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Abstract

Adaptive stimulus design methods can potentially imprdwe efficiency of sensory neuro-
physiology experiments significantly; however, desigropgmal stimulus sequences in real time
remains a serious technical challenge. Here we describapywmximate methods for generating
informative stimulus sequences: the first approach prevadfast method for scoring the infor-
mativeness of a batch of specific potential stimulus seqgnehile the second method attempts
to compute an optimal stimulus distribution from which tixperimenter may easily sample. We
apply these methods to single-neuron spike train data dedofrom the auditory midbrain of
zebra finches, and demonstrate that the resulting stimapsesnices do in fact provide more in-
formation about neuronal tuning in a shorter amount of tih@tdo more standard experimental
designs.

Introduction

Adaptive stimulus optimization methods hold a great deal of promise for imprakhimefficiency
of sensory neurophysiology experiments (Tzanakou et al., 1979kd&¥ad992; deCharms et al.,
1998; Anderson and Micheli-Tzanakou, 1998; Foldiak, 2001; Mash@002; Edin et al., 2004,
Machens et al., 2005; O’Connor et al., 2005; Chen et al., 2005; Han2@5; Benda et al., 2007;
Yamane et al., 2008). We previously developed methods for efficiently atingpthe stimulus that
will provide the most information about a neuron’s tuning properties (Ledval., 2007; Lewi et al.,
2009). These methods were tested in a variety of simulated examples, andstierteal the potential
to speed convergence in our parameter estimates (and therefore teeduotal experimental time
needed to characterize neural tuning) by an order of magnitude.

However, we face two major problems when applying these methods directigliexperimental
settings. First, often stimuli need to be presented in “batches,” insteadeo$tonulus frame at a
time. In auditory experiments, for example, we typically do not present desiiigms “frame” of an
auditory stimulus; instead, we usually present longer stimuli (e.g., bird sorajher naturalistic se-
guences) with strong temporal correlations, since auditory neuronsateggformation over longer
timescales to detect acoustic features. Thus, we need a method to optimizeatigrgmirerentse-
guences of stimuli, instead of choosing the best stimulus on a frame-by-frame bagis, thia latter
approach will typically lead to choppy, temporally-incoherent, highly naturalistic stimuli.

Second, the methods described in (Lewi et al., 2007; Lewi et al., 2@0@jre the development
of highly-optimized, real-time software; in particular, for the real-time adapiiimulus design ap-
proach to be feasible, the stimulus generation and spike detection softecssarily need to be



tightly integrated. This may be quite challenging, depending on the recording available in a
given sensory neurophysiology lab. Thus, it would be very helpfuélax our goals somewhat: in-
stead of computing the optimal stimulus one presentation frame at a time, we would tikgelop
related methods to compute a highly-informative “batch” of stimuli that can bsegnted over the
next (possibly large) set of presentation frames. This greatly redneesquirement for real-time in-
tegration of stimulus generation and spike detection, since the necesseggsing can be done over
large batches of presentation frames instead of single frames (which vidatyprequire processing
on a time scale of milliseconds).

In this paper we present methods for solving both of these problems amehdérate their appli-
cability to single-neuron spike train data recorded from the auditory midbfaangbirds.

1 Overview and review

Our setting is as follows. We are recording from a neuron which respimralvector input; presented
at timet according to some conditional distributiptv|6, s;), wherer; is the response at timeand
0 denotes the vector of parameters that control the neuron’s respapsetes. As in (Paninski et al.,
2007; Lewi et al., 2009), we will focus our attention on a generalized lineadel (GLM) for the
neural responses:

r¢|0, 8¢ ~ Poiss [f(07 s¢)dt] , 1)

with the rectifying functionf(.) chosen to be convex and log-concave; as discussed in more detail
in (Paninski, 2004), these constraints ensure that the loglikelihood in thislmaltlbe a concave
function of the parametét. We will describe an example implementation of the GLM in much more
detail in section 2.1.1 below.

Given thet previously-observed input-response pdis;, r1.:), our knowledge about is sum-
marized by the posterior distributigr{f|s1., 71.¢). Our main goal when choosing the next sequence
of b inputs s, 1.+14 IS to reduce the entropy (uncertainty) of this conditional distribution as msich a
possible; more precisely, we want to choasge, ..., to optimize the conditional mutual information
(Cover and Thomas, 1991) between the parametand the response sequenge;.. ., given the
input SequUeNCe;y1.¢+p,

I<9;Tt+1:t+b’{31:t+ba7"1:t}) = H[p(9|81:t, Tl:t)] - H[p(9|51:t+b,7'1:t+b)]7 2)

whereH [p] denotes the entropy of the distributipnThe conditional mutual information is the differ-
ence between our parameter uncertainty at i [p(6|s1.¢, 71.¢)], and our expected uncertainty at
timet+0b, H[p(0|st+1.¢4+6, "t+1:¢4+1)], @nd therefore this quantity measures the amount of information
we expect an experiment to provide abut

As discussed at length in (Lewi et al., 2009), it is quite difficult to computeatimize this mu-
tual information exactly. However, good approximations are availableattiqolar, we approximate
the posterior distributiop(é|s1., 71.¢) as a Gaussian density with respect to the paraneter

p(mslztﬂal:t) %Mtt,ct(e)v (3)

wherey; andC; denote the posterior mean and covariancé given (s1.;, r1.¢); intuitively, y; rep-
resents our “best guess” abdugiven the data observed in the fitstesponses, an@; summarizes

our posterior uncertainty abo@t This Gaussian approximation turns out to be asymptotically precise
in the large-sample limit — oo (Paninski, 2005), and is also fairly accurate even for finiter the



log-concave neural response models we consider here (Paniaski2€07; Lewi et al., 2009). Using
this Gaussian approximation, we can simplify the posterior entropy:

I(0; re1:e4b|S1:040, T122) = H[p(G\SLt, 7“1:7:)}

b
Cit > Jobs(reyiy sivi)| + const., (4)
i=1

1
+ §E9E7"t+1:t+b|51:t+b77”1:t76 log

whereFE, f(z) denotes the expectation ¢fx) under the distribution of the random variabieSince
the first term on the right hand side is constant with respect to the inpuese€s; 1.; 1, we will
focus our attention on the second term. We have already discussed teeiggosovariance’;
Jobs(Tt+i, St+i) denotes the observed Fisher information matrix alsomt the response,,;, given
the inputs; ;-

Jobs (Tevis St4i) = —VVglog p(rivil0, seti), (5)

whereVV, denotes the Hessian matrix with respedf to
Now, with these preliminaries out of the way, we consider three differasgx

1. The single-stimulus cask= 1;
2. The finite-sequence cade< b < oc;
3. The long-sequence limii,— oco.

Note that case B, = 1, which was considered in depth in (Lewi et al., 2009), is essentially aapec
case of case 2. We will discuss case 2 in section 2 and case 3 in sectitow3 be neither case
are we able to solve the information-maximization problem exactly with the full e gjenerality.
Instead, for case 2, we develop a useful lower bound for the informati@ sequence of stimuli
which is easier to optimize than the original expression. This lower bound turhto be closely
related to theé = 1 case. We will see that optimizing this lower bound leads to significantly more
efficient experiments. Similarly, we will show that we can simplify the problenteltyng b — oc.
Unfortunately, even in this limiting case it appears that optimizing the informationgsmeral still
quite difficult. Therefore we focus our attention on a useful specia;cagain, we find that the
resulting optimized experimental designs are more efficient. Before movitgtbe details of these
latter two cases, we briefly review our approach to case 1.

