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Abstract We develop theory and numerical methods for
computing the most likely subthreshold voltage path of a
noisy integrate-and-fire (IF) neuron, given observations of
the neuron’s superthreshold spiking activity. This optimal
voltage path satisfies a second-order ordinary differential
(Euler-Lagrange) equation which may be solved analyti-
cally in a number of special cases, and which may be solved
numerically in general via a simple “shooting” algorithm.
Our results are applicable for both linear and nonlinear sub-
threshold dynamics, and in certain cases may be extended
to correlated subthreshold noise sources. We also show how
this optimal voltage may be used to obtain approximations
to (1) the likelihood that an IF cell with a given set of pa-
rameters was responsible for the observed spike train; and
(2) the instantaneous firing rate and interspike interval dis-
tribution of a given noisy IF cell. The latter probability ap-
proximations are based on the classical Freidlin-Wentzell
theory of large deviations principles for stochastic differ-
ential equations. We close by comparing this most likely
voltage path to the true observed subthreshold voltage trace
in a case when intracellular voltage recordings are available
in vitro.
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1. Introduction

A classic and recurring problem in theoretical neuroscience
is to estimate the probability that a noisy integrate-and-
fire-type (IF-type) neuronal model, which has fired at time
t = 0, will not fire again until time + = 7. This prob-
lem appears in a number of contexts, including firing
rate computations (Brunel and Latham, 2003), statistical
model fitting (Paninski et al., 2004b), and decoding (Brown
et al., 2004).

According to the theory of large deviations (Freidlin and
Wentzell, 1984; Dembo and Zeitouni, 1993), as the noise
level o tends to zero, this probability may be asymptotically
approximated (on a logarithmic scale) by simply considering
the likelihood of the “most likely” (ML) voltage path V(z)
satisfying the constraints that (1) the voltage at time 0
begins at a given reset value (V (0) = Vieser); (2) the voltage
at time T reaches a threshold value (V(T) = Vy,); and (3)
the voltage does not cross threshold before time T (V (¢) <
Vi, 0 <t < T; note, however, that the voltage is allowed
to touch threshold, V () = Vy,, for times between 0 and 7).
Thus by computing the likelihood of the ML path we may
obtain a useful approximation for the firing probability of
interest.

Of course, this ML path is of independent interest. The
likelihood of different voltage paths is of intrinsic importance
for understanding the subthreshold encoding of informa-
tion, for “looking under the membrane” given the spike train
(Fig. 1). The ML path may also be used as an estimate of the
subthreshold (unobserved) voltage V(¢) given the spike train.

We focus on obtaining this most likely (ML) path here.
Despite the huge literature on large deviations principles
for stochastic physical and biological systems (Freidlin
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and Wentzell, 1984; Dembo and Zeitouni, 1993), and the
growing body of work on the effects of noise on neural
activity and on likelihood-based approaches for fitting sta-
tistical models to neural data, to our knowledge this problem
has not previously been investigated in depth, with the ex-
ception of the independent recent work of Badel et al. (2005),
where the spike-triggered average of a linear integrate-and-
fire-type cell was studied in the low-noise limit. Thus we give
full details of the derivations of the ML path here, despite
the fact that the techniques (Kuhn-Tucker conditions, Euler-
Lagrange equation) are fairly standard from a mathematical
point of view.

In Section 2 we give our main results on the identity
of the ML path, including a key differential equation that
determines this path. We apply these results to a variety
of models (linear and nonlinear membrane dynamics, white
and correlated noise, constant and time-varying conductance
and rest potential) in Section 3. We discuss the correspond-
ing probability approximations in Section 4 We close with
a brief application to predicting subthreshold physiological
voltage traces (recorded in vitro) from spike train data in
Section 5. An appendix gives details of computational
methods for sampling from, computing conditional den-
sities of, and maximizing likelihoods for the hidden
state of a hidden Markov model (HMM), of which the
integrate-and-fire model may be considered a special
case.

2. Main results

The noisy IF-type neuron behaves according to the stochastic
differential equation

dv@)= f(V(),t)dt + o N,, (1)
with f(V(¢), f) denoting the (possibly nonlinear and inho-
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mogeneous) deterministic dynamics of the model, and N,
denoting a stochastic noise source multiplied by the scale
factor o. Note that, for simplicity, we have restricted our
attention to dynamics which are one-dimensional in V, at
the cost of limiting the dynamical repertoire of the model.
(Generalizations of the results below to the case of mul-
tidimensional subthreshold dynamics are possible, but are
not pursued here.) We assume throughout that the function
f is smooth; in the following, we will use V() to denote
the (unique) deterministic (o = 0) solution to the above
equation given the initial condition V(0).

As discussed above, we will consider the conditional dy-
namics of a noisy IF cell which has been observed to spike
at time t = 0 and ¢+ = T. For simplicity, we set the reset
and threshold potential to O and 1, respectively; this entails
no loss of generality, by the usual rescaling of the V axis.
Thus we will constrain voltage paths from Eq. (1) to satisfy
VO)=0,Vv(Th=1,V#t) <1,0<t<T.

Under standard white Gaussian noise N,, we may for-
mally write the likelihood of a given path V(¢) as the
likelihood of the noise trace which generated V(7), that
is,

1 )
“likelihood ({V (1)}) = Ee—% Jy N@rde

1 L rvn-rvan)de n

= —e 22270

zZ

with V (r) denoting the formal time derivative of V(¢) (re-
call from Eq. (1) that V(t) differs from fV(@), 1) by ex-
actly o N(t)). We have put the above expression in quotes
to emphasize its formal nature; V exists only in the sense
of generalized functions (Hida, 1980), (that is, V exists
as a regular function with probability zero). However, this
formula may be justified either by taking continuous lim-
its of the corresponding formula in discrete time, or by
an appeal to Girsanov’s formula (Karatzas and Shreve,
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1997), and therefore it is reasonable to define the most
likely path Vi (f) as the path which minimizes the rescaled
cost

T
Lo({V(t)})EfO V(@) = f(V @), 0)dt.

To enforce the constraints V(0) = 0 and V(T) = 1, we
will solve V(f) minimizing

T
LAV = /0 (V) — f(V(0), 1)) di
+ 2V (0)* 4+ Ar (V(T) — 1)%,

with A; appropriate multipliers. It might be helpful to think
of the above problem in the language of optimal control
theory: we want to find some input Ny (7), such that if we
define V) (¢) to be the solution of the perturbed (noiseless)
ODE

oVmL(?)

= FVL(), £) + Nmo (1),

then V() satisfies the threshold constraints and Ny (7)
minimizes the cost function

T
INI3 = /O N(@)2dt ~ Lo({V'}).

When f is affine in V (that is, the linear leaky integrate-
and-fire case, with possibly time-varying leak and rest po-
tential, f(V, ) = —g(¢) V(¢) + I(¢)), L will be strictly convex
in N(?), and therefore also strictly convex in paths V(f) with
fixed endpoints V(0) = 0and V(T) = 1; since the constraint
space of allowed voltage paths V() is convex, the minimum
will be unique in the class of constraint functions V(¢). This
uniqueness does not need to hold in general; thus the con-
dition we derive below will be necessary but not in general
sufficient for a minimum to hold."

