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Paninski, Liam, Matthew R. Fellows, Nicholas G. Hatsopoulos,
and John P. Donoghue. Spatiotemporal tuning of motor cortical
neurons for hand position and velocity. J Neurophysiol 91: 515–532,
2004. First published September 17, 2003; 10.1152/jn.00587.2002. A
pursuit-tracking task (PTT) and multielectrode recordings were used
to investigate the spatiotemporal encoding of hand position and ve-
locity in primate primary motor cortex (MI). Continuous tracking of
a randomly moving visual stimulus provided a broad sample of
velocity and position space, reduced statistical dependencies between
kinematic variables, and minimized the nonstationarities that are
found in typical “step-tracking” tasks. These statistical features per-
mitted the application of signal-processing and information-theoretic
tools for the analysis of neural encoding. The multielectrode method
allowed for the comparison of tuning functions among simultaneously
recorded cells. During tracking, MI neurons showed heterogeneity of
position and velocity coding, with markedly different temporal dy-
namics for each. Velocity-tuned neurons were approximately sinusoi-
dally tuned for direction, with linear speed scaling; other cells showed
sinusoidal tuning for position, with linear scaling by distance. Veloc-
ity encoding led behavior by about 100 ms for most cells, whereas
position tuning was more broadly distributed, with leads and lags
suggestive of both feedforward and feedback coding. Individual cells
encoded velocity and position weakly, with comparable amounts of
information about each. Linear regression methods confirmed that
random, 2-D hand trajectories can be reconstructed from the firing of
small ensembles of randomly selected neurons (3–19 cells) within the
MI arm area. These findings demonstrate that MI carries information
about evolving hand trajectory during visually guided pursuit track-
ing, including information about arm position both during and after its
specification. However, the reconstruction methods used here capture
only the low-frequency components of movement during the PTT.
Hand motion signals appear to be represented as a distributed code in
which diverse information about position and velocity is available
within small regions of MI.

I N T R O D U C T I O N

Neural activity in primary motor cortex (MI) is correlated
with aspects of arm motion such as hand position (Georgopou-
los et al. 1984; Kettner et al. 1988), speed (Ashe and Georgo-
poulos 1994; Moran and Schwartz 1999a), direction of motion
(Ashe and Georgopoulos 1994; Fu et al. 1995; Georgopoulos et
al. 1982), and force (Sergio and Kalaska 1998; Taira et al.
1996). Most MI neurons appear to combine information about
multiple movement features (Ashe and Georgopoulos 1994;
Moran and Schwartz 1999a) that may be specified separately in
time (Fu et al. 1995). The temporal aspects of the encoding

process are important both for understanding the neuronal
processing of dynamic signals (Buracas et al. 1998; Mainen
and Sejnowski 1995; Rieke et al. 1997) and for the problem of
decoding information from populations of neurons (Humphrey
et al. 1970; Warland et al. 1997), yet previous work has not
differentiated temporal patterns imposed by task demands from
the underlying temporal dynamics of encoding.

Investigation of the spatiotemporal encoding of motor vari-
ables presents several challenges. Tasks used to study move-
ment have most often involved point-to-point movements to a
limited number of well-rehearsed targets. Step-tracking tasks,
as typically implemented, allow only limited control over
kinematic variables because hand motion is a function of the
subject’s strategy rather than of the experimental design. For
example, in a typical point-to-point movement task, any hand
velocity can be used to reach a target as long as target acqui-
sition falls within a maximum allotted time. In addition, typical
step-tracking tasks limit the size of the parameter space sam-
pled for each variable; studies of target location encoding are
typically limited to a small subset of possible locations (8, in
the widely used “center-out” task; Ashe and Georgopoulos
1994; Georgopoulos et al. 1982; Kalaska et al. 1989; Moran
and Schwartz 1999a). Furthermore, because hand position and
velocity are strongly interdependent in these tasks, it is difficult
to determine their relative contributions to MI firing. For
example, in the standard radial task, any given peripheral
position is associated with just one single direction of motion,
and with a highly stereotyped set of velocity profiles.

Another problem—especially significant for studies of tem-
poral dynamics—in tasks typically used to study motor coding
is that neural and behavioral variables (such as firing rate and
hand speed) are statistically nonstationary. Distributions of
these measures vary systematically as a function of trial time,
so that, for example, peak firing occurs within a narrow interval
after a cue to move. Nonstationarities in the underlying data
distributions greatly complicate the analysis of temporal en-
coding processes because lag-dependent interactions (those
related to coding delays) are confounded with trial-time–de-
pendent modulations in activity.