1.1 Case 1: the single-frame casé,= 1

The special structure of the GLM (eg. 1) allows us to compute the Gausd@mmation (eq. 4)
fairly explictly. In particular, since the firing rate in the GLM at time- 1 depends only on the one-
dimensional projectiop,; = 67 s;,1 of the input onto the parameter vecéythe Fisher information
matrix Jops (741, St+1) IS guaranteed to have rank one. Thus, by applying the Woodbury matrix
lemma toC’t‘l + Jobs(re+1, S¢+1) We can derive an expression for the mutual information which
depends on just two scalar variablgg,= s/, i ando? = s{, | Cysiq1:

1
I(0; 4181041, 710) = TG O P log (1 + D(r¢41, pt+1)03) + const. (6)

2

1

=_F
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pt+1\up,a§Er log (1 + D(7¢41, pt+1)a§) + const., @)

t+1|Pt+1



wherep; 1 is a linear projection of the Gaussian variabland is therefore itself Gaussian with mean
p, and variancerﬁ, and we have abbreviated the Fisher information along the projegtion

 9*logp(ri|p)

5 ®)

D(Tt, Pt) = .
pP=pt

In the special case thd(.) = exp(.) (in the GLM literature, this is referred to as the “canonical” link
function for Poisson responses, so we will refer to this as the “candPaiason” case), the Fisher
information does not depend on the observed respgnseand we can compute the above quantities
directly to obtain

10541181041, m1:8) = %Eptﬂlup,cfﬁ log (1 + exp(ptH)Uz) + const., 9
which can be further reduced and computed analytically, via standarssaauformulae, when the
approximationlog(1 + z) ~ z (for x small) is valid forz = exp(pt+1)a§. Given this relatively
simple formula for the stimulus informativeness, we can choose a good stimprggent this stimulus
to the neuron and record the respongeupdate our approximate meap and covariancé’;, using
the online maximum a posteriori methods described in (Lewi et al., 2009){hemdchoose a new
stimulus according to our now-updated objective function, in a closed logpinAsee (Lewi et al.,

20009) for further details.

2 Case 2: constructing a tractable lower bound for the informativeness
of stimulus sequences of finite length

Now we turn to the question of computing the second term on the right-handfsede (4) forb > 1.
We have not been able to develop efficient algorithms for computing this teectlg. However,
we can easily derive a tractable lower bound on this term: we use Jeiseqglity applied to the
concave log-determinant function (Cover and Thomas, 1991) to moveuthmation over stimuli
outside the determinant:

b b
log Ct_l + Z Jobs(Tt4is St44)| = log Ct_l + Z D(ryi, Pt+z‘)8t+i5tT+i (10)
i=1 i=1
b
= log Z lct_l + QD(TH—@'; Pri)StiSiyi (11)
P b b v
b1
> 5 log |C 4 bD(regis pryi) sevist il (12)
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where we have applied the Woodbury lemma and in the last line defined
Uz,t—&-i = 3?+1‘Ct3t+i7 (16)

with the projected Fisher informatioP (1, p++;) defined as in the last section. When= 1 this
inequality is an equality and is exactly the same expression we discussedaliothe term inside the
expectation in eq. 7; tHeg |Ct‘1\ term is cancelled when we subtract this conditional entropy from the
prior entropy to form the mutual information). Whén> 1 this expression may be plugged into the
expectation in eq. (4) to obtain a sum of terms which are essentially similar to j@tiob function
intheb = 1 case. As a result, we may use the methods in (Lewi et al., 2009) to efficiemipute
the terms in the summation. As before, the key insight is that for the GLM urdhesideration here,
each term in the resulting summation is simply a function of the two scalar varigbjges;, Ug,t-H‘)’

so to efficiently evaluate the bound we can simply precompute this functiomoa soitable range of
(Hp,t+is agm); alternatively, in the canonical Poisson case, as discussed abose foneulas may
be simplified even further and in some cases computed analyticalyain, see (Lewi et al., 2009)
for full details.

We can use this result to optimize our experiments in a straightforward meBugpose we are
givenn stimulus sequences, each of lengttand we want to choose the best sequence from among
thesen examples. Using the above expression, we compute the lower boundtedaioaeach of
these sequences, and then we select the sequence which maximizes thisdond, present the
sequence, and update our posterior parameteend C; based on the observed responses, as in
(Lewi et al., 2009). See Fig. 1 for an illustration, and the following sectasrfurther details. This
lower bound can also be applied in more elaborate receding-horizon sékinga and Han, 2005),
where we update our chosen stimulus sequence every time step (insteadyéfteane steps), but we
will stick to the simpler case (update evérgteps) below for clarity.

2.1 Application to zebra finch auditory data

One key question left unanswered by our previous work (Lewi et @092was how well our tech-
niques will work with real data. We can use the methods presented aboegitotb address this
question. The idea is to take the set of stimulus-response pairs obtairieg aoractual experiment
and check whether the infomax approach leads to a more informativerayaéithe data. A more in-
formative ordering of the data is one for which our parameter estimatesigmnfaster (as a function
of the number of stimulus sequences presented) to the final estimate of thigraimge using all the
data. Here we will not choose stimuli arbitrarily, from the space of all iptssswditory stimuli, but
rather we will restrict our attention to stimuli which were actually presentedta.simple reorderings
of the trials, because we want to use the actual neural responsgeaibasdth each presented stimulus.
We begin by describing the physiological experiments and data collectquerifrental details
have been previously described in (Woolley and Casseday, 2004leyvand Casseday, 2005). We
played auditory stimuli to adult male zebra finches while recording the respasf neurons in the

The careful reader will have noticed that eq. 15 depends on the freap®nses..;, through the projected Fisher
information D(r:+., pr+:). However, recall that we are taking the expectation of eq. (15), bygptggnto eq. (4), and the
expectation of each term in eq. (15) may be computed directly using thedsettescribed above, without violating any
causality constraints.

