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Estimating Entropy on Bins Given Fewer
Than Samples

Liam Paninski

Abstract—Consider a sequence of discrete probability measures,
supported on points, and assume that we observe independent and
identically distributed (i.i.d.) samples from each . We demonstrate the
existence of an estimator of the entropy, ( ), which is consistent even
if the ratio is bounded (and, as a corollary, even if this ratio tends
to zero, albeit at a sufficiently slow rate).

Index Terms—Approximation theory, bias, consistency, distribution-free
bounds, entropy, estimation.

Earlier work has examined the problem of estimating the entropy of
a discrete distribution p, with support onm < 1 “bins,” given N in-
dependent and identically distributed (i.i.d.) samples from p. It has long
been recognized [1] that the crucial quantity in this estimation problem
is the ratio N=m: if the number of samples is much greater than the
number of bins, the estimation problem is easy, and vice versa. This
correspondence concentrates on the hard part of this problem: how do
we estimate the entropywhenN=mN is bounded? (To allow the precise
statement of asymptotic results, it is convenient here to let m = mN

depend onN ; see [2] for motivation, a brief review, and some recent re-
sults.) We show that a consistent estimator of the entropy exists in this
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regime (thus proving the main conjecture of [2]); the most surprising
implication of this result is that it is possible to accurately estimate the
entropy on m bins, given N samples, even when N=m is small (pro-
vided that both N andm are sufficiently large). We give an existence
proof of this result here; see [2] for a more constructive demonstration
of an estimator which numerically appears to have this interesting and
useful consistency property.
The entropy of a discrete distribution p is defined, as usual, as

H(p) = �

m

i=1

pi log pi

where i indexes the support points of p, and the logarithm is taken to
be natural. Our main result is as follows.

Theorem 1: LetN=mN � c > 0, uniformly inN . Then there exists
an estimator ĤN for the entropy H which is uniformly consistent in
mean square; that is,

E(ĤN �H)2 < �(c;N)

with �(c; N) & 0 as N ! 1.

Note that the above statement is uniform over all distributions sup-
ported onmN bins; the main practical implication, therefore, is that we
can construct entropy estimators with surprisingly small “worst case”
risk, given justm and N . We have as an easy corollary.

Corollary 2: There exists an estimator which is uniformly consis-
tent even if N=mN ! 0, sufficiently slowly.

More colloquially, we can estimate the entropy on m bins given
fewer thanm samples, as advertised. This is interesting in that it shows,
in a sense, that the individual probabilities p need not be precisely es-
timated for the entropy estimate to be consistent.
On the other hand, in [2] we showed thatN=mN cannot decay faster

than N��, � > 0, for consistency to hold, so the result is somewhat
delicate. We present another partial converse here, indicating that not
all functionals of the form i f(pi) can be estimated so easily, even
for f smooth and vanishing at p = 0.

Proposition 3: Define the power sum

F (p) �

m

i=1

p�i ; 0 < � < 1:

If lim supN�=(1��)=mN < 1, then

lim inf
N

inf
F̂

max
p

E(F̂N � F )2 > 0

where the second infimum is taken over all possible estimators for F ,
and the maximum over all probability measures onmN bins.

In particular, we need many more than m samples to estimate the
power sum on m bins, whenever the exponent � � 1=2. This result
also quantifies the intuition that F (p) becomes harder to estimate as
� decreases (and, in fact, is impossible to estimate—in a “worst case”
sense, at least—as � ! 0, where we interpret F (p) as counting the
number of bins i for which pi > 0).
The proof of the main theorem is built on ideas from [2]. Our esti-

mator will be of the linear form

Ĥa;N �

N

j=0

aj;Nhj

where the count statistics hj are defined as

hj �

m

i=1

1(ni = j)
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with ni the number of samples observed in bin i, and aN �
faj;Ng0�j�N is a set of N + 1 scalars. To give a sense of what
this linear form means, note that the obvious estimator for H , the
maximum-likelihood estimator (MLE)

ĤMLE = �
m

i=1

ni
N

log
ni
N

can also be expressed as

ĤMLE =

N

j=0

aMLE;j;Nhj

with

aMLE;j;N � � j

N
log

j

N
:

More generally, Ĥa;N = m
i=1 gN (ni), with gN (j) = aj;N .