In earlier studies in motor cortex, behavioral variables were
treated as static, scalar quantities such as average hand direc-
tion or speed, and the concomitant time-varying neural activity
was summarized as a single number—the mean firing rate. The
data were averaged over many trials and/or fit to highly para-
metric tuning models (e.g., cosine functions), thereby collaps-
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ing what may be more information-rich tuning functions
(Sanger 1996). These multiple averages eliminate most of the
dynamic, trial-specific information needed to characterize spa-
tiotemporal encoding properties. In contrast, more recent stud-
ies have explicitly examined the temporal aspects of kinematic
coding in MI using center-out–type tasks (Ashe and Georgo-
poulos 1994; Fu et al. 1995; Moran and Schwartz 1999a;
Sergio and Kalaska 1998) or curved drawing tasks (Moran and
Schwartz 1999b; Schwartz and Moran 1999), and treating the
kinematics and neural activity as time-varying data. These
studies avoid the issues of collapsing data across time but still
suffer from the inherent statistical constraints described above,
that is, interactions between variables of interest, and the
confounding of time-dependent with lag-dependent properties,
where lag is the delay between spiking and its manifestation as
behavior. Temporal dynamics, as they have been studied in the
context of these tasks, could be an indication of the temporal
evolution of task demands and are not necessarily an indication
of the underlying dynamics of encoding.

Finally, the serial recording techniques employed in previ-
ous work preclude the direct comparison of spatiotemporal
encoding properties between neurons because units are re-
corded under behavioral and state conditions that vary from
trial to trial (and therefore from cell to cell). Furthermore, serial
recordings of neural data necessitate assumptions of statistical
independence between neurons (because the dependencies can-
not be observed without simultaneous recording), and these
assumptions have been shown to be inaccurate in general
(Maynard et al. 1999; Oram et al. 2001).

The present study characterized spatiotemporal encoding of
hand motion using a random, continuous pursuit-tracking task
(PTT) designed to facilitate evaluation of the spatial and tem-
poral characteristics of MI neurons, while minimizing depen-
dencies and nonstationarities. Using continuous tracking of a
randomly moving stimulus, position and velocity encoding is
characterized within a systems analysis framework. In this
context, hand trajectory is viewed as a random “stimulus” to
the system and neural activity is the “response.” Each stimulus
is drawn from an experimenter-determined distribution that
broadly and continuously covers velocity and position space,
and is stationary with respect to trial time. This design effec-
tively controls hand motion at all times and reduces statistical
dependencies among variables across the experiment. These
statistical properties of the PTT permit the rigorous application
of information-theoretic and signal-processing methods to the
analysis of position and velocity coding. The relationship be-
tween kinematics and firing rate can be characterized in a
nonparametric (model-free) manner, without assumptions
about the underlying tuning properties of the sampled neurons.
The multielectrode recording approach taken here allows quan-
titative comparisons of encoding between cells, because mul-
tiple neurons are recorded under completely identical condi-
tions. Finally, the systems analysis approach further permits a
direct quantification of hand trajectory information using signal
reconstruction methods that can demonstrate planned motions
from population activity. In this paper we describe the spatio-
temporal tuning functions of MI neurons for velocity and
position during pursuit tracking and we compare the informa-
tion coded within single cells and across the population. We
also demonstrate that MI neurons contain sufficient position
and velocity information to reconstruct novel hand trajectories

based on information available from the firing of a small
sample of MI neurons.

Part of this work appeared in abstract form (Society for
Neuroscience Meeting 1999; abstract 665.9; Society for Neu-
roscience Meeting 2001; abstract 940.1).

M E T H O D S

Behavioral task

Three monkeys (one Macaca fascicularis and 2 M. mulatta) were
operantly conditioned to track a smoothly and randomly moving
visual target. The monkey viewed a computer monitor and gripped a
two-link, low-friction manipulandum that constrained hand move-
ment to a horizontal plane. Manipulandum position was sampled on a
30 � 30-cm digitizing tablet (Wacom Technology, Vancouver, WA)
at 167 Hz, with an accuracy of 0.25 mm, and recorded to disk. Hand
position was continuously reported on the monitor by a black, 0.2°
visual angle circle (0.5 cm radius on the tablet) (Fig. 2A).

At the beginning of each trial, a red, 0.6° (1.5 cm tablet radius)
tracking target appeared in a random position, drawn from a 2-D,
zero-covariance Gaussian (up to the cutoff imposed by the edge of the
screen) distribution with mean located at the workspace center. The
monkey was required to align the feedback and target cursor within
1.5 s (4 s for monkey Ra); if the target was not acquired, the trial was
aborted and the target reappeared at a new, independently, identically
distributed (i.i.d.) position to begin the next trial. A 700-ms hold
period followed target acquisition, after which the target began to
move in a smooth, but random fashion. If the monkey continuously
maintained the feedback cursor within the target for 8–10 s, a juice
reward was delivered. Each target trajectory stimulus was a randomly
generated i.i.d. signal that was presented only once: the target position
(and thus to first-order, hand position) during the tracking period was
generated by, in essence, running Gaussian white noise through a
band-pass filter, with the horizontal and vertical components gener-
ated independently. More specifically, a spectrum was constructed,
consisting of 217 integer frequency components, such that the power
was 1/f within the band-pass and 0 otherwise. Each frequency com-
ponent was assigned a different, random phase. This spectrum was
then inverse Fourier transformed producing the position signal in the
time domain. This signal was then scaled appropriately for the work-
space and resampled at 8 Hz. The power spectrum of the resulting
signal for one experiment is shown in Fig. 3C. Note that this is not
identical to the original spectrum because of the finite length of the
signal. Spectra for other experiments were qualitatively similar, be-
cause, by construction, they were identical with the exception of the
bandwidth, which was left as a free parameter and varied between
experiments (see Table 1). Importantly, the 1/f characteristic of the
band-pass filter for the position signal means that the velocity signal
is approximately white within the band-pass, and thus has minimal
autocorrelation width for that given band-pass.