2In (Lewi et al., 2009), we discuss analytical methods for computingfhienal stimuli over sets of infinite cardinality,
e.g., ellipsoidal sets of bounded squared norm in stimulus spacee Tinethods relied strongly on the one-dimensional
nature of the projected stimulys and are unfortunately not applicable in the> 1 case, where the projected stimulus is
b-dimensional instead of just one-dimensional.
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Figure 1: A schematic of the online experimental design approddp: an illustration of how
stimulus sequences and the associated responses are obtained fratudhdata. Each inpug;,
consists oft; + 1 columns of the spectrogram (with each column of width= 2.5 ms here) as
indicated by the black boxes on the spectrogram (note the boxes areanot i scale, for improved
visibility). Each input also consists of the recent spike history as indicatéudred box on the raster
plot. On each iteration we pick a sequencebajonsecutive inputs. Taken together thésaputs
yield one possible stimulus sequerntg, ;1 in the set of possible input sequenc8sThe responses
to these stimuli, indicated by the black box in the raster plot, are the resposegethwill observe
when this stimulus sequence is chosBottom: the iterative loop that describes our experiment. At
each timestep we rank all remaining sequences that have not been selected yet. The sequences
are ranked according to the lower bound of the mutual information (pludgggqrg 15 into Eqgn. 4)
using our current posterigr(f|s.., 7). The sequence which optimizes this objective function is
chosen and the neuron’s response to this sequence is used to updateussian approximation of
the posterior (Eqn. 3). Using our updated posterior we then re-ramkthaining stimuli inS, having
removed the stimulus sequence we just presented, and continue thesproces




mesencephalicus lateralis pars dorsalis (MLd) using extracellular elestréut further details, see
(Woolley et al., 2006). MLd is a midbrain auditory nucleus which is the aviandiog of the mam-
malian inferior colliculus. The set of stimuli consisted of samples of the sohg6 different adult
zebra finches and 10 modulation-limited noise stimuli (ml-noise), which is deschblow. Each
stimulus had a duration of approximately 2 seconds and was repeateder@mitimes to the bird in
a random order. Before and after each stimulus was played there wada@mized period of silence
of 1200 — 1600 milliseconds. This period of silence allowed the neuron to return to its restiteg sta
before the next stimulus was played, thereby minimizing the effects of adaptatio

Examples of each stimulus type and an accompanying raster plot for oreraaa shown in Fig-
ure 2. For comparison, ml-noise stimuli were also presented to the birds; ghieris of broadband
noise which is designed to have the same power and maximum spectral andgienqutulations that
occur in the songs of adult zebra finches (Hsu et al., 2004; Woollely, &086) Thus, ml-noise can
be used to contrast the responses to conspecific vocalizations cortgpacese stimuli with a similar
spectral range.

2.1.1 Fitting the GLM to birdsong data

In this section we describe our efforts to estimate the receptive field of MiLdams using GLM

methods. We used the canonical Poisson mofle) (= exp(.)) for simplicity; in this case, as dis-

cussed above, the expected Fisher information is exponential and imidepi@f the response. This

property makes the computations required to optimize the design much moreleaatabthe results

in (Paninski, 2004; Lewi et al., 2009) indicate that the results shoulditdg fabust with respect to

the choice of the rectifying nonlinearitf(.) here. Finally, we have found in (Calabrese et al., 2010)

that the canonical Poisson model provides good predictions of spikaésponses in this system.
The canonical Poisson model assigns a probability to the number of spékezpect to observe

in some window of time, as a function of the stimulus, past responses, akdrband firing rate.

The log-likelihood of the response at timés

log p(re|se,0) = —logr! + rish0 — exp(s] 0)dt

s{ ={a . & rite, o1, 1) (17)

The response;, is the number of spikes observed in a single trial in some small time window of
lengthdt. The input,s,, consists of the most recefit+ 1 stimuli, {Z;_,, , ..., Z;}, the most recert,
responses of the neuron, and a constant term that allows us to incliadevehiich sets the background
firing rate of the neuron. The stimula is defined more explicitly below.

For auditory neurons, the receptive field of the neuron is typically sgpted in the spectrotem-
poral domain because the early auditory system is known to perforngaeiney decomposition.
Furthermore, transforming the input into the power spectral domain is a panltransformation
which generally improves the accuracy of the linear model for auditory (@&tket al., 2006). The
spectro-temporal receptive field (STRF) of the neufiir, w), is a two-dimensional filter which re-
lates the firing rate at timeto the amount of energy at frequencyand timet — 7 in the stimulus. The
subscript oré is used to distinguish the elementsfoivhich measure the dependence of the response
on the stimulus, spike-history, and bias terms respectively.

The stimuli and responses were computed from the experimental dataithyglithe recordings
into time bins of2.5 ms. The time bin was small enough that more than one spike was almost never
observed in any bins. To construct the corresponding stimuiysye computed the power spectrum
over a small interval of time centered b{Gill et al., 2006). The power was computed for frequencies
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Figure 2: a) The top plot shows the spectrogram of one of the bird asegbduring the experiments
(color scale is in units of sound intensity). The middle plot shows the rasteioplkhe recorded
neuron’s spiking in response to this stimulus, over ten identical repetitioms.b®ttom plot shows
the predicted raster plot computed using a GLM fitted to the training set. Eacbfithe raster plots
shows the firing of the neuron on independent presentations of the {iNmie that these responses to
repeated stimuli are useful for validating any model we fit to the obserated dut repeated responses
are not necessary for the stimulus-design procedures develope}l Tiee training set did not include
this song or the ml-noise stimulus shown in (b). b) The same as panel apt éixeestimulus is ml-
noise instead of birdsong. When fitting a GLM, the stimulua%, corresponds to one column of the
spectrogram matrix; the “input; corresponds to, + 1 adjacent columns, as illustrated in Fig. 1.
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Figure 3: The receptive fields for two different neurons estimated withfictiequencies:y. = 10
andn;. = 4; see Appendix A for details. a) The STRF for the first neuron. b) Tdikeshistory
coefficients (the curve shows the values of the filter coefficients areiftelelays). The bias in this
case was -4.3. The error bars indicate plus and minus one standarticatefdaeach coefficient. c)

The STRF for the second neuron. d) The spike history for the secem@n. The bias in this case
case was -4.6.



in the rangeB00 — 8000 Hz, in intervals of approximately00 H z; previous work has suggested that
this frequency spacing is suitable for computing the STRF in this contexti{&ind Theunissen,
2003; Gill et al., 2006).

We initially estimated a GLM with a STRF that had a duratiors@fms ¢, + 1 = 20 time bins)
and had, = 8 spike history terms as well as a bias term, for a total &9 unknown parametets
The durations of the STRF and spike history dependence were chasea dn prior knowledge that
these durations were long enough to capture most of the salient feafttliesSTRF and spike history
dependence (Woolley et al., 2006). Examples of the estimated STRF,hipikey, and bias terms
are shown in Figure 3. The STRFs have similar temporal and frequeniogttmthe STRFs trained
on ml-noise using reverse-correlation methods presented in previokgWoolley et al., 2006); see
(Calabrese et al., 2010) for further details. Also plotted is the estimatedtspthey filter. The largest
coefficients are negative and occur for delays close to zero; thu§féicea the spike-history terms is
to inhibit spiking immediately after the neuron fires (i.e., a relative refracttfec®. The bias terms
were also significantly negative, corresponding to low backgroundyfidgtes; for the neurons shown
in Fig. 3 the background firing rates axe3 — 5 Hz.