The above minimization problem is a standard problem in
the calculus of variations, which we will review here briefly
for those readers unfamiliar with the theory. The usual Kuhn-
Tucker (KT) conditions in this case are that the functional
gradient of L({V }) with respect to V() should either be: zero,
in the case that none of the inequality constraints are met
exactly at the minimizer; or, more generally, contained in the
vector cone spanned by the negative of the vectors defining
the inequality constraints that are met exactly. Here a cone

! Existence of this minimizer, on the other hand, may be guaranteed
under Lipschitz continuity of f and its space and time derivatives (c.f.
Eq. (3), via standard compactness and lower semicontinuity arguments
from optimal control (Vinter, 2000).

spanned by a set S of vectors {X(t)},es is defined simply as
the set of all nonnegative combinations of these vectors,

Fi¥ =) n@F@: n@) =0Vt

teS

the vectors X(¢) here are the negatives of the vectors defining
the inequality constraints V(f) < 1,0 < ¢ < T, and thus have
the simple form

X(t) = =&,

with §, denoting the delta function centered at time
t. The set S, again, is the set of all times ¢ where
the constraints are met exactly; if this set S is empty,
this cone contains just the point 0 (i.e., the functional
gradient of L({V}) is zero). These KT conditions are
illustrated with a simple two-dimensional example in
Fig. 2.

Rewriting the above sum ), n(t)x(t) as an integral and
expressing the gradient in terms of the directional derivative

0 0.5 1 1.5
X

Fig. 2 Illustration of the KT conditions in two dimensions. The
function we are trying to minimize is the two-norm, (x> +y*)!/2,
under two linear inequality constraints, as indicated with the two
diagonal black lines. The gray area indicates the disallowed region
(on which the inequality constraints are not satisfied). In this case,
only one constraint (indicated by a solid line) is relevant; since at
the minimizer of the objective function on the allowed space (indi-
cated by the black asterisk) the upper right inequality (dashed trace)
holds strictly (whereas the inequality on the upper left becomes a
strict equality) the gradient (black arrow) must lie within the cone
spanned by the negative of the vector defining the upper left inequal-
ity. In this case, since only one constraint is met exactly, this cone is
just the one-dimensional ray orthogonal to the constraint surface, as
shown
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in the direction of an arbitrary vector U(¢), this means that
the optimal path Vi (f) must satisfy

L(Vaw + €U)) = L{Va) + € (Z nvMLm(—a,))

teS

xU + o(e), e > 0
T
= Lvnd < [ U, )
0

+o(e), € > 0 2)
for all nice functions U(f), where nypy is a positive measure
with support on S, the set of points ¢ where Vy(f) = 1,
i.e., those points where the constraints Vyy (f) < 1 are met

exactly.
We write L({V + €U}) to first order as

T
LAV +€U)) = / W)+ U = FV D), 1)
0

—efy (V (1), DU (1))dt
+20(V(0) + €U (0))* + Ar(V(T)
+eU(T) — 1 + o(e),

with fi; denoting %, collecting terms of order 2¢, we have

L{V +eU}) =L{V})
T
+2€/ VOU@) — fV@), HU@)
0

— V@), V(U (1)

+f V(@) t) fy (V(0), HU (1))dt
+2e(AV(OU0) + ArUT )V (T) — 1))
~+o(e).

Integrating the second line by parts gives

LRV +€eU}) =L{V})

T
12e / U@V @) + £V @) 1)
0

V@0, ) fv(V (), 1)dt
+2e[U(0)(f(V(0),0) = V(0) + A0V (0))
+UMV(T) = f(V(T),T)
+Ar(V(T) — D)]
+o(€).

Now for the KT conditions to hold for all A and nice U(¥),

the € terms in the above expression must have the special
dot-product form given in the O(¢) term in Eq. (2). This, in
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Fig. 3 Tllustration of solution Vyy (#) to the differential Eq. (3).

Top: Solution for Vi (¢), given a linear, constant-conductance neu-
ron (f(V,t)=—gV + 1(¢t)) and sinusoidally varying input current
1(); recall that this solution is unique here, by the strict convexity
of L({V}) under linear dynamics f(V, f). Note that the solution meets
the voltage threshold V =1 several times; in each case, close inspec-
tion reveals that V() = O for all ¢ such that Vy (f) = 1. Bottom:
Comparison of the terms on the left-hand side of Eq. (3): VmL(®) vs.

Fr W) fF (V@) + fi(Vmi (@) = g*Va(t) — g1 (1) + 1(1). Note
that, as predicted, these two terms are equal except for 7 such that
VmL(?) = 1, in which case Vi (¢) jumps to zero and the inequality in
(3) holds strictly

turn, implies that
nvmr = —2(=VauL(@) + (Vi (@), 1)
+fWVML@), 1) fy VML (@), 1))

is a positive measure with support on the points ¢ where
VmL(®) = 1. In other words, Vi (f) must satisfy the Euler-
Lagrange differential equation

— V@) + (V). ) + F V@), ) fy (V@) 1)

=0 VmL() =1
{50 Va@w=1"

with initial condition Vy (0) =0 and end condition Vyy (T)
= 1 (Fig. 3); this equation will be key to the rest of our de-
velopment. See also Freidlin and Wentzell(1984) for further
discussion of similar variational problems related to first-
passage times.

Some discussion of this equation is in order. First, note
that if Vo(T) = 1 and V(1) < 1 for t < T, with Vj(¢) the
solution to the original IF-type differential Eq. (1) under
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zero noise with initial condition V(0) = 0, then V{(¢) au-
tomatically solves Eq. (3), and is clearly the ML voltage
path. This can be seen by simply setting o to zero in equa-
tion (1) and differentiating both sides with respect to time
t; of course, this is as we would expect, since L({Vp}) = 0
and is therefore uniquely minimized in this case. It is also
worth emphasizing that the ML solution V. (¢) is indepen-
dent of o (since o appears in neither (3) nor the definition
of L( {V })), despite the fact that conditional average volt-
ages given spike times (e.g., spike-triggered averages) do
depend on o (see Badel et al., 2005; Paninski, 2005 and
Fig. 5 ahead).

Second, the solutions to Eq. (3) have some interesting
features. For example, assuming f(V, ) is continuous, if the
solution V) () reaches the threshold V = 1 at some time
t < T, then Vy (f) must reach the threshold smoothly, with
VmL(t) = 0. Otherwise, Vj(t) would have a negative sin-
gularity (corresponding to a downward kink in Vi (f), with
V() jumping discontinuously from a positive value to
zero), contradicting the inequality in (3). Similarly, Vyy (¢)
is constrained to be zero when V) (7) is leaving thresh-
old for times ¢t < T. See Fig. 3 for an illustration of these
effects.