For comparison, 2 of the monkeys were also trained to perform a
standard “center-out” task (Fig. 1; see Georgopoulos et al. 1982;
Maynard et al. 1999 for details). In these experiments, radial and
tracking trials were randomly interleaved. The monkeys used in this
study had been trained on the center-out task before introduction to
the continuous tracking task. All 3 animals were able to perform the
tracking task within the first 2 days of training, with varying degrees
of proficiency; performance (as measured by the length of time for
which the monkey could consistently track a target of given mean
speed; see Table 1) continued to improve throughout the training
period. Data analyzed here were collected 8–11 mo after introduction
to the tracking task.

Recordings

Details of the basic recording hardware and protocols are available
elsewhere (Donoghue et al. 1998; Maynard et al. 1999). After task
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training, a Bionic Technologies LLC (BTL, Salt Lake City, UT)
100-electrode silicon array was implanted in the arm representation of
MI. The array was placed on the precentral gyrus medial to a line
extending from the genu of the arcuate sulcus posteriorly to the central
sulcus, and parallel to the sagittal fissure, a region previously localized
as the MI arm representation (Georgopoulos et al. 1982). The neurons
showed modulations around movement commonly observed in radial
task experiments, thus confirming, physiologically, placement of the
array in the MI arm area. The BTL arrays consisted of 100 platinized-
tip silicon probes (about 200–1,000 k� at 1 kHz; Nordhausen et al.
1996), arranged in a square grid (400 �m on center). The electrodes
were 1 mm in length, corresponding in MI to recordings near the layer
III/V boundary. In the 3 monkeys there were 74 (Monkey Ra), 47 (Er),
and 24 (Co) possible active recording electrodes, a number limited by
the connectors used. All procedures were in accordance with Brown
University Institutional Animal Care and Use Committee–approved
protocols and the Guide for the Care and Use of Laboratory Animals
(National Institutes of Health publication no. 85-23, revised 1985).

Signals were amplified and sampled at 30 kHz/channel using a
commercial recording system (Bionic Technologies, Salt Lake City,
UT). All waveforms that crossed a manually set threshold were
digitized and stored (from 0.33 ms before to 1.17 ms after threshold
crossing); spike sorting to isolate single units was performed off-line.
Single units with signal-to-noise (SNR) ratios �2.5 were stored as

spike times referenced to the stimulus signal for further analysis.
Analysis of spiking was confined to data recorded from 1 s after
tracking began to 1 s before the end of trial, to eliminate nonstation-
arities associated with trial beginning and end.

Analysis
SPATIOTEMPORAL TUNING. We summarized the spatiotemporal
tuning of the recorded cells as follows. We computed functions
N(p�, �) and N(v�, �) to describe the firing rate as a function of position
(p�) and velocity (v�), respectively, at a series of time leads and lags (�).
These functions are defined as the conditional mean firing rate of a
cell at time t, given that a particular kinematic value (p� or v�) occurred
at time t � �. That is

N�p�, �� � E �R�p�����

and

N�v�, �� � E �R�v� ����

where E( � � � ) denotes conditional expectation, R is the spike rate, and
� defines the delay between the spike count bin and the kinematic bin
[i.e., N(p�, 	100 ms) gives the expected firing rate 100 ms after the
particular hand position p� was observed].

TABLE 1. Summary of behavioral data and reconstruction accuracy

Experiment Time Observed, min Mean Speed, cm/s No. of Cells r2(x), full r2(y), full r2(x), causal r2(y), causal

1 (e1990316) 8 4.6 5 0.35 0.15 0.32 0.10
2 (e1990324) 8 4.7 5 0.47 0.18 0.39 0.15
3 (e1990421) 12 4.6 3 0.04 0.05 0.06 0.03
4 (c1990618) 11 3.4 12 0.44 0.19 0.41 0.16
5 (c1990622) 11 3.1 12 0.52 0.4 0.40 0.39
6 (r1000622) 13 2.5 7 0.37 0.16 0.28 0.15
7 (c1990702) 17 3 17 0.53 0.42 0.43 0.30
8 (c1990714) 7 2.6 19 0.37 0.47 0.27 0.45
9 (r1000714) 6 2.5 8 0.12 0.24 0.04 0.27
10 (c1990715) 13 2.5 11 0.13 0.22 0.04 0.15
11 (c1990716) 14 2.9 14 0.27 0.35 0.19 0.29

“Time Observed” is the total amount of data (in min) used in the analyses for each experiment. “Mean Speed” is the mean speed of the hand during this time.
The last 4 columns report the goodness of fit (r2) of the reconstructions of hand position (x and y dimensions calculated separately) using the full filter (“full”)
or a filter that incorporates only neural activity preceding movement (“causal”).