To produce the STRFs shown in Figure 3 we incorporated a regularigtes fitting procedure to
remove high-frequency noise (Theunissen et al., 2000; Theunisaén2001; Machens et al., 2003;
Smyth et al., 2003; Theunissen et al., 2004). Our preliminary results (dathawn) indicated that
removing this regularization led to over-fitting, which is unavoidable giverdtireensionality of the
STRF and the size of the dataset: festimuli, each~ 2 s in duration, translate intex 20, 000
distinct inputs when using® ms STRF. Furthermore, most of these inputs are highly correlated due
to the temporal structure of birdsong and the fact that we generate the Wytsliding a window
over the spectrogram. To deal with this issue efficiently, we represerBTRE- in the frequency
domain and incorporate a prior on the amplitudes of the frequency coefficiiting the STRF by
maximum penalized likelihood (instead of maximum likelihood) biases the STRFdevganoother
features when the available data are limited. This regularization proceddiscisssed in detail in
Appendix A.

2.1.2 Quantifying the improvement due to infomax stimulus design

Our goal now is to measure how many fewer trials an infomax design wouldreetp accurately
estimate these neurons’ receptive fields. We simulated a closed-loop inexpesiment by iterating
the following steps. First, we initialized our Gaussian prior given no oleskestimulus-response
data; this Gaussian corresponds to the exponent of the quadratic $swqmailarizing penalty term
described in Appendix A. Next, we considered all sequencésohsecutive stimuli and computed
the lower bound on the informativeness of each sequence, givertlad pfeviously-presented stimuli
and corresponding responses, using equation (15). In theseéregpes we chosé = 20, so that
each subsequence had a duration of roughlyns, the approximate length of most relevant auditory
features in the zebra finch song. We then selected the stimulus sequdalenalitimized this lower
bound on the informativeness. To update our posterior meamd covariance matri€’; we used
the actual responses recorded given this sequence of inputs; UsiRta(s; 1.4+, "t1:445), WE
updated the posterior (eq. 3) via the methods described in (Lewi et aB).2@& then recomputed
the informativeness of the remaining stimulus segments (excluding all prévicdgsen inputs),
using the new, updated posterior mean;, and covariance”, ;. We repeated these steps until
all of the stimulus-response segments were processed. Below we will cotigaperformance of

379x20 coefficients of the STRIFS spike history coefficients-1 bias term= 1589 unknown parameters.

10
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Figure 4: Quantifying the relative performance of the info. max. vs. thélsld experimental design.
Each panel shows the expected log-likelihood, up to a normalization constamputed on the test
sets for a different neuron. The test set for each neuron consittetk bird song and one mi-noise
stimulus. The expected log-likelihood is plotted as a function of the number of tinseused to
train a model using inputs chosen by either an info. max. or shuffled dasigescribed in the text.
The results clearly show that the info. max. design achieves a higherdepeédiction accuracy
using fewer trials. We quantify the improvement as the “speedup” facforegkin the main text; see
Figure 5(b) and Table 1 for details and quantitative comparisons. As iothd text, the expected
log-likelihood is proportional to the amount of variability of the observatiors tan be explained
by knowing# and s. In this case, a larger number means more of the variability can be explained b
knowingé and s. The units are nats.
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Figure 5: a) A plot illustrating the quantities used to compute the speedup due tafdimax ap-
proach. For each design, we make a plotaf[Q(¢)] (as defined in eq. (18)) v§. The maximum
value, V..., is the horizontal asymptote that both traces convergé/ig,. measures how well we
can predict the neuron’s responses using a GLM if we train on all the Batany value}., we can
read off the number of stimuliinse. max. andtshutiies required by each design to train a GLM that can
account forV/, percent of the response variability. The raﬁ%% is the Speedup as a functiondf.

b) A plot of the speedup achieved by using the info. max. design insteadlofiffled design. The
speedup is plotted as a function%fConverged, as described in the text following eq. (18). The solid
blue line shows the average speedup across all 11 neurons andltlee dasen lines show plus and
minus one standard deviation. The results show that using a shufflech desigd require roughly 3
times as many trials to achieve the same level of prediction accuracy as thmafodesign.
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this procedure against a “shuffled” procedure in which stimulus-resppairs were drawn without
replacement from the true data set at each time step; i.e., the same datsenéguigust in a shuffled
order.

We used8 different training stimulus files to generate input/response airs;). Each stimulus
was presentetl times to the bird. The total number of spikes in the training sets ranged fraghlsou
300 — 4000 per neuron. For each neuron, we trained a single model on all the traiatadincluding
both mi-noise and bird song stimuli), as opposed to fitting separate GLMs orirthedmng and ml-
noise training sets, so that the training set would span the input space asaswpossible. For
each neuron, the responses to one bird song and one ml-noise stimuhietl@i@ut as test stimuli to
evaluate the fitted models. The expected log-likelihood (averaged ovpostarior uncertainty about
the model parameters(6|u, C;)) provides a measure of how well the model predicts the responses
to novel stimuli:

T
1
Q) = > Bojac, Jogp(rilsi, 0), (18)
=1

where the summation overis over each stimulus-response pair in the test setiarglthe number
of stimuli in the test set. Note that if the neuron’s response is perfecthigiabte, and the GLM
achieves a perfect level of prediction, th€xt) = 0 (since in this case the conditional entropy of
the response; will be zero). In practice@)(¢) will converge to some value less thansince neural
responses are noisy and the GLM is an imperfect model. The results ohtdisses are shown in
Figure 4 for two different neurons. In each case, the infomax desidances the number of trials
needed to accurately estimate the neuron’s receptive field.

To quantify the improvement in efficiency over a larger neural populati@nexponentiated the
expected log-likeliood)(t) to obtain a quantity bounded betweerand1. We then examined the
ratio of the number of trials needed to achieve a given level of accuescynéasured byxp(Q(t)),
normalized by its asymptotic maximum value computed using the full dataset) foneacon, com-
paring the infomax approach to the original (random) order in which the stinauk presented. This
ratio (measured in units of % improvement) is summarized in Figure 5(b), whith thle average
and standard deviation of the speedup over all of the neurons in owetlatde results show that on
average the shuffled design required three times as many trials to prochaxeathat fit the data as
well as a model trained using the information maximizing design. Table 1 lists the meslisell as
maximum and minimum speedup for all neurons examined here.

It is also worth noting that we expect the results in Figure 5(b) to underdstitha potential
improvement in actual experiments, because in our simulations the infomax aesilgl only pick
inputs which were actually presented to the birds. We know from (Lewi,é2@09) that restricting the
input to a poorly chosen set of stimuli can dramatically reduce the relatixenéabe of the infomax
design. Therefore, we would expect an infomax design which is allowetidose stimuli from a
much larger stimulus space than the relatively small set of songs and ml-tioisé sonsidered in
these experiments to perform significantly better.