For this class of estimators, we have some simple bounds on the bias
and variance (derived in [3], [2]). We bound the variance V (Ĥa;N)
using McDiarmid’s technique [4]

max
p

V (Ĥa;N) < N max
0�j<N

(aj+1;N � aj;N )2:

For the biasB(Ĥa;N), we have the following approximation-theoretic
bound:

max
p
jB(Ĥa;N)j � m max

0�x�1
H(x)�

j

aj;NBj;N(x)

where we have abbreviated the entropy function

H(x) = �x log x
and the binomial functions

Bj;N (x) � N

j
xj(1� x)N�j :

Note that both of the above two bounds are distribution free, that is,
uniform over all possible underlyingm-ary distributions p; in addition,
all maxima in sight are achieved, as can be shown by a straightforward
compactness and continuity argument.

Now we only need to find some sequence a�N for which the above
bound on the maximum bias maxp jB(Ĥa ;N)j is o(1) as N ! 1,
while the maximal differencemax0�j<N ja�j+1;N�a�j;N j, which con-
trols the variance of Ĥa ;N , decreases sufficiently quickly. We start
with a good guess at what a�N should be, then correct this original guess
incrementally as N grows. Our starting point is

a0j;N = aMLE;j;N +
1� j=N

2N
;

this specific a0N was derived in [2] and turns out to correspond to a ver-
sion of the bias-corrected MLE introduced by [1]. The proof proceeds
by showing that the bias functionH(x)� j a

0
j;NBj;N (x) converges,

in a certain sense, to a manageable limit function g. Then we approx-
imate this “leftover” function g with the binomial functions in such a
way that the maximal difference remains under control.

Our argument is based on two lemmas; we state and prove the
lemmas, then give the proof of the theorem.

Lemma 4 (Uniform Convergence of Rescaled Bias Function): De-
fine the sequence of functions on the nonnegative real line

fN(t) � N H(t=N)� j a
0
j;NBj;N (t=N) ; 0 � t � N

0; t > N .

This sequence converges uniformly to a continuous function g that van-
ishes at infinity (that is, g(t) ! 0 as t ! 1).

Proof: Writing out the definition of fN on the interval [0; N ], we
have

fN = �t log t� EN;t=N(�j log j)� 1

2
+

t

2N

where EN;y(z) denotes the expectation of the real-valued function z
on the integers, with respect to the binomial measure with parameters
(N; y). The first and third terms are constant in N ; the fourth is neg-
ligible for t = o(N), and we will prove that the second converges
uniformly to the mean of�j log j with respect to the Poisson measure
with parameter t. Once this is established, a second-order expansion of
�t log t is enough to demonstrate that the limit function obtained

g(t) � �t log t� 1

2
+

j�0

e�ttj

j!
j log j

vanishes at infinity. (Continuity is readily apparent, since g is the
uniform limit of a sequence of uniformly continuous functions.)
Our strategy is to break the interval t 2 [0;1) into three parts:
first, the compacta; second, the range t ! 1; t = o(N); finally,
t = (1 � c)N; 0 � c < 1. (The definition of fN takes care of the
range [N;1).)
To prove uniform convergence on compacta, first recall that each

individual Bj;N (t=N) converges uniformly on compacta to the cor-
responding “Poisson function” e�ttj=j! (this is an obvious corollary
of the uniform convergence on compacta of (1 + t=N)N to et). To
show that fN converges uniformly on compacta as well, it is enough
to note that jj log jj � j2 and jBj;N (t=N)j � tj=j!; hence, the sum
is bounded above by the sum of j2tj=j!, and this last sum is clearly
convergent in j, uniformly on compacta in t. This establishes uniform
convergence of fN on compacta, as can be seen by splitting our sum
into a (convergent) finite part and a (uniformly small) infinite tail.
Next we need to rule out the possible existence of a sequence

