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Abstract

We discuss a method for obtaining a subjeet’riori beliefs from
his/her behavior in a psychophysics context, under thengston that
the behavior is (nearly) optimal from a Bayesian perspectivThe
method is nonparametric in the sense that we do not assurh¢htha
prior belongs to any fixed class of distributions (e.g., G&arg. Despite
this increased generality, the method is relatively simiplanplement,
being based in the simplest case on a linear programmingithlgg and
more generally on a straightforward maximum likelihood aaximum
a posterioriformulation, which turns out to be a convex optimization
problem (with no non-global local maxima) in many importaases. In
addition, we develop methods for analyzing the uncertadfithese esti-
mates. We demonstrate the accuracy of the method in a siinpléesed
coin-flipping setting; in particular, the method is able teqsely track
the evolution of the subject’s posterior distribution age@nd more data
are observed. We close by briefly discussing an interestingection to
recent models of neural population coding.

I ntroduction

Bayesian methods have become quite popular in psychohgsicneurosciencé<5); in
particular, a recent trend has been to interpret obsenesgbin perception and/or behavior
as optimal, in a Bayesian (average) sense, under ecollygitermined prior distributions
on the stimuli or behavioral contexts under study. For eXamp) interpret visual motion
illusions in terms of a prior weighted towards slow, smoothwements of objects in space.

In an experimental context, it is clearly desirable to emoplly obtain estimates of the
prior the subject is operating under; the idea would be ta ttempare these experimental
estimates of the subject’s prior with the ecological prier dr she “should” have been
using. Conversely, such an approach would have the potém@stablish that the subject
is not behaving Bayes-optimally under any prior, but rathén fact using a different, non-
Bayesian strategy. Such tools would also be quite usefbEicbntext of studies of learning
and generalization, in which we would like to track the tinoeise of a subject’s adaptation
to an experimentally-chosen prior distributids).( Such estimates of the subject’s prior
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have in the past been rather qualitative, and/or limitedrtgpke parametric families (e.qg.,
the width of a Gaussian may be fit to the experimental datahlewdctual Gaussian identity
of the prior is not examined systematically).

We present a more quantitative method here. We first dishesaéthod in the general case
of an arbitrarily-chosen loss function (the “cost” which agsume the subject is attempting
to minimize, on average), then examine a few special impbtases (e.g., mean-square
and mean-absolute error) in which the technique may be Biethsomewhat. The algo-
rithms for determining the subject’s prior distributiomsrt out to be surprisingly quick and
easy to code: the basic idea is that each observed stimegpsmse pair provides a set of
constraints on what the actual prior could be. In the sintplase, these constraints are
linear, and the resulting algorithm is simply a version okkr programming, for which
very efficient algorithms exist. More generally, the coastts are probabilistic, and we
discuss likelihood-based methods for combining theseyrmigstraints (and in particular
when the resulting maximum likelihood, or maximunposteriori problem can be solved
efficiently via ascent methods, without fear of getting pregh in non-global local maxima).
Finally, we discuss Bayesian methods for representingicerntainty in our estimates.

We should point out that related problems have appearedeistttistics literature, par-
ticularly under the subject of elicitation of expert opini6—8); in the machine learn-
ing literature, most recently in the area of “inverse reinément learning” g); and in
the economics/ game theory literature on utility learning0)( The experimental eco-
nomics literature in particular is quite vast (where thevahce to gambling, price setting,
etc. is discussed at length, particularly in settings incltrational” — expected utility-
maximizing — behavior seems to break down); see, e.g. Wakkecent bibliography
(www1.fee.uva.nl/creed/wakker/refs/rfrncs.htm) forther references. Finally, it is worth
noting that the question of determining a subject’s (or npyexisely, an opponent’s) pri-
ors in a gambling context — in particular, in the binary cabeloether or not an opponent
will accept a bet, given a fixed table of outcomes vs. payoffdias received attention
going back to the foundations of decision theory, most premily in the discussions of
de Finetti and Savage. Nevertheless, we are unaware of ampps application of simi-
lar techniques (both for estimating a subject’s true priat for analyzing the uncertainty
associated with these estimates) in the psychophysicawoacience literature.