These features place certain constraints on the solutions
to Eq. (3) which are useful when developing algorithms to
solve this equation. These algorithms have a “shooting” fla-
vor: as usual with a second-order ODE, we are free to choose
the first derivative at time r = 0, V(0). (Recall that Vi (0) is
constrained to be zero, by assumption; in the case of an un-
constrained second-order ODE, fixing V(0) and V (0) would
uniquely specify the solution, but in the present case Vi (¥)
must be chosen to satisfy the threshold constraints Vi (f) <1
as well.) Given these initial conditions, the solution evolves
autonomously as time ¢ increases, until either time runs out,
t = T, or threshold is reached, V(fy) = 1 for some time f;
< T. In the first case, we can re-run the voltage path with
a larger choice for V(0) (to get closer to the end-threshold
condition, V(T) = 1). In the second case, either V(#y) =
0 or V(f)) > 0. The second case is not allowed, by the
preceding discussion (thus we need to reduce the original
V(0); therefore, assume V (f5) = 0. Now V(1") = 0 as
well, so we need to check that the inequality in (3) is sat-
isfied. If not, we again need to go back and reduce V(0);
if the inequality is satisfied, on the other hand, then we
need to choose the time ¢, with 9 < t; < t», that V will
leave V = 1 again. (Here f, is defined as the first time af-
ter fo that the inequality in (3) fails, that is, f,(V(¢),1) +
FV @), ) fo(V(t), 1) > 0; recall that V(f) = 0 for all £ <
t < t1.) We should emphasize that V(t;) = 0, that is, V(f)
again evolves autonomously (with no spare degrees of free-
dom) once ¢, is chosen, and the process may be iterated unti
t=T.

3. Examples

In this section we provide a number of applications of the
above results, to obtain exact solutions to the optimal path
VmwL(?) under a variety of subthreshold dynamics f{V, 7). We
also describe some alternate methods for computing Vi (¢);
these methods can lead to much simpler solutions in certain
special cases.

3.1. Linear dynamics

The most important special case is the linear homogeneous
case (the usual linear leaky integrate-and-fire cell),

fV@,n=-—gV.
Equation (3) gives

VmL() = fi(Vmu(), 1) + FVau(@0), ) fr (Vi (@), 1)
=0+ (—gVmL())(—¢)
= ¢ VL),

a linear homogeneous second-order ODE which is solved in
general by ae$” + be™8', for a, b arbitrary constants; apply-
ing the endpoint conditions gives

— gt _ o8t
VmL(t) = pry— (e¥ —e™%).

In the zero-leak case g — 0, this reduces to the simple
linear ramp solution,

t
VmL() = —;
mL(f) T
see Fig. 4 for a few examples.
Alternatively, this linear case may be solved via a maxi-
mum principle. First, writing

V(t)=e ¢ %« N(t)

as the usual (unique) solution to the linear equation V =
—gV 4 N(t), note that our original problem may be restated
in this case as: find N(f) to minimize ||N ||, under the lin-
ear constraint that (k, N) = 1, with the linear convolution
functional ( k, N ) defined as

(k, Ny = e~ %" % N(t)

t=T

T
= / e S T=ON(t)dt

0

T
=87 / eS N (t)dt.
0
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0 0.2 0.4 0.6 0.8 1

Fig. 4 Tllustration of Vi (¢) for linear cell with constant input and
constant conductance, (V, t) = — gV +1. Top: Solutions Vyy (¢) for
1 = 0 and g varying; V) (¢) becomes more sharply convex and concen-
trated at ¢ &~ T as g increases. The right panel shows the corresponding
optimal Ny (t) = Vi (t) — f(Vmo(t)); for g = 0, Ny is constant,
while for positive values of g, Ny grows exponentially with time.
Bottom: Solutions V() for g fixed and varying /; dashed lines show

0 0.2 0.4 0.6 0.8 1
t

corresponding unconditioned noiseless traces V(f). Vi (f) becomes
more convex or concave depending on whether / is large negative or
positive, respectively. In particular, for / sufficiently large and positive,
VmL(#) meets the threshold at 7y < T and remains at V = 1 for the
remaining time fy < ¢t < T'; note that in this case V() grows more
slowly than V(7), in order to satisfy VmL(to) = 0

Fig. 5 Samples from the 1
conditional distributions

p(V (¢)|spike at 0, 1), for
different values of o. Left:
Samples from conditional
distribution, for the indicated
values of 0. Model cell was
linear with fixed conductance g,
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driven by a sinusoidal (8 Hz) 0
input current /(¢). Bold traces
indicate V(1) (gray) and the

conditional empirical median 1
path (black). Note that the ML
and conditional mean paths
converge as 0 — 0, as expected
(c.f. section 4.2. Right:
Corresponding exact conditional
distributions p(V(#)lspikeat 0,1)
(see appendix for details on the
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As usual for this kind of linearly-constrained L,-norm
minimization problem, the Ny (f) solving this condition
is exactly proportional to the vector defining the con-
straint, in this case Ny (¥) = ck(t) = ce®', for ¢ chosen such
that (k, NmL) = (k, ck) = c||k]|5 = 1 (the solution is again
unique, by the strict convexity of the norm || - ||, and by the
convexity of linear functionals); plugging into the convolu-
tion formula for V(¢) above we arrive at our original solution.
(Note that the inequality constraints Vy . (f) < 1,0 <t < T,
are satisfied automatically here.) For the no-leak case g — O,
we obtain the common-sense solution that the optimal input
noise current Ny (¢) is constant; for g > 0, Ny (f) grows
monotonically in ¢, in a sense “saving its effort” since N(¢) is
lost to leak for ¢ small. Interestingly, for g negative (modeling
active subthreshold dynamics, with an unstable equilibrium
at the rest potential V = 0) we get the same solution for
Vue (), but the solution for Ny (7) is time-reversed; the in-
terpretation here is that Ny (f) expends most of its effort to
get V() moving away from the equlibrium point V = 0,
and then lets V) (7) glide towards threshold as the driving
force f(V(¢)) = —gV(t) becomes larger.

Time-varying conductance

The case of time-varying g(¢) (for example, in cases where
the conductance might be rapidly changing in the wake of an
action potential (Stevens and Zador, 1998), AV, ) = — g(¢)
V(#), can be handled similarly. In this case, we have that

t
V() =/ e J 8du N ()q
0

thus, ignoring the inequality constraint V(f) < 1 for the
moment, the optimal Ny () is proportional to e/r $@d_and
the optimal Vi (¢) is obtained by plugging this Ny () back
into the above formula:

t
ot s
VmL(t) = c/ e Js 8tdu o fr gwdu g ¢
0
t
_ co- " studu / Q21 swdug
0

with ¢ chosen to satisfy Vi (T) = 1 (VL (0) = Ois satisfied
automatically).