FIG. 1. Statistical features of the center-out task. A: hand
paths during center out task, illustrating the limited workspace
sampling and path variability in movements to the same target.
Dots are spaced 10 ms apart. B: scatter plot of horizontal hand
position vs. horizontal velocity. Note the strong dependency
between these 2 variables. C, D: nonstationarity of kinematics
and neural activity. C: dependency of average (
SD) tangential
hand speed on time (t) since trial start; trials aligned on “go”
cue. D: peri-event time histogram for one directionally tuned
MI neuron, showing nonstationarity of firing with respect to t.
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To compute these tuning functions, data were taken at all times {ti}
when the hand was moving with a particular velocity (or was located
at a particular position) (� 
 d�, � 
 d�) cm/s, for some (�, �) in polar
coordinates. The bin widths 2d� and 2d� were chosen to be just large
enough to ensure adequately sampled data in all bins; we typically
took �50 samples per bin. For example, we set bin widths in one
experiment to 0.4 radians � 0.7 cm/s (velocity), and 0.4 radians � 0.5
cm (position). We then calculated the mean firing rates at {ti 	 �} for
the lags � shown. We represent this lag variable by the symbol �
throughout, reserving t for the time since the beginning of the behav-
ioral trial.

We used polar instead of rectangular coordinates for the discreti-
zation for 3 reasons. First, polar coordinates respect the radial sym-
metry of the (properly scaled) observed Gaussian joint distributions of
hand position and velocity (Fig. 4): all bins at a given radius � are
roughly equiprobable, whereas the corresponding statement is false
for any fixed value of horizontal or vertical position or velocity.
Second, the size of the bins in polar coordinates (approximately
� d� d�) grows with �, partially correcting for the falloff of the
probability distribution of these behavioral variables at the extremes
of their ranges. Finally, in polar coordinates firing rates are repre-
sented as a function of direction, a convention that facilitates com-
parisons with prior studies. The origin for these curves was taken to
be the mean of the distributions of the behavioral variable; for the
velocity tuning functions, the origin was at (0, 0) cm/s, whereas for
position the origin was at the center of the tablet. We fit planes and
other parametric families to the tuning curves by a standard least-
mean-squares optimization procedure (Nelder–Mead simplex search).
In addition, we used a Monte Carlo procedure to obtain conservative
significance levels for the presence of good fits, under the null
hypothesis that the spike trains were homogeneous Poisson processes
(i.e., that the apparent fluctuations in firing rate observed in Fig. 2
were random, had a trivial probabilistic structure, and were indepen-
dent of the behavior of the hand). We simulated spike trains (homo-
geneous Poisson processes with rates matched to the observed indi-
vidual neural firing rates), estimated N(p�, �) and N(v�, �) using real
kinematic data for each instantiation of these simulated spike trains,
and computed the mean-square deviation for each resulting fit. The
significant fit level was taken as the point at which the cumulative
empirical probability distribution of the random goodness-of-fit value
reached 0.99.

INFORMATION-THEORETIC ANALYSIS. Mutual information is a non-
parametric measure of dependency that is capable of detecting depen-
dencies that correlational measures ignore. The mutual information
between the random signals N and S is defined as (Cover and Thomas
1991)

I�N; S� ��
N

p�N��
S

p�S�N� log�p�S�N�

p�S�
� (1)

where p( � ) and p( � � � ) denote marginal and conditional probabilities,
respectively, and �X is the integral over some space X. Information is
difficult to compute in general because full knowledge of the joint
distribution p(N; S) (where N and S are functions of time) is needed.
This presents a possibly infinite-dimensional learning problem; in the
present experiment one would be required to know the probability of
a given spike train given any time-varying position signal. Conse-
quently, we do not attempt to estimate the information rate between
spike trains (denoted N, for neuron) and the behavioral signal (S);
rather, we address the simpler problem of computing the information
between the observed neuronal firing rate and the behavioral signal
(hand velocity or position, here) at discrete (single) time lags �; that
is

I�N�0�; S���� ��
N�0�

p�N�0���
�2

p�S����N�0�� log�p�S����N�0��

p�S����
� (2)

N(0) here denotes the activity of the given neuron in the current time
bin, and S(�) denotes the state of the behavioral signal (e.g., the
position of the hand) at time lag � after the present time; computing
Eq. 2 requires only an integral in 2-D space (one dimension each for
horizontal and vertical), instead of the high-dimensional integral re-
quired to compute the full information (Eq. 1) between spike trains
and the time-varying position signal.