General case

Our technique for determining the subject’s prior is basedeveral assumptions (some of
which will be relaxed below). To begin, we assume that thgesuitis behaving optimally
in a Bayesian sense. To be precise, we have four ingredi@misor distribution on some
hidden parametet; observed input (stimulus) data, dependent in some prbstabivay
on ¢; the subject’'s corresponding output estimates of the dyidgrd, given the input
data; and finally a loss functiaB(., .) that penalizes bad estimates forThe fundamental

assumption is that, on each triathe subject is choosing the estimétef the underlying
parameter, given datg, to minimize the posterior average error

/ p(6l2:) D (6, 6)d6 ~ / p(0)p(:16) D6, 0)db, 1)

wherep(9) is the prior on hidden parameters (the unknown object theraxgnter is trying
to estimate), ang(z;|6) is the likelihood of datac; givend. For example, in the visual
motion exampled could be the true underlying velocity of an object movingtigh space,
the observed datg; could be a short, noise-contaminated movie of the objeatsan, and
the subject would be asked to estimate the true matigiven the data:; and any prior
conceptionsp(d), of how one expects objects to move. Note that we have alstcithp
assumed, in this simplest case, that both the Id&s.) and likelihood function(z;|6)



are known, both to the subject and to the experimenter (pserfram a preceding set of
“learning” trials).

So how can the experimenter actually estimg®), given the likelihoods(z|0), the loss
function D(., .), and some set of dafa;;} with corresponding estimatd$;} minimizing
the posterior expected loss (1)? This turns out to be a lipgagramming problemi(),
for which very efficient algorithms exist (e.g., “linprog:rim Matlab). To see why, first
note that the right hand side of expression (1) is linearéngttior p(¢). Second, we have a
large collection of linear constraints @i9): we know that

p0) > 0 Vo @)
JECE 3)
/ p<9>p<xie>[D<e},e> _ D=o)|da<o v @

where (2-3) are satisfied by any proper prior distributiod &) is the maximizer condition
(1) expressed in slightly different language. (See ald®), (who noted the same linear
programming structure in an application to cost functiotingstion, rather than the prior
estimation examined here.)

The solution to the linear programming problem defined bg)Bn't necessarily unique; it
corresponds to an intersection of half-spaces, which igeoim general. To come up with
a unique solution, we could maximimize a concave “reguiagizfunction on this convex
set; possible such functions include, e.g., the entropy @Y, or its negative mean-square
derivative (this function is strictly concave on the spatalbfunctions whose integral is
held fixed, as is the case here given constraint (3)); morergéy, if we have some prior
information on the form of the priors the subject might bengsiand this information can
be expressed in the “energy” form

Plp(0)] ~ PO

for a concave functionay[.], we could use the log of this “prior on prior#”. An alternative
solution would be to modify constraint (4) to

/ p<e>p<xi|e>[D<éi,e>—D(zﬁ) <—e v

where we can then adjust the slack variablentil the contraint set shrinks to a single
point. This leads directly to another linear programmingipem (where we want to make
the linear functiore as large as possible, under the above constraints). Ndtéothihis
last approach to work — for the linear programming problernaee a solution — we need
to ensure that the set defined by the constraints (2-4) is actihis basically means that
the constraint set (4) needs to be sufficiently rich, whinhuin, means that sufficient data
(or sufficiently strong prior constraints) are required. Wik return to this point below.

Finally, what if our primary assumption is not met? That isialvif subjects are not quite
behaving optimally with respect tg(6)? It is possible to detect this situation in the above
framework, for example if the slack variabdlebove is found to be negative. However, a
different, more probabilistic viewpoint can be taken. Assuthe value of the choiag is
optimal under some “comparison” noise, that is,

[ sota0 [D(éi,m—D(z,e) <om(z) v

with 7;(z) a random variable of scate > 0 (assume to be i.i.d. for now, although this
may be generalized). If we assume this decision ngikas a log-concave density (i.e.,



the log of the density is a concave function; e.g., Gaussiaexponential), then so does
its integral (L2), and the resulting maximum likelihood problem has no ntobagl local
maxima and is therefore solvable by ascent methods. To sgentite the log-likelihood

of (p, o) given data{z;, 6;} as

w; (z)
Ly, 5,p0) =) log Lm dp(n),
with the sum over the set of all the constraints in (4) and

w) = 1 [ o0t |[D0w0) - Do),

L is the sum of concave functionsin, and hence is concave itself, and has no non-global
local maxima in these variables; sineeandp are linearly related through; (and (p, o)

live in a convex set)L has no non-global local maxima (p, o), either. Once again, this
maximum likelihood problem may be regularized by prior mf@tiort, maximizing the

a posteriorilikelihood L(p) — ¢[p] instead ofL(p); this problem is similarly tractable by
ascent methods, by the concavity-ef[.] (note that this “soft-constraint” problem reduces
exactly to the “hard” constraint problem (4) as the naise> 0)2.