So far we have proceeded as if the equality in (3) holds
strictly, and that the corresponding solutions to the differen-
tial equation satisfy the constraint that Vi (f) < 1 for all
0 < t < T, given the endpoint constraints Vy(0) = 0 and
Vmu(T) = 1; for example, in the linear homogeneous case
considered above, V() increases monotonically up to the
threshold, thus automatically satisfying the threshold in-
equality. However, it is not immediately clear that the above

solution for arbitrary g(#) necesarily remains subthreshold for
0 < t < T, and in general we might have to consider the in-
equality constraints as well. We can establish that the equality
constraints are satisfied strictly in at least two cases: for ex-
ample, it is sufficient that either Vi (1) > 0 or Vyr(t) > 0
for all Vy(¢) > V*, for some V* < 1, since either of these
conditions prevents Vi (f) from either “kissing” the thresh-
old V = 1 (recall the discussion following Eq. (3)) or curving
back down from above after a threshold crossing. Applying
the latter condition to Eq. (3) can give general conditions for
the analytic solution to be in the constraint set; we explore
these conditions further in Section 3.2.

In the present case, we have that equality holds in (3)
for all ¢ if g(t)> — g(¢) is nonnegative, since in this case
VamL(?) > 0 whenever Vy(f) > 0. Second, computing the
time derivative of the above formula for Vyy (7), we have

t
Vi () = ce~ /" stdu <ezf’ gdu _ 8(0/ 2l g(”)d“ds) ;
0

from this, it is also clear that strict equality holds in (3) when-
ever g(f) < O for all 7. Again, however, it is not altogether
clear that the equality holds strictly for arbitrary g(¢), and in
general the above expression for Vyy (f) might only apply to
the strictly subthreshold portion of the optimal path.

Nonzero rest potential

Now the case f(V (¢),t) = —gV + I(t), in which the neuron
is driven by some input current /(¢), is fairly straightforward.
We again have a simple exponential formula for the sub-
threshold solution, V (¢) = e 8"« [I(¢) + N(¢)]; again, we
want to choose Ny, as small as possible (that is, minimize
[IN|]2) while ensuring that Vyy (T) = 1. As above, if the
boundary conditions may be ignored, we can accomplish this
by simply choosing Ny () = ce, with ¢ chosen to enforce
the end constraint. The boundary conditions, in turn, may
be ignored whenever I(¢) is such that Vi (#) remains sub-
threshold until ¢+ = T; for example, it is sufficient (though
not necessary) that H(¢) = I(¢) * e~$' be monotonically in-
creasing, with H(T) < 1.

The simplest example for which the boundary conditions
come into play is as follows: let I(f) be constant: I(f) = a.
For simplicity, let ¢ = T = 1. Then condition (3) reads

= VmL() VmL(r) < 1

Vi) —a { <Vwm@®)=0 V() =1

Solutions to the equality above with end conditions
VM(0) = O and V. (T) = 1 are of the form

V() =ce' +de” " +a,
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with ¢ and d satisfying the two-by-two system of linear equa-
tions

c+d=—-a
ec+eld=1-a.

For a sufficiently small, ¢ and d may be chosen so that
Ve (?) satisfies Vi (f) < 1 for t < T, and is therefore a
solution to our maximization problem. For larger a, however,
VML (?) becomes strongly concave, implying that Vi () of
the above form with Vy (T) = 1 must approach 1 from
above at T, and in turn that V() must hit threshold for
some #; < T (with Vi (#;) = 0, as discussed above). For
such a voltage path, Vi (#) = 1 fort; <t < T see Fig. 4.

Time-correlated noise

The maximum-principle approach can be generalized easily
to the case in which N(¢) is non-white, that is, temporally
correlated. However, a different approach leads to a simpler
solution in this case. We note first that in the absence of any
constraints,” the random solutions V(¢) of Eq. (1) under linear
dynamics, iV, f) = —g(¢) V(¥) + I(t), form a Gaussian
process (Karlin and Taylor, 1981), with mean

! ot
Vo(t) = / e~ s 8 () g
0

—recall that this is the deterministic (¢ = 0) solution to Eq.
(1) for linear AV, t)—and covariance

C = 0*CnCouCly,

where Cy is the covariance function of the noise N, (we
assume N, to have zero mean, with no loss of general-
ity), and we have denoted the Ornstein-Uhlenbeck (OU)
covariance

14 tl 15
Coult, ) = e i g(”)d”/ e 2 [ sdu g g
0

(assuming #; < tp, and with #, replacing #; in the opposite
case). This covariance C may often be computed analyti-

2 In the following, we will assume that the noise is “reset” by the
spike, that is, V;, is independent of V,, whenever a spike has been
observed in the interval (¢, ;) (and hence the corresponding noise
N, is independent in this sense as well). The case in which N, is
not reset by the spike proceeds similarly, except we have to condi-
tion on V(¢) at all spike times simultaneously—not just the spikes at
t = 0 and T—since past spike times will influence the current condi-
tional noise distribution. See Paninski et al. (2004b), Section 6.4, and
Fig. 11 ahead for two different illustrations of a similar coupled-noise
effect.
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cally, particularly in the case of stationary input noise, when
Cn(t1, 1) = cn(Jt; — 12])) for some suitable real function cy.

Now we apply the usual Gaussian identities: the condi-
tional mean, given V(T) = 1, is

V() = V(e +C(17T) 1 — Vo(T));
@) = Vo) m( o(T));

since the mean of a Gaussian is also the ML solution, the
above formula automatically gives Vi (¢) if V() satisfies V(7)
< 1for 0 < ¢t < T. Otherwise, as usual, the KT conditions
must be applied.

General linear case: Quadratic programming

Of course, in all of the above cases, we can also numerically
optimize L({V }) (or a suitably modified version thereof in
the case of correlated noise N(¢)); for example, Isqnonneg.m
in matlab is designed to solve exactly the kind of linearly-
constrained quadratic optimization (quadratic programming)
problem considered here. The projection of the analytic so-
lution V(¢) onto the convex constraint set may be used as a
starting point for such a numerical optimization; if this V(¢)
is itself within the constraint set, then no further optimization
is necessary.

3.2. Nonlinear dynamics

In the case of nonlinear dynamics f(V) (for example, in
cases where the conductance g depends on voltage), we must
rely on Eq. (3). We review the method for solving second-
order nonlinear differential equations here. We need to solve
VML(1) = h(Vai(0), for h(V) = fy (V) f(V) (for simplicity,
we will restrict our attention below to the time-homogeneous
case f(V,t) = f(V).Let W = dV /dt then as usual we have
a matrix equality,

W =dV/dt
dw/dt = h(V).
Multiplying these equalities gives

dv aw
—h(V)=—W;
dt V) dt

multiplying both sides by dt and integrating gives
12
hV)dV = EW +ci.

Denote the left-hand side as H(V). Then

dv

=W =CHV) - a2,
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Separating variables, we have that Vi (#) = G '),
where G™! is the inverse of

t=G{V)= +/ av
—EeT L ewmvy—ay

By choosing the free variables c¢; and ¢, correctly, we may
satisfy the end conditions V. (0) =0 and Vi (T) = 1. It
turns out, for many important cases, that the inequality condi-
tions Vmp(?) <1, 0 <t < T, are guaranteed automatically
as well. For example, it is sufficient that the cell’s dynamics
are “active” in the sense that f(V)fy(V) >0 for V > 1,
since this implies, with Eq. (3), that V must be nonnegative
as well in this range, preventing any solution to the above
equation from curving back down to V = 1 from above.