3 Case 3: constructing informative random sequences in the long-seguee
limit, b — oo

In the previous section we chose informative stimuli with complex temporalresitwy optimizing
sequences df inputs. However, even for values bfor which the stimulus segment is reoptimized
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bird song| ml-noise

Median| 330% 310%
Min 160% 200%
Max 630% 480%

Table 1: A table listing the median as well as minimum and maximum values of the gpeetluated
over all 11 neurons. The statistics are computed separately on the bgdwsdml-noise stimuli in
the test set. The statistics were computesiét converged (c.f. Fig. 5(b)).

just once every0 ms or so, a good deal of real-time computation is required. Thus it is natural to
ask whether the computations may be simplified if wehleecome even larger. In particular, can we
form some convenient approximation of our objective functiom as co? This would correspond

to a situation in which we re-optimize our stimuli only occasionally during an éxy@st, and would
greatly reduce the required computational overhead. In addition, oageick an arbitrarily long
sequence of inputs, we can continue the experiment indefinitely. Thule wé are computing an
updated, optimized sequence using the most recent data, we can contirexperiment using the
previously chosen sequence, further reducing any real-time compuatatimuirements.

How can we evaluate this— oo limit? If we look at the form of eq. (4) once again, we see that
the log-determinant term involves the inverse prior covariz{ﬁ;é plus a sum of Fisher information
matrices.J,,, over b responses. Thus we might hope that we can neglect the prior@grivand
apply the law of large numbers to more easily evaluate the summed information mdggicen the
larged limit. This idea is well-known in the experimental design literature (Fedorov2) e also
(Paninski, 2005) for some concrete results related to the setting disdwesed

Unfortunately, the resulting limiting objective function (eq. (19) below) is still wery tractable.
Thus we relax our problem further, in three steps:

1. We restrict our consideration to stimulus sequences with a Gaussianutistribrhus, instead
of searching over infinitely long stimulus sequences, we just need to optimizebjective
function over the much more tractable space of mean vectors and cosfigrotions.

2. We restrict our attention to the canonical Poisson GLM, which allows usrtgpate the objec-
tive function explicitly.

3. We construct a lower bound on this objective function to arrive anation we can optimize
tractably.

3.1 Deriving a tractable objective function in the large# limit

We begin by showing that ds— oo maximizing the mutual information is equivalent to maximizing
the average information per trial. If we think of the mutual information as mesasthe total infor-
mation acquired frona trials then the average information per trial (or the information rate) is just the
mutual information normalized by the number of trials. More concretely, letsite eq. (4) slightly:

t+b -1 t+b
_ C :
EQE’"t+1:t+b|5t+1:t+b79 log Ct ! + Z Jobs("”uSi) = EeETt+1:t+b|st+1:t+b,9 log -t + g Z Jobs(ri,si) +d1m(9) logb.

, b .
i=t+1 1=t+1
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The dim(0) log b term does not depend on the input sequence, and may therefore bedigiia’;
is invertible and the average Fisher informat%)EEifH Jops (T3, 5;) is of full rank?, then(l/b)C{l
will be negligible a9 — oo, and

C_1 t+b 1 t+b
bli{n E9E7t+l:t+b|st+l:t+b79 log tT + 5 Z JObS(Th S’i) = bli{n EeErt+1:t+b|5t+1:t+b70 log g Z Jobs(’ri’ si) :
> i=t+1 > i=t+1
(19)

The result is that maximizing the average Fisher information per trial is asyradtptguivalent to
maximizing the total information. See e.g. (Chaloner and Verdinelli, 1995)dokdround on the re-
sulting “Bayesian D-optimal” design criterion. As discussed in (Paninski52@his log-determinant
of the average Fisher information is a concave function of the input distibw(s;), and therefore
in principle we can optimize this function by ascent methods over the cona®e s all possible
input distributionsp(s;). Unfortunately, since we are considering very high-dimensional inguts
here (e.g., bird songs), this optimization oygs;) will not be tractable in general, and we have to
search for a simpler relaxation of our problem.

3.1.1 Restricting our attention to Gaussian stimulus sequences

The first simplification is to restrict our attention to Gaussian stimulus distributitn$. The ad-
vantage here is obvious: Gaussian distributions are easy to sample fobareagpecified completely
by their mean vecton; and covariance matri€’s. Thus, if s; is d-dimensional, we can reduce our
original infinite-dimensional problem (search over all possible distribatjgr,)) to a much sim-
pler O(d?)-dimensional problem (search over the space of allowghleC;)). So our optimization
problem is reduced from maximizing eq. (19) over all input distributiefss) to

b

1
;naéx Eylog Es|u5,CsEr|s795 Z Jobs(riv Si) . (20)
Sy 'S 7421

3.1.2 Specializing to the canonical Poisson case

As emphasized above, computations involving Fisher information simplify draafigtic the canon-
ical Poisson model, since the observed Fisher information does notdlepé¢ie response. In fact,
the Fisher information has a particularly simple form here:

Jexp(sTQ) = E,5,0Jobs(7,8) = exp(sTH)ssT. (21)

4If C; is low-rank thenC; ! is infinite in some directions, and the derivation will not hold because th&ibation
of ;! will not become negligible a8 — oco. In this case we can simply use a truncated design: i.e., we maximize
the information in directions for which our prior uncertainty is not zero.atoomplish this we simply projeétinto the
lower-dimensional space corresponding to the space spanned faermpigenvectors af’;. Alternately, in the case that
C, has some very small but positive eigenvalues, it may be possible toagpthe full objective function directly, though
we have not pursued this direction systematically.
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Note that eq. (20) involves a Gaussian integral over the Fisher informadktiersimple exponential
form of J.,, allows us to evaluate this expectation analyically here:

Eyglog ‘Es\,u,s,CSEﬂs,@JObs(T? s)‘ = Eylog ’ESWS’CS exp(sT9)53| (22)

1
exp(@T,us + §9TC'59) ((,us + Cs0)(us + CSG)T + C'S)
(23)

= E9 log

= Ey (d@Tus + geTose +log |Cy| + log (1 4 (ps + Cs0) T C;H (s + cge)))
(24)

B d M
= dfif ps + G Tr(Cofisfif + CaCt) +log |Cl
+ Eglog(1 + (s + Cs0)" O (s + Cs)) (25)

(Note that we have incorporated the sum owem eq. (20) into the expectation overin the first
line here.) More generally, for other GLMs, the expected Fisher informdfy@S)Jexp(sTG) may be
computed in terms of a rank-2 perturbation of the stimulus covariance ndat(isee Appendix B).
This is still tractable in principle, but we have not explored this direction ayatieally.