To simplify Eq. 2 even further, we modeled the conditional distri-
butions of the behavioral signal given an observed spike count per bin,
p[S(�) � N(0) � i], i � 0, 1, 2, . . . , as Gaussian, with mean ��,i and
covariance matrix ��,i. This simplification makes the computation of
Eq. 2 tractable, given the size of the available data set. Thus for Eq.
2, we calculate

I�N�0�; S���� � �
i

p�N�0� � i��
�2

G���,i, ��,i� log� G���,i, ��,i�

¥i 
p�N�0� � i�G���,i, ��,i��
� (3)

numerically, where G(�, �) is the (2-D) Gaussian density with mean
��,i and covariance ��,i. The Gaussian model was motivated by
empirical observations and gave a sufficient fit to the data for many
observed cells and spike count bins, according to a 2-D Kolmogorov–
Smirnov test (bivariate Kolmogorov–Smirnov-type test; Press et al.
1992; P � 0.05). In the cases in which the Gaussian fit was inade-
quate, we applied a nonparametric binning approach (computing the
integral in Eq. 2 as a finite sum) instead; the Gaussian and binned-
information estimates were highly correlated (correlation coeffi-
cient � 0.95) across all cells and all time bins, indicating that the
Gaussian method provides an adequate information estimator for this
set of data.

A Monte Carlo procedure identical to the one described in the
previous section was used to estimate significance levels for the
observed information values. This procedure produced information
values �10	4 bits. A different procedure, in which we shuffled the
neural data with respect to the behavioral data, so that neural data
from one trial was associated, in a random manner, with the behav-
ioral data from a different trial, led to similar results. The significance
bound was therefore defined as I[N(0); S(�)] � 10	4 (see Fig. 12).

SIGNAL RECONSTRUCTION. The ability to reconstruct aspects of
hand motion from multiple, simultaneously recorded spike trains was
used as a test of availability of position or velocity information in the
recorded population. We used a multiple linear regression approach
(Neter et al. 1985): our estimate R (for reconstruction) of the position
at the current time t is given by a linear combination

R�t� � �
i�	�Tpre�/dt

�Tpost�/dt

�
j�1

C

ai,jN�t � i, j� (4)

where i indexes time; j is the cell number; N(i, j) denotes the activity
of cell j at time i; ai,j represents the corresponding “weight”; C, the
number of cells; Tpre and Tpost, the time before and after the current
time t used to estimate the current position, respectively; and dt, the
width of the time bins used. The filter coefficients ai,j were computed
as in Warland et al. (1997). Two filters were generated, one each for
the horizontal and the vertical positions.

The analytical solution to the optimal linear estimation problem in
the time domain involves the inversion of a correlation matrix (NTN)
that can be fairly large [matrix size � D2, where D � 1 � C(Tpre �
Tpost)/dt]; we used standard singular value decomposition (Press et al.
1992) techniques to check the numerical stability of this matrix
inversion. The data showed no evidence of overfitting such as a
decrease in performance as D became large. None of the results shown
was smoothed, nor were any relevant parameters subjectively selected
(e.g., to select the “best” neurons for analysis). Cross-validation
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methods were used to estimate the expected error of our reconstruc-
tions: we fit the regression model to a “training” set consisting of all
but 10 trials of the data set, then computed the mean-square error of
the regression on this “test” set, the 10 held-out trials. This process
was iterated multiple times as successive, disjoint blocks of 10 trials
were used to test the regression; we report the regression coefficient
computed by this procedure, where this coefficient is defined as usual
as r2 � 1 	 {E[(R 	 S)2]/E(S2)}, where R is the reconstructed hand
position and S is the true hand position.

A frequency domain regression analysis (Haag and Borst 1998;
Rieke et al. 1997) was used to estimate a lower bound on the
frequency content of the information contained in the MI population
(Fig. 15). Neural and position signals were Fourier transformed, and
the neural Fourier coefficients at a given frequency �, N̂(�), were
regressed onto the coefficients of position, Ŝ(�), to obtain the recon-
struction of S at �, R̂(�). Goodness of reconstruction was plotted as
the SNRs obtained at each frequency

SNR��� �
E�Ŝ����Ŝ����

E
�Ŝ��� 	 R̂������Ŝ��� 	 R̂�����
(5)

where E( � ) denotes the sample mean (with the number of samples
here equal to the number of trials), and * denotes a complex conju-
gate. The bound on information rate was calculated, as usual, from
Shannon’s formula (Cover and Thomas 1991; Rieke et al. 1997).