Exponential cell

We apply the above general method to a special case here. Let
AV) = e?, with a > 0. This is a simple model of the nonlin-
ear subthreshold dynamics of a repetitively firing cell (see,
e.g.,(Fourcaud and Brunel, 2002), though note that the model
discussed there behaves differently for strongly hyperpolar-
ized voltages). Then h(V) = ae*V, H(V) = 3¢**V, and we
have (by 2.315 of Jeffrey and Zwillinger, (2000) that:

GV) = / €2V —2¢))12 e
_ 1 \/eza‘/ —2c; — «/—26‘1
2(1\/_261 \/ez"v — 26‘1 =+ &/ —26‘1
c1 <0
. /e2aV _ 2C1 N 0
= atan c; ¢ > 0.
aa/ 26‘1 A/ 2C1 : :
This implies
1 6211«/72('](17(:2) + 1 2
VML) = % log |: —2¢ (—eZa =TT 1) + 261i|,
c1 <0,
or
1 2
VML) = o log |:2C1 (tan (a\/2C1 (t— cz))) + 2C1:| ,
a
c1 > 0;

the constants ¢; and c¢,, as before, are fixed by the end
conditions Vy(0) = 0 and Vi (T) = 1 (Fig. 6). Since
this model satisfies the “active” constraint that fy (V) (V)
> 0, the solution automatically remains subthreshold until
t=T.

100

501

exp
lin

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

Fig. 6 Optimal path for a cell with exponential subthreshold dynam-
ics. Top: AV) = ¥, with @ = 5. Middle: Optimal voltage trace
VmL(8), with corresponding Vi (f) under linear dynamics fiV) = —aV
for comparison. Note that the voltage trace under exponential dynam-
ics climbs to threshold much more sharply. Bottom: Optimal noise
traces Ny (t) = Vi (t) — f(Vayr(t), t). Note that exponential and
linear noise traces are opposite, in a sense: the linear noise path, as
discussed above, grows monotonically as ¢ increases and the voltage
climbs away from the rest potential at V = 0; on the other hand, the
exponential path expends its effort slowing the climb towards threshold
for small ¢ (where the driving force f{V(¢)) is smallest), and then relaxes
towards zero as the dynamics carry the voltage towards threshold. Also
note that the total energy expended, fut | Nmo(9) | 2 dt, is much smaller
in the exponential case, as expected given the positivity of f{(V) in the
exponential case and the negativity of f(V) in the linear case on the
relevantrange 0 <V < 1

Quadratic cell

Another interesting example is the quadratic integrate-and-
fire cell (Ermentrout and Kopell, 1986; Hansel and Mato,
2003; Brunel and Latham, 2003),
fV,)=a(V —b?*+c¢, a=>0.
For ¢ < 0, this model has two fixed points, V| and V;, with
V1 < V,, V] stable, and V, unstable. When the unstable fixed
point is subthreshold, V, < 1, the optimal noise path Ny (¢)
effectively only has to push Vi up to V5, and then passively
follow the dynamics, which will automatically push V(¢) up
to threshold. This effect is illustrated in Fig. 7 in this case, the
analytic approach outlined above proved to be unenlighten-
ing in our hands, and so we simply solved Eq. (3) numerically
using the “shooting” method described in Section 2. Since
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Fig. 7 Optimal path for a cell with quadratic subthreshold dynamics.
Top: V) = a(V—b)* +c,witha = 3,b = .5,andc = —.2. Middle:
VmL(9). Bottom: Optimal noise trace Ny, (1) = Vi (1) — FWVyr(6),1).
Note that V. (¢) follows the (V) dynamics near t = O and t = T
(where the dynamics are “going the right way,” that is, AV(¢)) > 0),
but has to expend some energy, in the form of a peak in Ny (?),
to push through the region of V-space for which f{iV) < O, ie.,
the dynamics are pushing V back towards the stable fixed point at
V &~ 0.25

this model has “active* subthreshold dynamics (f(V) fy(V) >
0 for V > 0.8), as described above, the condition Vyy (f) <
1 is automatically enforced given the end conditions Vg (0)
= O0and VM (T) = 1.

4. Large deviations approximations

In the following sections we discuss some applications of
the most likely voltage path Vy (¢) obtained above. Our
first application is based on the well-known large deviations
principle (Freidlin and Wentzell, 1984; Dembo and Zeitouni,
1993) for stochastic differential equations of the form (1). For
applications (Paninski et al., 2004b) we are often interested
in computing probability integrals of the form

P(C) = / P, (V).
VeC

that is, the probability P, that voltage paths generated from
model (1) under a given noise scale o will lie within some
constraint set C (the example we have in mind, of course, is
the constraint set of all voltage paths that begin at V(0) = 0

2 Springer

andendat V(T) € [1 — €, 1], with V() < 1 forO0 < ¢t < T and
e — 0).

The problem of approximating this type of integral
has received extensive attention in the probability and
physics literature. In particular, for the spike-time con-
straint set C considered above and under standard white
Gaussian noise N;, it is well-known that the follow-
ing (Freidlin-Wentzell) exponential approximation holds
(Freidlin and Wentzell, 1984; Dembo and Zeitouni, 1993) for
o —0:

—207log P,(C) = Lo({Vmi}) + o(1) = INmLIl3 + o(1);

this may be rewritten in the possibly more intuitive form

1 1
Py (C) = exp[_ﬁLO({vML}) + 0<0—2>]

1 T
= exp[‘z?z f( VmL(t) — f(Vaw, £))2dt

)

1
+0(—2)i| , O —)0
(o2

In other words, the probability that any voltage path gen-
erated from model (1) will lie within the constraint set C may
be approximated, for o small enough and on an exponential
scale, simply by the likelihood of the most likely voltage path
in C, Vup(?). Clearly, once Vi () (or, equivalently, Ny (£))
is known, this approximation may be easily computed. In ad-
dition, it is fairly straightforward to take the gradient of this
approximation with respect to the relevant parameters (o, g,
1(2), etc.) for settings in which we wish to maximize the like-
lihood of the observed spikes under these parameters (Panin-
ski et al., 2004b). The large-deviations approximation, which
may be computed stably and easily for arbitrarily small o
(and, by extension, arbitrarily small P,(C)), is quite useful
in this numerical optimization setting (Paninski et al., 2005),
where we typically deal with log-likelihoods, and small er-
rors in the computation of very small likelihoods can be
disastrous.