3.1.3 Computing a tractable lower bound

Computing the last term in eq. (25) is difficult. However, it is easy to see thatdhm must be
nonnegative, since

(115 + CsB)T O (s + Cs) > 0 = log(1 + (s + Cs6)T O (s + Cs0)) 2 0. (26)

Thus, by dropping the log terfwe obtain a rather simple lower bound:

Eplog |Esexp(s”0)ss| > djif ps + gTr(csﬁtﬁtT + CsCt) + log |yl (27)

Qualitatively, this lower bound leads to a reasonable objective functioopiiimizing the design.
Our goal is to pick inputs which maximize the amount of new information provigetdoexperiment.
The utility of an input is thus a function of 1) the informativeness of the eérpant as measured by the
Fisher information, which is independent of what we already know, ammaiposterior covariance,
which quantifies what we already know. We can interpret each of the tereg. (27) as reflect-
ing these goals. For example, in the canonical Poisson model the Fishenatifan increases with
exp(s! 0). Thus, to increase the Fisher information of the inputs we want to maximize dfecfion
of the inputs ord. Clearly, maximizingl'r(Csjisjil ) = jil Csjiy andjil 115 entails placing as much
stimulus power as we can in the directionigf which is our best estimate éfat timet. As a result,
the first two terms quantify the extent to which the design picks inputs with lagieFinformation.

In contrast, the effect of thing |C,| term is to whiten the design, since this term is maximized
(given a bound of'r(Cs), i.e., a bound on the total mean square powef'gfwhen all the eigen-
values ofC are equal. Similarly, th&r(CsC}) term is directly related to our prior uncertainty and
the Fisher information. Th&'r(CsC}) term forces us to explore areas of uncertainty: maximizing

Sitis also worth noting that the log term will typically be much smaller than the déiters when the stimulus dimension
ds is large, since the first three terms in eq. (25) scale linearly &ith
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Tr(CsC}) subject to a constraint dfir(C;) entails putting all stimulus power along the largest eigen-
vector ofC;. Thus, maximizind'r(CsC;) favors designs which explore regionstodpace where our
uncertainty is high.

All of these terms may be increased trivially by increasing the magnitude dfithels Therefore,
we must constrain the stimuli in order to get a well defined optimization problemea&aonable
constraint is the average power of the stimuli,

E(s"s) = Tr(Cs) + pil pis- (28)

Thus, finally, we arrive at our desired optimization problem:

d
max diif ps + =Tr(Csfizjiy + CsCy) + 1o C>, 29
(110.Co) Tr{O T s <m ( My s 5 (Cs iy sCt) g|Cs (29)
over the space of semi-positive definite stimulus covariance matfigedt turns out to be fairly
straightforward to solve this optimization problem semi-analytically; only a omelsional numer-
ical search over a Lagrange multiplier is required. See Appendix C fatetsls.

3.2 Results

We tested our methods using simulated experiments in which we generatedisynes@onses from
a GLM whose parameters were estimated directly from the data describedtions2.1.1 above.
In particular, for the simulations shown here, we used the STRF and brasfiteto the neuron
shown in Fig. 3a; similar results were observed with parameters estimateafr@mneurons (data
not shown). We chose stimuli either by sampling from an optimized Gausstess using the
methods discussed above, or by sampling i.i.d. stimuli from a Gaussian distnilwitlo mean zero
and covariance proportional to the identity matrix; the proportionality cohgtaschosen so that both
Gaussian processes were subject to the same average power coristi@jpriorp(6) was chosen as
discussed in the previous section.

In Figure 6 we compare the posterior mean estimate of the parameters using thesigns as
a function oft. In Figure 7 we compute the expected error

By, |10 — ol |2,

where the expectation is computed using our posterigramdd, is the true parameter vector. While
the posterior mean parameter estimatggualitatively seem to converge at a similar rate in Figure
6, it is clear that the uncertainty in our estimates converges to zero fasterwdnuse the optimized
Gaussian stimulus distribution.

In Figure 8 we plot the observed firing rate as a function of time for the syictheuron. This
plot shows that the optimized design ends up picking inputs which drive tivemé¢o fire at a higher
rate; recall that for the canonical Poisson the Fisher information ineseish the firing rate.

4 Conclusion

In this work we have developed two methods for choosing informative stinsglgsences for use in
on-line, adaptive sensory neurophysiology experiments. Our printaivgas to extend the methods
introduced in (Lewi et al., 2007; Lewi et al., 2009), which focused anghoblem of choosing a
stimulus for which the corresponding response (measured as the spikeic@ single short time
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Figure 6: Simulation results comparing the posterior mean estimates of the StiR&ted using a

white vs. optimized Gaussian process. The STRF used to generate theaddtee\BTRF fitted to the
neuron in Fig. 3a. In this case the posterior mean estimates seem to caovirgdérue STRF at the
same qualitative rate; however, as shown in Fig. 7 below, the uncertaiaty estimate shrinks more
rapidly under the optimized Gaussian process design.
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Figure 7: Plots of the expected squared error between the posterioramédhe corresponding true
value off. The error is only computed for the stimulus coefficients (i.e the spike histaipias terms
were not included). The expected error is normalized by the square ohégnitude of the STRF.
For the optimal design, we tried several different designs in which wiedséine interval over which
we updated our Gaussian stimulus distribution. The interval correspotwgearh trace is shown in
the legend. The results show that we can achieve an improvement over.afesigh even if we only
update the Gaussian process ev#i§ timesteps4 500 ms in this case); ho major improvement is
seen (relative to the i.i.d. design) if we only update ex2389§0 timesteps. For each design, we repeated
the simulation1 0 times, using the same real STRF each time (shown in Fig. 3a), and computed the
mean and standard deviation of the expected squared error. The didultd depend strongly on the
STRF used to simulate the data. The plot shows the mean of the error ancbiibaer show plus one
standard deviation.
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Figure 8. A plot of the projection of the stimulus mean onto the posterior mean éstimafor
the design using the optimized Gaussian process. The projection tendsdasmaritht, which
corresponds to an increase in the expected firing rate and in the infoemegiv of each stimulus.

bin) will provide as much information as possible about the observed newesponse properties.
The extension pursued here — to the problem of choosseguence of stimuli whose corresponding
sequence of responses will be as informative as possible — turns oetc¢onbputationally quite
challenging, and so we have taken a more modest approximate apprdaetalifa sections 2 and 3
we developed two lower bounds on our original information-theoretic ¢gigefunction; these bounds
provide rather natural extensions of the single-stimulus objective funtdidime stimulus-sequence
case, and are much more computationally tractable than the full stimulus-sequérmativeness.
The first method (described in section 2) leads to efficient scoring ofesegs of stimuli, so we can
quickly pick the most informative stimulus sequence out of a large batchndidate sequences. The
second method (section 3) finds a good distribution over sequenceswinich we may then draw
sample stimuli quite easily. In each case, despite a number of approximatidrsnaplifications
to ensure the tractability of the resulting algorithm, the chosen stimulus segudaceeased the
error significantly faster than did standard experimental designs whied tes real and simulated
birdsong auditory responses. We emphasize that the methods des@aibeddsimple enough to be
implemented in on-line experiments without extraordinary effort, as comparte single-stimulus
methods discussed in (Lewi et al., 2009), which require implementation arratiphisticated real-
time spike train processing and stimulus generation methods.