Finally, the reconstruction error was examined as a function of 1)
the total length of time (Tpre) spike trains were observed and 2) the
number of neurons included in the analysis. We examined the depen-
dency of the estimation error on Tpre by recalculating r2 for several
different values of Tpre (Fig. 16A). The analysis of r2 versus the
number of cells (Fig. 16B) is slightly more complicated, given that the
regression error is a function of not only how many cells one chooses
to observe, but also which subset of cells is chosen. Therefore neurons
from a simultaneously recorded data set were randomly selected and
the range of r2 obtained for each such randomly selected subset was
plotted. For reasons of computational efficiency, we did not use the
cross-validation method to compute r2, but rather used the equation
E(r2) � �ns�ss

	1�ns, which gives the expected r2 given that the true
covariance matrix of S is �ss and the cross-correlation between N and
S is �ns; N here is a vector-valued signal, with each element corre-
sponding to the firing rate of a single cell, and E( � ) denotes
expectation. In practice, �ss and �ns must be estimated from data, and
because of sampling error, the r2 computed by cross-validation tends
to be of lower magnitude than the E(r2) calculated here; therefore we
normalize the curves in Fig. 16 by the maximal observed E(r2).

NEURAL STATIONARITY. We tested neural activity for trends in both
the firing rate over the course of each experiment and the firing rate
across trial time. The firing rate as a function of time (intratrial or
across the experiment) was fit by a line and the slope was tested to see
whether it was significantly different from zero. This was done
through a bootstrap procedure. Tests were done separately for each
cell. See the APPENDIX for details.

Cells exhibiting significant trends in rate over experimental time
were further tested for significant changes in their spatiotemporal
tuning functions over experimental time. Those cells with significant
rate changes and significant tuning changes were discarded. Cells
exhibiting significant intratrial rate changes were not excluded (see
RESULTS). Of an original 120 cells, we excluded 7 because of nonsta-
tionarities, leaving the 113 we use in all subsequent analyses.

R E S U L T S

Eleven data sets from 3 monkeys were analyzed. These data
consisted of 6–17 min of tracking behavior recorded simulta-
neously with neural data from 3–19 single units (median � 11
min and 11 cells; see Table 1). In total 113 (of an original 120;

7 were not analyzed because of nonstationarities; see Neural
stationarity below) neurons were analyzed. We first describe
behavior and neural activity during the PTT and compare them
with data from the radial task. Next, we report spatiotemporal-
and temporal-tuning functions for individual MI neurons dur-
ing the PTT, and finally, we discuss results of a linear recon-
struction technique for extracting behavioral signals from these
neurons.

Pursuit-tracking task

The pursuit-tracking task (PTT) and typical point-to-point
movement tasks vary considerably in the extent of parametric
space explored, the dependencies among variables, and the
stationarity of kinematic and neural signals. Figure 1 illustrates
kinematic and neural activity data obtained from one monkey
performing the center-out task, to provide explicit comparison
with the PTT. The center-out task, by design, results in move-
ments from a constant location to one of a fixed set (here, 8) of
discrete locations. Although there is no specific trajectory
requirement, the need to end at a specific location within
task-time constraints generally results in roughly straight, ste-
reotyped hand trajectories. Figure 1A shows hand paths for
trials to each of the 8 directions. This task design results in
strong dependencies between horizontal and vertical position
(Fig. 1A) and horizontal position and velocity (Fig. 1B). Note,
also, that many (x, y) pairs, even near the center of the
workspace, are never sampled. Figure 1, C and D illustrate the
nonstationarity of kinematic and neural variables in the center-
out task: mean hand speed shows a sharp transient increase
with movement onset, irrespective of target location (Fig. 1C),
and mean firing rates show similar large t-dependent modula-
tions (recall that t denotes time relative to the start of the trial).

By contrast, the PTT covers the kinematic space more fully
and achieves considerably improved independence of kine-
matic variables and stationarity of kinematic and neural activ-
ity (Figs. 2–4). Figure 2A provides an example of PTT perfor-
mance for a single trial. Tracking was smooth, with continuous
modulation of hand speed and direction. Mean hand speed,
which followed that of the visual target set in the experimental
design, ranged from 2.5 to 4.7 cm/s across this set of experi-
ments (Table 1). Tracking movements were largely determined
by the visual stimulus, as demonstrated by the close temporal
relationship of the hand and visual cue (Fig. 2A, inset). The
peak of this cross-covariance was consistently located within
50 ms of zero with a peak correlation coefficient that exceeded
0.97 in each data set, consistent with the conclusion that the
animals tracked the stimulus. The short visuomotor “reaction
time” indicates that the animal is at times actively predicting
the smoothly evolving stimulus trajectory. The relatively high
tracking accuracy over time can also be appreciated in the
individual plots of x and y position versus time across a trial
(Fig. 2, B and C). The overall smoothness of hand movement
during tracking is evident in the autocovariogram (Fig. 3A),
and in the power spectrum of hand position (Fig. 3B); most of
the power in the hand position signal was below 1 Hz (Fig. 3B;
the autocovariogram and power spectra in Fig. 3 were com-
puted from data from a single experiment, but these functions
were qualitatively similar in each other data set). For compar-
ison the power spectrum of the horizontal position of the
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stimulus signal is shown (Fig. 3C); again, most of the power is
below 1 Hz.