4.1. Inter-spike interval density approximations

Let us apply this idea to approximate the interspike inter-
val probability density, that is, the probability density that
a cell which has spiked at time ¢+ = 0 will fire next at
t = T. According to the above, we need to compute, for
each desired value of T, the most likely voltage path VJ[L(I)
which starts at V' = 0 and crosses threshold for the first
time at 7. Once this optimal path is obtained, we need only
compute the corresponding “energy,” L( { Vii}), multiply
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0 0.2 0.4 0.6 0.8
T

Fig.8 Illustration of computations underlying large deviations approx-
imation for interspike interval distribution. Left: Optimal paths(top)
and corresponding energies LO({VI;ZL}) = ||N, &Ll |% (bottom) for a linear
homogeneous cell driven by a constant negative current /, f(V,t) =
—gV () + 1. Note that optimal voltage paths are all convex, and for
longer times match noiseless path, V(f) (dashed trace), more accu-
rately. Energy minimum occurs for fairly small ¢, after which energy
climbs to a finite asymptote (for large enough T, the optimal path
matches V(r)—incurring no L({V}) cost—until # sufficiently close to

by —1/2 o2, and exponentiate to obtain our probability
approximation.

The most straightforward example of these computa-
tions, as usual, is the leaky integrate-and-fire cell, f(V, 1) =
—gV + I, with[ fixed at O for simplicity. Recall from Section
3.1 that

Vi (6) = er(es — e78h),
with ¢p = (€37 — e¢T)~!. We have that
T T >T T 2
Lo ({va}) = [0 (Vi () — (—gVap (1)) dt
T
=/ cr(ged’ + ge )
0
+er(get' — ge ¢ dt

T
:46‘%/ g*e*dr
0

_2g(e*T — 1)
- (egT _ e—gT)Z'

In the no-leak (g = 0) case, this reduces to

Lo({Vaw}) = /T,

20

151

10

o

M ,_,x’—’—'—’—*"_’_’_*‘
0 02 = 04 0.6 0.8 1
T

T, at which time V. (f) climbs away from V(#) up towards the thresh-
old V = 1). Also note that no zero-energy path exists in this case,
since V(f) does not reach threshold. Right: Corresponding plots for
same neuron driven by positive fixed input current /. In this case, the
optimal voltage paths are concave and meet threshold strictly before T’
for T large enough. Also, V((f) meets threshold at a finite time #; in this
case, implying that the energy reaches a unique minimum of 0 at #y; for
t > ty, the energy asymptotically grows linearly, corresponding to the
continuing cost of keeping V. (f) below threshold

implying that
p(T) ~ e—l/(ZazT)7

with p(T) the probability density of observing the first spike
since reset at time 7. In this case the exact formula is known
(Hida, 1980) and can be compared:

Ty — ~1/Qo™T),
p@) oc(2nT3)1/2

the approximation agrees on a log scale, as promised (though
note the key difference that the approximation is noninte-
grable). Further examples of these ISI approximations appear
in Figs. 8 and 9.

4.2. Conditional probability approximations
It is worth pointing out that the large deviations principle
used above is actually much more general; in fact, for any
sufficiently regular set A, we have (Freidlin and Wentzell,
1984; Dembo and Zeitouni, 1993)
—207log P;(A) = inf Lo({V}) + o(1)
€

= inf ||Ny|]3 +o(1), o — 0;
VeA
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Fig. 9 Illustration of large deviations approximation for interspike
interval distribution. Cell shown here is linear, with fixed g and
sinusoidally-varying input current /(¢). Top: Input current /(7). Sec-
ond panel: Noiseless voltage path V(7). Third: Energy Lo({VﬂL}) =
[|N; |13 as a function of time T, as computed in Fig. 9. Energy minima
roughly correspond to peaks in V() as shown in second panel. Lower
panels: Comparison of exact and approximate interspike interval den-
sities for varying values of o; exact density computed by usual Fokker-
Planck methods (see appendix; Gerstner and Kistler, 2002; Paninski
et al., 2004b). Note that approximation becomes more accurate as o
or t — 0, as predicted, and that approximation captures multimodal
nature of density even for larger values of o. Also note that approx-
imation fails systematically for larger o: the true density consistently
shows a phase-shift to the left, corresponding to noise pushing the
voltage over threshold sooner than predicted by the simple energy
approximation

here we have used the notation Ny for the noise path
N(t) = V(t) — f(V (1), t) corresponding to a given observed
voltage trace V(¢). Thus, as 0 — 0, P,(A) decays exponen-
tially, with the rate of decay given by —202 infy <4 Lo({V}),
the loglikelihood of the most likely path V(¢) in A; if the
noiseless path V() is contained in A, on the other hand,
this exponential decay does not occur (since in this case
infyca Lo({V}) = Lo({Vo}) = 0). Clearly the approximation
for P, (C) in the preceding section is a special case of this
general result, with infycc Lo({V'}) = Lo({VmL)).

Now it is possible to show, using the above general
large deviations principle, along with the strict convexity of
Lo({V }) in V and the convexity of C, that a similar condi-
tional probability approximation holds (Cover and Thomas,
1991; Dembo and Zeitouni, 1993): given the observed spike
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train (and therefore that the subthreshold V(¢) is contained in
the set C), the conditional probability P,(V € A |V € C)
of a given set A C C obeys

—20%1og P,(V € A|V €C)
= ‘}Iég Lo({V}) — Lo({VaL}) + o(1);

thus the conditional probability of any voltage path outside
of an || N ||p-ball of the optimal path Vi (7) decays exponen-
tially in o =2, This, in turn, implies that the mean conditional
path closely approximates the ML path for o sufficiently
small, as expected. This effect is visible in Fig. 5 Note that
the conditional mean consistently sags below the ML path,
with the sag (caused by the fact that superthreshold paths are
“killed” by the fact that we have conditioned on subthreshold
paths, thus skewing the mean downwards) roughly propor-
tional to o; see Badel et al. (2005) and Paninski (2005) for
more details.

5. Demonstration on in vitro data

In this last section, we provide a simple demonstration of how
the above ideas may be applied to physiological data. We ana-
lyzed in vitro recordings described in Paninski et al. (2003):
briefly, dual-electrode whole-cell somatic recordings were
made from pyramidal cells from layers III and V in slices
from sensorimotor cortex of rats aged P14-24; non-repeating
Gaussian noise current stimuli were delivered through one
electrode, while voltage responses were recorded through
the other electrode.