We close by noting a few attractive directions for future work. First, ashesiged in section 3.1
and in the appendix, it should be possible to develop tighter lower boundsedter approximations
for the informativeness, perhaps at the expense of some computatactabtlity. By maximizing
better approximations to the original information-theoretic objective functi@wvould hope to ob-
tain even better performance. Second, it would be very useful to extessé methods to compute
informative stimulus sequences in the context of multiple-neuron recordiigsh have proven es-
pecially powerful in studying the early visual system (Segev et al., 200 et al., 2005; Pillow
et al., 2008) and which hold great promise in other sensory modalities dkwetzal., 2007). Third,
higher-level neurons often show nonlinear selectivity for specifitufeaconjunctions, which makes
discovering optimal stimuli difficult, but ripe for efficient stimulus optimization methoWhile the
simple GLM approach we have pursued here is poorly suited for sugbmgLit may be possible to
adapt the nonlinear methods described in our previous work (Lewi €0f8; Lewi et al., 2009) to
handle these cases. Similarly, central neurons frequently exhibit stespgnse adaptation, which
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is often partially stimulus-specific. The method discussed in section 3 tend&¢osdmpling to-
ward stimuli that have a strong projection onto the cell’s receptive fieldjrigad an increasingly
strongly-driving and homogeneous subset of stimuli (cf. Fig. 8). npaating more profoundly
stimulus-dependent adaptation terms into our approach remains an impodard@lenge. Finally,
we are currently pursuing applications to real online experiments, in todeetter understand the
role of plasticity and spectral filtering in the songbird auditory system.
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A Using a frequency representation to smooth the STRF

To represent the STRF in the Fourier domain, we applied the Fourier dransfeparately to the
spectral and temporal dimensions of the STRF. Applying the separahleFovansform to the STRF
is just a linear transformation. This transformation maps the STRF into a catedipstem in which
the basis functions are rank one matrices. Each of these matrices is thetpodd -dimensional
sine-waves in the spectral and temporal directions of the STRF. Using lizsss functions we can
write the STRF such that each row and column of the STRF is a linear combinéfied sine-waves,

myg mg
0(i,5) =Y > Vapsin(@r- for-a-i)sin2r- fo,- B ) (30)
a=1 =1
my o my
+ Z Z 7276 sin(2m - fo - a-i)cos(2m - for - B-J) (31)
a=18=0
my my )
+ Z Z 73«5 cos(2m - fo - a-i)sin(2m - for - B-J) (32)
a=0 =1
my my
+ Z Z’yiﬂ cos(2m - fo r-a-i)cos(2m - for - B 7). (33)

a=0 B=0

The functionssin(27 - fo 5 - a - i) andcos(27 - f, - a - i) determine how each basis function varies
across the spectral dimension of the STRF while the function{@z - f,, ;- 3-j) andcos(27- fo.1-3-7)
determine how the basis functions vary across time in the STRF. Each paieafaves measures the
amount of energy at particular frequencies in the spectral and tengorahsions. The amplitude of
each frequency is determined by the coefficie;rj;[,%. To form an orthogonal basis for the STRF we
need to project the STRF onto sinusoids with frequencies

{07 f07f72f0,fa"'mffo,f} {Oafo,tazfo,ta-"7mtf0,t} (34)
1 1

Jof=— Jot=— (35)
nf ¢

1 1

my =T =11 me= T —1; (36)

fo,r and f,; are the fundamental frequencies and are set so that one periodpmrds to the di-
mensions of the STRF andn; denote the dimensions of the STRF in the time and frequency
dimensions, respectively), and; andm, are the largest integers such thaj f,  andm, f,, are
less than the Nyquist frequency. We subtract 1 and take the ceiling to mekéhe frequencies of
our basis functions are less than the Nyquist frequency. The unkparameters in this new coordi-
nate system are the amplitudes= {7, 5,72 5,75 5,7 3} For simplicity, we will continue to refer
to the unknown parameters @srealizing that the STRF is represented using this new basis. Since
this transformation is linear we can continue to apply our methods for fitting thié &1d optimizing
the stimuli.

To low pass filter the STRF we can simply force the coefficient® abrresponding to high
frequencies to zero; i.e we pick cutoftg. andn . for the time and spectral directions respectively
and set

737[3:0 if a>ngor B> ng. (37)
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Decreasing the cutoff frequencies not only makes the estimated STRFthemdtoalso reduces the
dimensionality of the model. Reducing the dimensionality makes it easier to fit thedbld\ptimize
the stimuli, but the risk is that the lower-dimensional model may be too simple to atddgmodel
auditory neurons. We can mitigate this risk by using a soft cutoff. Ratheiftinee all high-frequency
components to zero, we can adjust our prior to reflect our strong bediehiph frequencies should
have little energy; we simply set the prior mean of these coefficients to zdrdeamease their prior
variance. If we now estimate the STRF using the maximum of the posterior thempigudes at
high frequencies will be biased by our prior towards zero. Howeveengsufficient evidence the
posterior mean will yield non-zero estimates for the amplitudes of high freipgereee (Theunissen
et al., 2001) for details and (David et al., 2007; Calabrese et al., 260.0)rther discussion.

We chose to impose a hard cutoff because we wanted to reduce the dinaditystormake online
estimation of the model and online optimization of the stimuli more tractable. To pickutiodf c
frequencies, we picked a single neuron and estimated the STRF using malkkalinood for a
variety of cutoff frequencies. We evaluated the quality of each modebinpating the log-likelihood
of the bird’s responses to inputs in a test set. The test set consisted birdrsong and one mi-noise
stimulus which were not used to train the models. We chose the cutoff freigsetio ben;. = 10
andn;. = 4 because these values provided good predictive performance fothHsobird song and
ml-noise while keeping the number of unknown parameters tractable (in tliglSTRF has 189
unknown parameters).