tN ! 1 along which convergence does not occur (that is,
fN(tN) 6! g(tN)). We prove this by showing that g(t) ! 0 as
t!1 and fN(tN)! 0 as tN !1, uniformly. We will derive both
of these statements via the second-order expansion

j log j = t log t+ (1 + log t)(j � t) +
1

2t
(j � t)2 + o(j � t)2:

The proofs for g(t) and fN(tN) are quite similar; we begin with g.
Take expectations of the first three terms of the above expansion and
compare the mean and variance of a Poisson random variable with rate
t. Now we need only show that the final term is negligible in expecta-
tion as t!1. The sum defining this expectation is handled, as usual,
in two parts (cf. [2, proof of Theorem 5]): a Taylor bound controls the
contribution for jj� tj < z(t)

p
t and tail probability inequalities con-

trol jj � tj > z(t)
p
t, where z(t) is a function such that z(t) ! 1

sufficiently slowly as t!1. The Taylor bound follows by computing
H 000(t) � t�2, and leads to the condition

t3=2z(t)3 = o t� z(t)
p
t

2

ensuring that the contribution of the first component vanishes asymp-
totically. The tail bounds can be derived via the standard exponential
tail inequalities [5] or more directly through a Stirling approximation;
either method leads to the conclusion that, for t large, e�ttj=j! decays
like a Gaussian in j of mean and variance t, implying that algebraic
growth, z(t) � t�, � > 0, is sufficient to make the tail contribution

jj�tj>z(t)pt

e�ttj

j!
j log j�t log t�(1+log t)(j�t)� 1

2t
(j � t)2

o(1) as t ! 1. Choosing � 2 (0; 1=6) completes the proof that g
vanishes at infinity.
To prove that fN(tN) ! 0 for tN ! 1; tN = o(N), simply

repeat the arguments of the preceding paragraph after replacing the
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Poisson measure of rate t with the binomial-(N; tN=N) measure (and
note that the final t=2N term in the definition of fN is negligible in
this range of tN ); the mean and variance formulas, and the necessary
exponential inequalities [5], are asymptotically equivalent.

To complete the proof of the lemma, we need only show that
fN(t) ! 0 uniformly for t 2 [(1 � c)N;N ], for any 0 � c < 1.
The argument remains very similar (in particular, the last o(j � t)2

term in the second-order expansion is handled the same way); the
key difference is that now the final term in the definition of fN
is nonnegligible. Rather, this term is chosen to match the variance
cN(1� c) of the corresponding binomial measures.

Lemma 5 (Density of “Poisson Polynomials”): Define C0(<
+) as

the space of continuous real functions on the nonnegative real axis,
vanishing at infinity, under the uniform metric. The linear span of the
“Poisson functions” fe�ttj=j!gj=0;1;... is dense in C0(<

+).
Proof: We apply the algebra version of the Stone–Weierstrass

theorem [6]: letX be a compact Hausdorff space,C(X;<) the algebra
of continuous real functions on X under the sup-norm (recall that an
algebra is a vector space closed under the usual pointwise multiplica-
tion of vectors), and A a subalgebra with the “two-point interpolation”
property: for any x; y 2 X , a; b 2 <, and � > 0 there exists an h 2 A
such that jh(x)� aj; jh(y)� bj < �. Then A is dense in C(X;<).

