
|Ew1E~w|w1

Jexp ~w~wT |,

log |Ew1E~w|w1
Jexp(w1θ

′

1)~w~wT |

= dim(Cs) log ̟1 + log |I + V T (̟1Cs)
−1U | + log |Cs| (63)

U = ̟3

[

(~κ +
̟2

̟3

~δ), (
̟1

̟3
− (

̟2

̟3
)2)~δ

]

(64)

V =

[

(~κ +
̟2

̟3
~η), ~η

]

. (65)

SinceI + V T (̟1Cs)
−1U is a 2-d matrix, we can compute its determinant analytically. Taking the

expectation with respect toθ yields,

Eθ log |Ew1E~w|w1
Jexp(w1θ

′

1)~w~wT |

= dim(Cs)Eθ log ̟1 + Eθ log |I + V T (̟1Cs)
−1U | + log |Cs|. (66)

C Solving the optimization problem described in section 3.1.3

Our goal is to solve the optimization problem

arg max
µs,Cs

d~µT
t µs +

d

2
Tr(CsR) + log |Cs|, (67)

where we have abbreviated

R = ~µt~µ
T
t + Ct, (68)

over all(µs, Cs) subject to the constraints

sT Css > 0 ∀s 6= 0 (69)

Tr(Cs) < m − ||µs||
2, (70)

wherem is the maximum allowed average stimulus power. Clearly the optimalµs will be parallel
to ~µt. Therefore, only the magnitude of the optimalµs is unknown. We can therefore rewrite the
objective function as
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arg max
||µs||

[

d||~µt||||µs|| + arg max
Cs

(

d

2
Tr(CsR) + log |Cs|

)]

(71)

We rewrite the inner problem to make the dependence on||µs|| (through the power constraint) more
explicit:

arg max
Cs

d

2
Tr(CsR) + log |Cs| (72)

s.t sT Css > 0 ∀s 6= 0 (73)

Tr(Cs) < m − ||µs||
2. (74)

We solve this optimization problem by introducing a Lagrange multiplier,

L =
d

2
Tr(CsR) + log |Cs| − λTr(Cs) (75)

= Tr

[

Cs

(

d

2
(R − λI)

)]

+ log |Cs|. (76)

This Lagrangian is exactly isomorphic to twice the log-likelihood in a multivariate Gaussian model
with zero mean, if we interpretCs as the inverse covariance matrix in the Gaussian model and−d

2(R−
λI) as the observed sample covariance matrix. Standard arguments involving a change of basis now
imply that the optimalCs is given by

Cs = −

(

d

2
(R − λI)

)−1

, (77)

for anyλ > maxi{ri}, whereri denotes thei-th eigenvalue ofR. This condition onλ is required to
ensure that the resultingCs maximizes the LagrangianL, and guarantees thatCs is positive definite.

We now solve forλ by plugging thisCs into our power constraint:

Tr(Cs) =
2

d

∑

i

1

λ − ri
= m − ||µs||

2 (78)

We can easily solve this equation numerically on the allowed rangeλ > maxi ri to computeλ as a
function of||µs||. We can then in principle do a search over all||µs|| to find the optimal value(µs, Cs).
In fact, a more efficient method is to instead just compute the optimal(||µs||, Cs) for each value of
λ; thus, a single 1-d search overλ is guaranteed to find the optimal(µs, Cs). Also note that we can
compute the inverse in eq. (77) efficiently for any value ofλ by computing the eigendecomposition
of R once and then using the fact thateig(R − λI) = eig(R) − λ; we used this formula already in
eq. (78).

Enforcing stationarity by incorporating Toeplitz constraints
It is worth noting, in the case of stimulus filtersθ that extend over more than one time bin (i.e.,

nt as defined in appendix A is greater than one), that the stimulus sequence drawn from the Gaussian
distribution defined above will not be temporally stationary. Instead, the stimulus sequence will con-
sist of a series of appendednt-long segments of draws from a Gaussian distribution, and therefore the
marginal distribution of the inputsst will in general be annt-mixture of Gaussians, instead of a single
Gaussian distribution. We recover a single Gaussian only in the special stationary case that the stimu-
lus covarianceCs is constrained to have a Toeplitz structure and the mean vectorµs is constrained to
be constant with respect to time-shifts.

26



Since we are observing the neural responsesrt given the inputst presented at each time pointt,
we should arguably optimize our information over this marginal mixture distribution, instead of the
single Gaussian distribution optimized in this appendix. Alternately, we could enforce stationarity in
our optimized Gaussian process by including Toeplitz constraints onCs in our derivation above. We
have had limited success deriving a computationally efficient optimization strategy in either of these
cases, but this remains an attractive direction for future research. Meanwhile, the results described in
section 3.2 (with a non-stationary optimized Gaussian stimulus ensemble) remain encouraging.
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