B Computing the average information for a Gaussian process
In this section we show how the average information per stimulus,
Eylog|Es exp(sTQ)ssT‘ ,

can be computed when the input distribution is a Gaussian process. Faclthéh® expected Fisher
information matrix&, Je., (s, #) has a simple 1-dimensional dependencé,on

Jeap(s,0) = Jemp(sTH)ssT (38)
82 log p(r(p = s"6)
T T
Jemp(s ) =—E, o2 Ss (39)
= Jeap(p = 5" 0)ss" . (40)

This 1-dimensional structure along with the fact thét) is Gaussian makes computing the expecta-
tions tractable. We start by defining a new coordinate system in which theXissis aligned witto.
This coordinate system is defined by the orthonormal maRix, The first column ofR is ﬁ and
the remaining columns are a suitable set of orthonormal vectors. We catetinesthe trans*‘ormation
of s and@ into this new coordinate system,
0 =RYo (41)
wW=TRLs. (42)

This coordinate system has the convenient properties

0, =0 Vi1l (43)
= @' = wb. (44)
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We can now rewrite our objective function

F(p(s)) = Eglog ’E ezp( )s T’ (45)
= Eg log |E ~)Jexp(w10 )117117 ‘ (46)
= Eylog |Euw, Jezp(wi6,)E wiwt . (47)

va“’vwdim(s)le
Sincep(s) is Gaussian andi = R]'s, p(w) is Gaussian with meaR] 1, and covariance matrix
RHTCSR},F Consequentlyy(w|w; ) is also Gaussian and can be computed using the standard Gaussian
conditioning formulas,

. 1 1
p(lwn) = N(Rf s + 5 REY(w1 = ), R CsRo = —-RivY Ry) (48)
0T 1 1
o = T M 49
e H0H2M (49)
T 0
2
oL, = Cs (50)
[0 7162
0
=Cy—. 51
7= T 1)

Using this distribution we can easily compute the conditional expectation,

- 1 1 1 T
Egju, Wi = Rj (Cs = — "+ (us+ ——y (w1 uwl)) (/Ler ——y(w1 Nw1)> >R9

wl Wl wl

(52)
1 1
= RT Cs + s wi1) —
9( (u 317( = Hhr) 73117>
1
X (:U/s =+ o2 '7( Mw1) > )RG (53)
wl
= Rg (Cs + <Ew1 + g) (le + 77) ) Ro (54)
7 % (55)
O'wl
T Y i
6= Hs — O_T,uu.u - Tt%l (56)
= s — %Mm + % (57)
w1 le
(58)
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The key point is that the expected value is just a rank-1 perturbation @btedC,. We can now
evaluate the expectation over,

By Jeap(w107) Egy, @i = RY <Csw1 + w3 [(m 28R+ 2T 4+ (2L - (m)Q)gﬁTD Ro
w3 w3 w3 w3
(59)
@1 = By Jeap(wi6;) (60)
w9 — Ew1 Jexp(wlﬁll)wl (61)
wa = Ey, Jexp(w19/1)w%; (62)
wy = ﬁs, andp(w;) is Gaussian with mean and variange,,,s2 ). The above are just 1-

dimensional expectations so for any valuéefe could compute them numerically.
Eqgn. 59 is a rank 2 update 6f;. Therefore we can use the matrix determinant lemma to compute
’Ew1E7j}|w1 Jeacpwa‘,

log |Ew1 Eu7|w1 Jezp(wlgll)wa|
= dim(C;) log @y + log |I + VT (w,Cy)71U| + log |Cs| (63)
U= [(ﬁ L5 (B (P25 (64)
w3 w3 w3
V= [(z " w2ﬁ>,ﬁ] . (65)
w3

Sincel + VT (w1 C,)~U is a 2-d matrix, we can compute its determinant analytically. Taking the
expectation with respect tyields,

Eglog |Ew, Bygju, Jeap(w10y) @ |
= dim(Cy)Eglogw + Eglog |[I + VT (w,Cs)7'U| +1og|Cs|.  (66)

C Solving the optimization problem described in section 3.1.3

Our goal is to solve the optimization problem

d
arg max dﬁtTus + §TT(CSR) + log |Cs|, (67)
Ms,Us

where we have abbreviated
R= ﬁtﬂ%p + Cy, (68)
over all(us, Cs) subject to the constraints

sTCus >0 Vs#0 (69)
Tr(Cs) <m — ||ps| I, (70)

wherem is the maximum allowed average stimulus power. Clearly the optimavill be parallel
to ;. Therefore, only the magnitude of the optimal is unknown. We can therefore rewrite the
objective function as
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d
arg s |l e+ avg s (§7r(C.0) + 1o ) )
Hs s

We rewrite the inner problem to make the dependencgaf| (through the power constraint) more
explicit:

arg max gTr(CSR) + log |Cs| (72)
st sTCys>0 VYs#0 (73)
Tr(Cs) <m — HMSH2- (74)
We solve this optimization problem by introducing a Lagrange multiplier,
L= gTr(C’sR) +log|Cs| = ATH(C) (75)
d
=Tr {CS (Q(R—/\I)” + log |Cy]. (76)

This Lagrangian is exactly isomorphic to twice the log-likelihood in a multivariates&ian model
with zero mean, if we interprét, as the inverse covariance matrix in the Gaussian modelr%md%—
AI) as the observed sample covariance matrix. Standard arguments invohnaggeoof basis now
imply that the optimal’ is given by
d —1
Cs=— <2(R — AI)) , (77)
for any A > max;{r;}, wherer; denotes the-th eigenvalue of?. This condition on\ is required to

ensure that the resulting; maximizes the Lagrangiah, and guarantees thal, is positive definite.
We now solve for\ by plugging thisC into our power constraint:

2 1
Tr(Co) =52 5=y = m sl (78)

We can easily solve this equation numerically on the allowed rangemax; r; to compute) as a
function of||us||. We can then in principle do a search ovetall|| to find the optimal valuéy, Cs).
In fact, a more efficient method is to instead just compute the optifal||, Cs) for each value of
A; thus, a single 1-d search ovkiis guaranteed to find the optim@ks, Cs). Also note that we can
compute the inverse in eq. (77) efficiently for any value\dfy computing the eigendecomposition
of R once and then using the fact thay(R — A\I) = eig(R) — \; we used this formula already in
eqg. (78).

Enforcing stationarity by incorporating Toeplitz constraints

It is worth noting, in the case of stimulus filtefshat extend over more than one time bin (i.e.,
n; as defined in appendix A is greater than one), that the stimulus sequemaefdom the Gaussian
distribution defined above will not be temporally stationary. Instead, the stamsa@guence will con-
sist of a series of appendeg-long segments of draws from a Gaussian distribution, and therefore the
marginal distribution of the inputg will in general be am;-mixture of Gaussians, instead of a single
Gaussian distribution. We recover a single Gaussian only in the speciahatgtitase that the stimu-
lus covarianc&’ is constrained to have a Toeplitz structure and the mean vegisrconstrained to
be constant with respect to time-shifts.
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Since we are observing the neural respongegven the inputs; presented at each time point
we should arguably optimize our information over this marginal mixture distribuiimtead of the
single Gaussian distribution optimized in this appendix. Alternately, we coutit@nttationarity in
our optimized Gaussian process by including Toeplitz constraints,an our derivation above. We
have had limited success deriving a computationally efficient optimization strategther of these
cases, but this remains an attractive direction for future researcmwihda, the results described in
section 3.2 (with a non-stationary optimized Gaussian stimulus ensemble) reroaimaging.
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