First, we compactify <+ in the obvious way, adding the point at
infinity (this is acceptable by the vanishing-at-infinity condition on
C0(<

+) and on the Poisson functions). Proving that the Poisson “poly-
nomials”—finite linear combinations of the Poisson functions—inter-
polate points is easy, except for the point at infinity, but this is unneces-
sary by the definition ofC0(<

+). The Poisson functions by themselves
are not closed under multiplication, but they generate an algebra; this
follows by uniformly approximating e��ttk with Poisson polynomials
(that is, finite sums of the Poisson functions), where k and � are inte-
gers, k � 0, � > 1. This is possible by the density of the polynomials
in the space of real continuous functions on the nonnegative real axis
with finite weighted norm

kfk< ;1;e � sup
t�0

e�tjf(t)j

(see, e.g., [7, Ch. VI, especially p. 170]; note in particular that this
density result is in terms of the weighted norm k:k< ;1;e , not the
original sup-norm). This follows since we can write

e��ttk �
j

bje
�ttj

in the weighted polynomial approximation form

e�t e�� ttk �
j

bjt
j

with �1 � �� 1 � 1, and clearly ke�� ttkk< ;1;e <1.

Proof: (Theorem 1): The proof is a series of diagonalization ar-
guments. We write out the basic idea first, then give the precise bounds
below. To begin, it is clear that Var(Ĥa ;N) ! 0 as N ! 1. How-
ever, as emphasized in [2], when lim supN=mN < 1, the maximal
bias of Ĥa ;N remains bounded away from zero. Nevertheless, Lemma
4 gives us good control over the bias function corresponding to Ĥa ;N :
the sup-norm of this function is asymptotically equal to that of g, on
a 1=N scale. In addition, the fact that g is continuous and vanishes at
infinity means that we should be able to approximate the bias function
well by just perturbing a few of the binomial terms a0j;N , with each
perturbation of small enough magnitude that the o(1) asymptotic be-
havior of the variance is undisturbed. Lemma 5 ensures the success of
this program, once we note that the binomial functions Bj;N(t=N), in
turn, asymptotically resemble the Poisson functions e�ttj=j!.

More precisely, we need to build a sequence of finite sums of bi-
nomial functions that converges uniformly to the bias limit function g.
For any fixed j, the binomial functionBj;N converges uniformly to the
corresponding Poisson function. Therefore, if we wait forN to become
large enough (this is the first diagonalization), it is enough to approx-
imate g by Poisson polynomials. Choose Pk , a sequence of Poisson
polynomials, converging uniformly to g; this is possible by the density
lemma and the separability of C0(<

+). To each Pk corresponds a set
of coefficients bk � fbj;kgj�0 such that

Pk =
j�0

bj;k
e�ttj

j!
;

by definition, bk is an infinite sequence of reals, of which only a finite
number of elements are nonzero for any fixed k. Now we can define
fa�NgN �N<N to be equal to a0N + 1

N
bk , where the addition of the

vectors is defined in the obvious way, and the sequenceNk %1 will
be specified below. The maximal bias of the resulting estimator Ĥa ;N

is o(1), by construction.
Now, finally, to define the sequence Nk . First, trivially, Nk must be

large enough to make the above vector addition sensible. More impor-
tantly, we need to choose the sequence Nk to increase quickly enough
to satisfy our variance requirement

max
0�j<N

(a�j+1;N � a�j;N )2 = o(1=N);

this will entail one simple last diagonalization argument.
Let us put all the pieces together. Define

efN � sup
t�0

jfN(t)� g(t)j

ek � sup
t�0

jg(t)� Pk(t)j

ej;N � sup
t�0

Bj;N min(t=N; 1) �
e�ttj

j!

e0N �N max
0�j<N

(a0j+1;N � a0j;N )2

and

ebk � max
j�0

(bj+1;k � bj;k)
2:

All but the last of these sequences tend to zero inN or k, while the last
is finite for any fixed k. We have that

max
p
jB(Ĥa ;N)j �

1

c
efN + ek +

j�j(k )

ej;N jbj;k j

where we define

j(k) � maxfj : bj;k 6= 0g

and

kN � maxfk : N � Nkg:

We have assumed here that j(kN) � N . Similarly

max
p

V (Ĥa ;N) � 2(e0N +N�1ebk )

since (a+b)2 � 2(a2+b2) for any a; b 2 <. Define �0(c;N) by adding
the second bound above to the square of the first. Clearly, �0(c; N)! 0
if kN ! 1 slowly enough that

lim sup
N

N�1ebk +
j�j(k )

ej;N jbj;k j = 0:

Finally, the �(c; N) of the theorem can be defined by taking the least
monotonically decreasing sequence that majorizes �0(c;N).