From these paired intracellular voltage and input-current
recordings, we fit the following integrate-and-fire-based
model:

dv(t)y=—gV + 1)+ oNy;
I(t) = Ipc + k * Iin(t) + h(t — t;_1),

with k * I;,(t)) denoting the original injected current
Iin(¢r) filtered by a simple five-delay linear filter k=
{ko, k_1,...k_4}, and h(t — ¢;) an after-spike current whose
value depends only on (# — #;_1), the time since the last
observed spike #;_;. The model cell emits a spike when-
ever a threshold, Vi, is crossed. Thus the full model pa-
rameters are 6 = {g, o, Ipc, l?, h(t), Vin}; see Paninski et al.
(2004a) for details on the (maximum likelihood) estimation
of these parameters (the fitting procedure effectively comes
down to a linear regression, as discussed in Stevens and
Zador (1998) and Jolivet et al. (2004). While the detailed
shape of the action potential may also be qualitatively de-
scribed using a similar model (Jolivet et al., 2004; Paninski
et al., 2004a), for simplicity we did not attempt to model the
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Fig. 10 Computing the most

likely voltage path given in vitro 0
physiological data. Top:
Comparison of true voltage path
(bold black trace) with
computed Vyy (¢) (bold gray
trace) and samples from
conditional distribution

p(V(t) | spikes, {I()}ozr<r . 0)
(thin traces, partially obscured;

V (mV)

I
[=2]
(=)

T

true V(t)

recall 6 denotes the estimated IF
model parameters). Trace shown
is a randomly chosen segment of
a 25-second long white noise
experiment; dashed trace
indicates estimated threshold.
Bottom: Conditional
distributions p(V (¢) |

spikes, {I(t)}o<i<r, 0). White
space indicates gaps in time
where voltage was
superthreshold, and thus not
modeled. Note small scale of

1.04 1.05

V (mV)

1

.06

1.07 1.08 1.09 13 1.11 1.12 1.13

estimated noise o (Mainen and
Sejnowski, 1995)

1.04 1.05

superthreshold behavior of the recorded neuron, but merely
chose the initial condition of the above differential equation
model after each spike as V(ti_; + A) = Vops(ti—1 + A)),
where V,s(?) is the true observed voltage, and A = 2.5
ms is the empirically chosen spike width of the cell. Thus,
in short, when the voltage V crosses threshold Vy,, a spike
is emitted (whose precise superthreshold shape we ignore
here), and then the voltage V' is reset to the true voltage
Vobs(ti—1 + A), as observed at the time of the end of the
spike, (ti—1 + A).

Our model thus fixed, we could then apply the ideas
discussed above to examine the maximum-likelihood volt-
age path under this model, given a novel (that is, cross-
validated) set of spike data {t;} and corresponding stim-
ulus {/(#)}, and to compare the resulting V() with the
true observed voltage trace, Vops(f). The results are shown in
Fig. 10. VL (?) is seen to match the true subthreshold Vs (¥)
quite well.

6. Conclusion

In this work we have developed analytical and numerical
methods for the investigation of Vi (), the most likely sub-
threshold voltage path given an observed spike train. This
optimal path turns out to satisfy a simple second-order ordi-
nary differential equation, (3), which can be solved exactly
in a number of simple but physiologically relevant cases;
analysis of this equation in turn leads to further insight into
the general structure of the optimal path. We also adapted ex-
isting methods for sampling from and computing conditional
densities of the latent state of a hidden Markov process (V(t),

.06

1.07 1.08

time (sec)

1.09 11 1.11 1.12 1.13

here), given the observable data (the superthreshold spike
train). We made use of this optimal path Vg (¢) to apply large
deviations principles for stochastic differential equations to
obtain approximations for the likelihoods and interspike in-
terval densities associated with a given set of model parame-
ters for the subthreshold dynamics. Finally, we demonstrated
that the ML method can provide an accurate reconstruction
of the true subthreshold somatic voltage as a function of
time, given accurate methods for fitting integrate-and-fire-
based models to these subthreshold dynamics (Stevens and
Zador, 1998; Jolivet et al., 2004; Paninski et al., 2004a).

We conclude by listing a few open directions for future
research.

Nonhomogeneous noise level o

One obvious extension to the simple model (1) considered
here would be to let o depend on V and #:

dV(t) = F(V (), t)dt + o (V, H)dW,.

We can recreate our analysis of Section 2 in this case, by
examining the functional derivative of

Twvae - f(V(f))]Zd )
2 2
0 ax(V (@), 1)

unfortunately, however, the resulting differential equations
turn out to be less tractable in this more general case (see
Freidlin and Wentzell, 1984 for further discussion). However,
some special cases might be worth examining in further
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detail. For example, in the case of linear f and for o (V, ¢)
o(?) (i.e., o constant in V), the underlying distributions
remain Gaussian, implying that the standard linear maximum
principle and Gaussian identities used above can again be
employed here.

Incorporating model uncertainty

The second way our model assumptions might be relaxed
would be to place less confidence in how well we have esti-
mated our model { f(V, t), 0, Vin, Vieset}- This uncertainty in
the model parameters could take several plausible forms; the
classical Bayesian approach would be integrate over some
prior distribution on the model parameters. For example, it
would be worthwhile (and fairly straightforward) to model
the observed variability in the voltage reset after a spike (c.f.
Fig. 10). It might also be useful to relax our assumptions
about the existence of a sharp voltage threshold, or at least
model noise in the threshold process. One tractable general-
ization of the deterministic threshold model used here would
be to assume spikes are generated via a Poisson process
with rate 7(V(#)), with (V) a positive, increasing function
with a sharp increase at some threshold value Vy, (Stevens
and Zador, 1996; Plesser and Gerstner, 2000; Gerstner and
Kistler, 2002; Paninski, 2004). In this case, computing the
optimal voltage path would require the maximization of the
loglikelihood

T T 1y : 2
toer V() — [ rvionar - [ LD

202 ’

interestingly, the solution here will depend in general on
the level of the subthreshold noise o, which was not the

case in the deterministic threshold case analyzed above. It
is also worth noting that in the case of linear subthreshold
dynamics f(V,t) = —g(t)V (¢t) + I(¢) and a firing rate func-
tion (V) which is convex and whose logarithm is concave,
the loglikelihood above is strictly concave, with no non-
global local maxima, and therefore has a unique maximum
which may be computed easily via simple gradient ascent
techniques.

Modeling multiple simultaneous spike trains

Assume k spike trains are observed simultaneously: can
we infer the optimal voltage paths if there exists a
correlated noise source linking these cells together? A
first step in this direction is to assume a model of the
form:
avi() = fi(Vi(), dt +dW;,, 1<i=<k
with the noise sources dW; , Gaussian, temporally white, and
correlated with some covariance matrix C (more formally,
the Brownian motions W; have time-independent increments
with between-cell covariance lt, — #; I1C).

For this model we have the likelihood

T
LAVO) = —= / A C Vit
2 Jo
with
i) = (Vi(t) — FiVi(0), 1), Va(t) — fo(Va0), D), ...,
Vi(t) — feVi(0), 1))’

Fig. 11 Computing the most 1
likely voltage path under 60 c=0.0
correlated subthreshold noise. 05
Two identical linear 40
homogeneous cells, 20
fV,1)=—gV + 1, with 0 B . 3 .
g =40, Vi = —0.2, Vi = 1, O * ¥
I = 0; the only difference
between the two cells is the 1
noise level o7 = 1 (the voltage 60 c=04
of cell 1 is indicated by the 3 05 2 40
black traces) and of = 2 (gray). > z
Spike times indicated by 0 20
asterisks. Top: Uncorrelated oLk % * ¥
noise case, ¢ = 0. Middle:
positively correlated noise, ¢ = 1 " " "
0.4; note that voltage of cell 1 60
tends to move upward with that 0.5 40
of cell 2, and vice versa. Middle: 20
negatively correlated noise, ¢ = 0 0
—-04 -20
0 0.2 0.4 0.6 0.8 1 0
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Clearly in the case that C is diagonal (uncorrelated noise), the
joint likelihood decomposes into a sum of k independent inte-

grals, implying that maximizing the full likelihood is equiva-
lent to individually maximizing the independent likelihoods

. 1 [T/, 2.
L) = 5 /0 (v,-m— f,-(vfm,r)) ar,

bringing us back to our original problem.