Figure 4 presents the statistical properties of the PTT for
comparison with those of the center-out task (cf. Fig. 1). The
joint distributions of 2-D hand position and 2-D velocity in the
PTT were well approximated by Gaussian distributions with
zero covariance (modified Kolmogorov–Smirnov test; P �
0.05), as expected given the task design. No significant corre-
lation was observed between any of the pairs of velocity and
position variables (Pearson test; P � 0.05). Thus the PTT
samples the kinematic space more densely than does the cen-
ter-out task. In addition, kinematic variables such as hand
speed and position are effectively stationary across the task.
Mean hand speed does not vary as a function of trial time (P �
0.05; compare Figs. 4C and 1C) and average firing rate does
not depend on the time relative to the start of tracking for the
cells shown (test on correlation with linear trend over the first
or last 2.5 s of the trial; P � 0.05; compare Figs. 1D and 4D).
Figure 4D is shown for illustrative purposes because, for some
cells in our database, the average firing rate was not constant
over trial time (e.g., some cells displayed anticipatory “ramp-
up” activity near the end of successful trials). Any intratrial

rate nonstationarities during the PTT cannot be explained as a
function of the variables of interest (i.e., the kinematics) be-
cause these variables are stationary. The comparison between
Figs. 1D and 4D is meant to show that the center-out task
induces rate nonstationarities, whereas the PTT does not.

Neural activity during tracking

Figure 2D shows a representative example of the spiking
patterns of 21 cells recorded simultaneously during a single
pursuit-tracking trial. Qualitatively, randomly selected MI neu-
rons typically showed varying modulation patterns in the PTT;
these same neurons showed marked mean rate modulations in
step-tracking tasks (compare Figs. 1D and 4D). Mean firing
rates during the PTT ranged over 1.5 log units (about 2–40 Hz;
Fig. 5) and were not correlated with overall mean hand speed
(Spearman rank-order correlation coefficient; P � 0.05). The
relationship between the spike count mean and variance (per
50-ms bin) is largely linear with unity slope, except at the
highest mean firing rates, where the Fano factor (the ratio of
the variance to the mean) falls slightly below the unity level.

FIG. 2. Pursuit-tracking performance and con-
comitant neural activity. A: path taken by visual stim-
ulus (blue) and hand (black), plotted as horizontal vs.
vertical position. Dots are spaced 10 ms apart (mean
hand speed 2.6 cm/s; see Table 1). Large blue circle
indicates the perimeter of the visual target, and the
black circle illustrates the feedback cursor size. Inset:
plots cross-covariance between the horizontal posi-
tions of the visual target and hand; peak near 0 s with
a value near 1 documents accurate tracking. B, C:
plots of horizontal (B) and vertical (C) hand position
for the single trial in A; note smoothness of tracking.
D: activity of 21 neurons simultaneously recorded
during this trial. Each row represents one neuron;
each tick mark represents one action potential.

FIG. 3. Temporal properties of the hand position sig-
nal and the stimulus. A: autocovariance; B: power spec-
trum of the horizontal hand position, illustrating the
slow time scale and low frequency nature of tracking. C:
power spectrum of horizontal stimulus signal for com-
parison.
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Neural stationarity

Our results depend on the stationarity of the underlying data.
By construction, the stimulus (i.e., the motion of the tracking
target) is stationary; thus the animals’ hand motions are ap-
proximately stationary. This does not, however, guarantee the
stationarity of the neural activity associated with these mo-
tions. In averaging over the entire experimental time period to
derive our tuning measures we are implicitly assuming that

tuning is constant on this time scale. Because the subjects are
well trained on the task before recording, and the task require-
ments are held constant across the experiment, there is good
reason to think that this is true—no learning is likely to be
occurring. However, changes in the animal’s overall behavioral
state (e.g., motivation) might cause average spike rates to drift
up or down over a recording session. To test for this we looked
for linear trends in the average spike rate for each cell across
experimental time.

Cells with a linear trend whose slope was not significantly
different from zero, or with less than a 20% change in rate,
were deemed stationary on the experimental time scale and
included in the other analyses. Cells with a significant nonzero
slope and a change in rate of �20% over the experiment were
further tested for trends in their spatiotemporal tuning func-
tions (see following text). Of an original 120 cells we found 44
(37%) with significant (by bootstrap shuffling of time bins,
P � 0.05) rate trends over the experiment. Of these, 7 (5%)
were found to have tuning functions that differed significantly
(see METHODS) over experimental time. These cells were ex-
cluded from further analysis, leaving the 113 reported here.