Proof: (Corollary 2): We need only to demonstrate the existence
of some sequence cN ! 0 for which we can guarantee the implication

N=mN � cN =) E(ĤN �H)2 < �N
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for some sequence �N ! 0. For example, given �(c; N) from Theorem
1, we could define cN inductively

c1 =1

cN+1 =
cN ; if �( c

2
; N) > c

2
c
2
; otherwise.

Clearly, cN & 0, since �(c; N) & 0 for any fixed c. Defining �N as
�(1; N) for allN such that cN = 1 and as cN for all otherN , the claim
is proven.

It is worth noting that the above proofs can be easily strengthened
to almost sure convergence, given a suitably chosen probability space;
see [2] for an example of such a probability space, along with the ex-
ponential tail probability inequalities (derived, again via McDiarmid)
sufficient for the application of the Borel–Cantelli lemma.

Proof: (Proposition 3): We use what is perhaps the canonical ap-
proach from the minimax literature [8]: the idea is to find two points in
parameter space, separated by some fixed distance � > 0, which are in-
distinguishable with some positive probability. More precisely, we will
produce two sequences of probability measures p0;N and p1;N , such
that

lim inf
N

jF (p0;N)� F (p1;N)j > 0 (1)

and

lim sup
N

kpN0;N � pN1;Nk1 < 2 (2)

where pN denotes the productmeasure of p and k:k1 the usualL1 norm.
That the existence of such a pair implies the stated claim is standard
(see, e.g., [9]): consider the Bayesian problem of estimating F , given
a prior placing mass 1=2 on each of p0;N and p1;N . Clearly, the best
Bayesian estimator for this simple two-point problem has an average
error bounded away from zero; the argument is completed by noting
that this average error is necessarily less than the maximum error ap-
pearing in the statement of the proposition.

We let p0;N be the probability measure supported on bin 1, and p1;N
be the simple perturbation

p1;N(i) =
(1� (mN � 1)tN ); i = 1

tN ; i > 1.

The sequence tN is chosen to be the smallest positive sequence im-
plying condition (1); clearly, the condition holds if

lim inf
N

m
1=�
N tN > 0:

Now we examine the L1 norm in condition (2). Since pN0;N places
all of its mass on the single point for which all observed data fall in
bin 1, we have that this distance remains bounded away from 2 iff

p1;N(1)N remains bounded away from 0; in other words, condition
(2) holds whenever

lim sup
N

NmN tN <1:

Both of the above conditions can be met whenN is allowed to grow
no more quickly thanm(1��)=�

N , as claimed.

It remains unclear at the moment whether a result like Theorem 1
holds for the power sum F (p), for values of � > 1=2; neither the tech-
niques of the above proof, nor those of Lemma 4, seem to generalize
usefully to this case. For example, the obvious analog of Lemma 4 for
the power sum does not hold: we have instead that

N� (t=N)� �
j

(j=N)�Bj;N (t=N) ! g�(t)

for a continuous function g�(t), and unfortunately this N� conver-
gence rate does not give us the control on a 1=N scale we need for the
proof of Theorem 1; indeed, numerical experiments (data not shown)
indicate that the computational approach employed in [2] for estimating
the entropy does not lead to an estimator for the power sum that is
consistent when N=m remains bounded. Closing this theoretical gap
would be of some interest, as F (p) approximates H(p) in a sense for
� ! 1 [10].
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