The corresponding maximum likelihood problem in the
nondiagonal C case may still be solved easily for linear
dynamics f{V, ) using quadratic programming techniques;
see Fig. 11 for an example. The general nonlinear case
may again be attacked via the Euler-Lagrange variational
approach.

Appendix A: Hidden Markov model techniques for
exact conditional sampling, density computation,
and likelihood maximization

As mentioned above, the integrate-and-fire cell is a special
case of a continuous-time hidden Markov model (HMM):
V acts as the “hidden” variable, which evolves according to
Markovian dynamics, and the presence or absence of a spike
in time bin ¢ is the observed variable, which is dependent (in
this case deterministically) only on V(#) at the single time
point ¢. In this appendix we briefly describe how to adapt
the existing methods for computing (and sampling from)
the conditional density of the hidden variable of an HMM,
conditioned on its beginning- and end-states, to this special
IF model case (c.f. Fig. 5 above). See, e.g., Rabiner, (1989)
for further detail.

Computing conditional densities

We want to compute p ( V(#) | s([0, T1)), with s([0, T]) denot-
ing the observed spike data on the interval [0, T]. We have

p(V(®)ls([0,T])
_ pGAO.TD | V@)p(V(®)
p(s([0,TD)
0, DIV ) pGs(@, TDIV ) p(V (1)
p(s([0,TD)
p(V () | s([0, 1)) p(s([0, tD)p(s((t, T | V(1)
p(s([0.TD) ’

where the second equality reflects the conditional indepen-
dence of s([0, #]) and s((¢, T)) given V(¢). The denominator
and first two terms in the numerator may be computed by

standard density propagation methods, that is, recursively
iterating the Chapman-Kolmogorov equations forward
(Karlin and Taylor, 1981), or in the case of diffusion
processes as considered here, solving the corresponding
Fokker-Planck (forward) equation (Burkitt and Clark, 1999;
Gerstner and Kistler, 2002; Paninski et al., 2004b). More
simply, of course, the ratio p(s([0, ¢]))/p(s([0, T1)), which
is constant in V, may just be taken as a normalization factor
that ensures the conditional V-probability integrates to
one.

The last term in the numerator above may be computed
by forward density propagation starting from each possible
point V(¢); however, this simple approach will be highly in-
efficient if we want this function for all times 0 < ¢t < T.
The following recursive “backwards” approach is more effi-
cient. We initialize att =T — dt

p(([T —dt, TDIV(T —dr))

= H(Vey = V(T — dt) / Noorar (V)Y
Vin

with H(-) the Heaviside function and N, ,2(V') the normal
density on V with mean y and variance o2. Here we have
made the abbreviation

w=V(T —dt)+ f(V(T —dt),T — dt)dt.

This complicated-looking initialization is just the result
of integrating out the probability that the noise Ny_4 will
push V over threshold in the next time step dfr.

Now use the backward recursive formula

PG THIV ()
— H(Vi = V() f ps(t +de TVt +de))

xp(V(t+dt) | V(1)
dV (t + dt);

again, this is just the Chapman-Kolmogorov equation (in
the case of the diffusion processes considered here, we can
take limits as df — O and obtain the Kolmogorov back-
ward partial differential equation (Karlin and Taylor, 1981),
but this is beyond the scope of this brief appendix; see
e.g. Paninski (2005) for an application of this idea). In
the case of stationary dynamics f(V,t) = f(V), recurs-
ing this formula corresponds to a simple iterated matrix
multiplication.

Soin total computing p(V (¢) | s([0, T'])) requires just one
forward density propagation and one backward propagation;
see Fig. 12 for an illustration.
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Fig. 12. Illustration of forward
and backward propagation

steps for computing conditional
densities p(V (¢) | s([0, T'])).
Top: “Forward” density p(V (¢) |
s([0, t]). Neuron is linear,
fV,t)=—gV(t)+ (1), with
fixed g; input current /() varies
sinusoidally (8 Hz). Middle:
“Backward” conditional firing
rate p(s([¢, T]) | V(¢)). Bottom:
Normalized product, p(V (¢) |
s([0,TD)

forward

backward

product

Sampling

The exact sampling method used here, a variant of the
forward-backward algorithm described above for comput-
ing conditional densities, was suggested by Ghahramani;
see also, e.g., Neal et al. (2003). An identical procedure is
used in Paninski, (2005). We initialize V(T) = 1. (This ini-
tial condition is due to the data that a spike occurred at time
T, as above.)
Now, for T > t > 0, sample backwards:

Vi)~ p(V(@e) [ {V)}icu<r, s([0, T])
= p(V(0) | V(t +dn), s([0,1]))

1

= EP(V(I +dn), s([0, DIV () p(V (1))
1

= p(Vi+ dr) | V() p(s([0, DIV @) p(V (1))
1

= EP(V(I +do) | V() p(V(©)Is([0, 1])).

Thus sampling on each time step simply requires that we
draw independently from a one-dimensional density, propor-
tional to the product in the last line. Once this product has
been computed, this sampling can be done using standard
methods (namely, the inverse cumulative probability trans-
form (Press et al., 1992). The term on the right may be pre-
computed for all ¢ via a single density propagation forward,
we emphasize that this only has to be done once, no matter
how many samples are required. The second term is com-
puted directly from the Gaussian stochastic dynamics (1),

2 Springer

given each V(¢ + df). Putting the samples together, for 0 <
t < T, clearly gives a sample from p({V (#)}o<:<7|s([0, T]),
as desired.

Optimizing

For completeness, we present the dynamic programming
(Viterbi) method for computing an optimal V() path
(Bellman, 1957). In our hands this technique did not lead
to any further analytic insight, but it does provide a robust,
efficient algorithm which works for arbitrary hidden Markov
models (this is the main technique used in computational lan-
guage processing applications, for example Rabiner (1989).
The main idea is that we do not need to search over all
possible paths for the optimal path; the complexity of this
global search would grow exponentially with the number of
time samples desired on [0, 7. Instead, we work recursively:
given the most likely path up to some arbitrary V(¢ — dr), for
0 <t < T, we look for the path that maximizes the likeli-
hood and ends at any given V(¢); the Markov nature of V(¢)
implies that, given the path up to V(¢ — dr), this involves just
an optimization over single steps from V(¢ — df) to V(¢), and
not an exponentially-large search over all paths up to V().
Thus, the algorithm proceeds as:

Initialize: V(0) = 0.

For 0 < t < T: given optimal path up to V(¢ — dr), for
all possible values of V(¢ —dr) (along with corresponding
likelihood for each such path), choose optimal path up to
V(?), for each value of V(¢).

Finally, choose optimal path ending at V(T) = 1, given op-
timal paths (and corresponding likelihoods) up to V(T — dt).
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