Note that the estimated value of the noise seafdays a similar role to that of the slack
variablee, above, with the difference thatcan be much more sensitive to the worst trial
(that is, the trial on which the subject behaves most subtly); we can use either of
these slack variables to go back and ask about how close iimailyt the subjects were
actually performing — large values of for example, imply sub-optimal performance. An
additional interesting idea is to use the computed valugasf a kind of outlier test; large
implies the trial was particularly suboptimal.

Special cases

Maximum a posterioriestimation: The maximuma posteriori(MAP) estimator corre-
sponds to the Hamming distance loss function,

D(i,j) =1(i # j);
this implies that the constraints (4) have the simple form
p(0;) — p(2)L(0;, z) > 0,
with L(0;, =) defined as the largest observed likelihood ratioffoandz, that is,

L(6;, z) = max pllz)

La 10(331‘|9Ai)7

loverfitting here is a symptom of the fact that in some cases — particulagy felw data samples
have been observed — many priors (even highly implausible priorsgxplain the observed data
fairly well; in this case, it is often quite useful to penalize these “implausibiistg, thus effectively
regularizing our estimates. Similar observations have appeared in ttextofmedical applications
of Markov random field method4.8).

2Another possible application of this regularization idea is as follows. We nmayporate im-
proper priors — that is, priors which may not integrate to unity (such grfi@guently arise in the
analysis of reparameterization-invariant decision proceduresséonjgle) — without any major con-
ceptual modification in our analysis, simply by removing the normalizatiovramt (3). However,
a problem arises: the zero measur@) = 0, will always trivially satisfy the remaining constraints
(2) and (4). This problem could potentially be ameliorated by introduciraneex regularizing term
(or equivalently, a log-concave prior) on the total mfigg6)d6.




with the maximum taken over all; which led to the estimaté;. This setup is perhaps
most appropriate for a two-alternative forced choice sittma where the problem is one of
classification or discrimination, not estimation.

Mean-square and absolute-error regression: Our discussion assumes an even simpler
form when the loss functio®(., .) is taken to be squared errdp(z,y) = (z — y)?, or
absolute errorD(z,y) = |z — y|. In this case it is convenient to work with a slightly
different noise model than the classification noise disedisdove; instead, we may model
the subject’s responses as optimal plus estimation noise.sduared-error, the optimal
6, is known to be uniquely defined as the conditional mea# givenz;. Thus we may
replace the collection of linear inequality constraints\#th a much smaller set of linear
equalities(a single equality per trial, instead of a single inequgiky trial perz):

/(M%Wﬂ9—QOPWM9=0m; ©)

the corresponding likelihood, again, has no non-globalllotaxima ify has a log-concave
density. In the simplest case of Gaussignthe maximum likelihood problem may be
solved by standard nonnegative least-squares (e.g.oteway” or “quadprog” in Matlab).

In the absolute error case, the optinﬁalis given by the conditional median @éfgiven
x; (although recall that the median is not necessarily unicere)h thus, the inequality
constraints (4) may again be replaced by equalities whielimear inp(9):

Gi o0

| pOwaite) = [ piwiailo) = ans
—00 0;

again, for Gaussian this may be solved via standard nonnegative regressioesit atih a

different constraint matrix. In each casgretains its utility as an outlier score.

A worked example: learning the fairness of a coin

In this section we will work through a concrete example, tovsthow to put the ideas
discussed above into practice. We take perhaps the singassible example, for clarity:
the subject observes some numbeof independent, identically distributed coin flips, and
on each triak tells us his/her probability of observing tails on the neidlt given that

t = t(i) tails were observed in the firsttrials®>. Here the likelihood functiong(x;|6)
take the standard binomial forp(t(i)|praits) = (;)Plairs(1 — Praits)’ " (nOte that it is
reasonable to assume that these likelihoods are known swtiject, at least approximately,
due to the ubiquity of binomial data).

Under our assumptions, the subject’s estimaigs, ; are given as the posterior mean
of prais given the number of tails observed up to trial This puts us directly in the
mean-square framework discussed in equation (5); we asGamgsian estimation noige
construct a regression mateikof N rows, with thei-th row given byp(t(7) |ptaiis) (Ptaits —
Prails,i)- TO regularize our estimates, we add a small square-difterpenalty of the form
q[p(0)] = [ |dp(6)/d6|*de. Finally, we estimate

pf) =arg  min  [|Ap[[3 +eqlp],
p>0; [y p(0)do=1

for e ~ 10~7; this estimate is equivalent to MAP estimation under a (W&#ussian prior
on the functiorp(0) (truncated so thai(d) > 0), and is computed using quadprog.m.

3We note in passing that this simple binomial paradigm has potential applicatioiteal-
observer analysis of classical neuroscientific tasks (e.g., synafsase detection, or photon count-
ing in retina) in addition to potential applications in psychophysics.
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Figure 1. Learning the fairness of a coin (numerical simulatiofdp panel: True prior distribution

on coin fairness. The bimodal nature of this prior indicates that the fubjeects coins to be
unfair (skewed towards heads.iis < .5, Or tails, prais > .5) more often than fairfqis =

.5). Second: Observed data. Open circles indicate the fraction of observeditailsi(i) as a
function of trial number (the maximum likelihood estimate, MLE, of the fairness and a minimal
sufficient statistic for this problem}- symbols indicate the subject’s estimate of the coin’s fairness,
assumed to correspond to the posterior mean of the fairness undarbjeet's prior. Note the
systematic deviations of the subject’s estimate from the MLE; these deviatwimk as: increases
and the strength of the prior relative to the likelihood term decreabks.d: Binomial likelihood
terms ;) p}airs (1 — prairs)' " Color of trace correponds to trial numbigas indicated in previous
panel (traces are normalized for clarityfourth: Estimate of prior giveri50 trials. Black trace
indicates true prior (as in top panel); red indicates estirdateposterior standard error (computed
via importance sampling)Bottom: Tracking the evolution of the posterior. Black traces indicate
the subject’s true posterior after observihdthin trace),50 (medium trace), and00 (thick trace)
sample coin flips; as more data are observed, the subject becomesantbmore confident about
the true fairness of the coip (= .5), and the posteriors match the likelihood terms (c.f. third panel)
more closely. Red traces indicate the estimated posterior given thig€udr just the last. 00 or 50
trials, respectively (errorbars omitted for visibility). Note that the pracedracks the evolution of
the subject’s posterior quite accurately, given relatively few trials.

To place Bayesian confidence intervals around our estimatesample from the corre-
sponding (truncated) Gaussian posterior distributiop(@h (via importance sampling with
a suitably shifted, rescaled truncated Gaussian propesdity; similar methods are ap-
plicable more generally in the non-Gaussian case via thal ysasterior approximation
techniques, e.g. Laplace approximation). Figs. 1-2 detnatesthe accuracy of the es-
timatedp(6); in particular, the bottom panels show that the method ately tracks the
evolution of the model subjects’ posteriors as an increggaimount of data are observed.
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Figure 2: Learning an unfair coing.iis = .25). Conventions as in Fig. 1.

Connection to neural population coding

It is interesting to note a connection to the neural popotatioding model studied irLg)
(with more recent work reviewed il§)). The basic idea is that neural populations encode
not just stimuli, but probability distributions over stith(where the distribution describes
the uncertainty in the state of the encoded object). Herexperimentally observed data
are neural firing rates, which provide constraints on thestgihg encoded “prior” distri-
bution in terms of the individual tuning function of eachldelthe observed population.

The simplest model is as follows: the observed spikefrom thei-th cell are Poisson-
distributed, with rate a nonlinear function of a linear ftional of some prior distribution,

ni ~ Poiss(g ( / () f (s, 9))) ,

where the kernef is considered as the cell’s “tuning function”; the log-cawity of the
likelihood of p is preserved for any nonlinearigythat is convex and log-concave, a class
including the linear rectifiers, exponentials, and povesvd (and studied more extensively
in (16)). Alternately, a simplified model is often used, e.g.:

~q (" —fp(j)f(a:i,a))

n; ’

with ¢ a log-concave density (typically Gaussian) to preservecticavity of the log-
likelihood; in this case, the scate of the noise does not vary with the mean firing rate,



as it does in the Poisson model. In both cases, the obserumglfites act as constraints
oriented linearly with respect tg in the latter case, the noise scalsets the strength, or

confidence, of each such constraigf®. Thus, under this framework, given the simul-
taneously recorded activity of many cells;} and some model for the tuning functions
f(x;,0), we can inferp(6) (and represent the uncertainty in these estimates) usitig- me
ods quite similar to those developed above.

Directions

The obvious open avenue for future research (aside froncapipih to experimental data)
is to relax the assumptions: that the likelihood and costtion are both known, and that
the data are observed directly (without any noise). It sefaingo conjecture that the
subject can learn the likelihood and cost functions givesugh data, but one would like to
test this directly, e.g. by estimatirg(., .) andp together, perhaps under restrictions on the
form of D(.,.). As emphasized above, the utility estimation problem hesived a great
deal of attention, and it is plausible to expect that the wdstiproposed here for estimation
of the prior might be combined with previously-studied nuet for utility elicitation and
estimation. It is also interesting to consider these aliiih methods in the context of
experimental desigr8(17, 1§, in which we might actively seek stimuli; to maximally
constrain the possible form of the prior and/or cost functio
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