We also tested for stationarity of rate as measured across
trial time. For each experiment we aligned trials on the begin-
ning of the tracking phase and averaged the neural activity for
each cell across trials to get a mean firing rate for each time
bin. We tested for linear trends in the average rate over the
course of trial time. We found 27 (23%) of 120 cells with
significant (by bootstrap shuffling of time bins, P � 0.05) rate
trends of �20% over trial time. No cells were excluded based
on these intratrial rate trends. Because the kinematics are
stationary over trial time these intratrial trends in rate are
unlikely to be linked to the tuning that we report. The fact that
intratrial trends, when they were present, were different for

FIG. 4. Statistical properties of kinematic and fir-
ing variables during pursuit tracking. A, B: scatter
plots of (A) horizontal vs. vertical hand position and
(B) horizontal hand position vs. horizontal velocity.
Note the evenness of sampling and the lack of cor-
relations (cf. Fig. 1, A and B). C: hand speed station-
arity during tracking. Plot shows trial-averaged tan-
gential hand speed as a function of time t, since the
start of the tracking period, for one experiment (ver-
tical line at t � 2.5 s shows 
1SD; cf. Fig. 1C). D:
4 examples of single-cell peri-event histograms,
aligned on the start of tracking. Red line � mean
firing. Note the lack of dependency on t (cf. Fig. 1D).

FIG. 5. Relationship of mean firing rate to variance for different hand
speeds. Each point plots the mean vs. SD for a single neuron, observed during
an experiment with mean hand speed �2.9, 2.9–4, or �4 cm/s. Note the large
range of firing rates and that average firing rate or variance is not correlated
with average hand speed. Close association of the points with the diagonal line
shows the relationship expected for a Poisson random variable (note that a
square root function appears as a line of slope 1⁄2 on this log–log scale); the
Poisson line fits the data well at rates up to about 10 Hz; variance is slightly
sub-Poisson at higher rates.
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different, simultaneously recorded cells (e.g., some cells had a
positive rate trend, whereas others showed a negative rate
trend) also supports the idea that it is not the kinematics that are
inducing these changes. It is likely that other, uncontrolled and
unobserved variables (e.g., reward expectation) are inducing
these rate trends. For these reasons, we argue that these effects
may be interesting in their own regard, but do not detrimentally
influence the results reported here.

Spatiotemporal tuning

The spatiotemporal tuning properties of MI neurons were
defined from the time (lag)-varying tuning of the cell with
respect to velocity or position signals (see METHODS). Concep-
tually, using each spike time as a reference point for sampling
of the kinematic variable, one can determine the spatial infor-
mation provided by firing about that variable at any time in the
future or the past, relative to that spike time. Spatiotemporal
tuning functions for 113 single MI neurons were generated for
velocity and position [denoted N(v�, �) and N(p�, �), respec-
tively]. These functions summarize a neuron’s instantaneous
firing rate dependency on hand velocity v� or position, p�, at
different delays �, where � is the time difference between a
particular hand motion variable sample and the observed firing
rate sample. A lead (� � 0) is the amount of time the neuron
was firing in advance of that kinematic measurement, whereas
a negative � represents a lag.

Figure 6 illustrates the spatial features of velocity [N(v�, �)]
and position [N(p�, �)] tuning, at a single value of �, for 2
different neurons. Tuning functions are plotted first in rectan-
gular coordinates (Fig. 6, A1, B1) and then transformed into
polar coordinates (Fig. 6, A2, B2; see METHODS). Polar coordi-
nates are adopted for the remaining figures to simplify com-
parisons between position and velocity tuning. The origin for
these tuning surfaces is taken as (0, 0) for velocity, and the
center of the tablet workspace for position (in each case, the
origin was the mean and mode of the observed kinematic
distribution (see Fig. 4).

In polar coordinates the velocity tuning function plots firing

rate against speed (�) and direction (�); � � 0 corresponds to
movement to the right. The cell shown in Fig. 6A is approxi-
mately sinusoidally (i.e., cosine-) tuned for direction [i.e., the
function Nv(�, �, �) can be fit by a cosine for any speed �]. The
phase of this cosine is constant as a function of �, so that the
direction tuning curve

Nv��, �� �
1

R�
0

R

Nv ��, �, ��d�

is approximately cosine as well (here R is some sufficiently
large constant). Finally, the amplitude of this tuning curve
scales approximately linearly with speed; the cell is in a sense
more strongly tuned for direction at higher tangential veloci-
ties. A first-order model of this tuning function can be given by

Nv��, �� 	 a0 � a1� cos�� 	 �PD� (6)

where a0, a1 � 0 are the baseline firing rate and constant “gain”
parameters, respectively, and �PD is the cell’s “preferred di-
rection.” Because Eq. 6 defines a plane in velocity space, we
will refer to this model as the “planar model,” with a1 termed
the “planar slope” parameter and �PD the “major axis.” This
model has been shown to apply to MI firing during reaching
(center-out) movements as well (Moran and Schwartz 1999a).
For our data, the planar model for velocity gave a significant fit
for 99% of the neurons in our sample (see METHODS). The data
for Fig. 6A were recorded during an experiment in which
pursuit-tracking and center-out trials were interleaved; by plot-
ting the center-out target location tuning curve (Fig. 6A3) next
to the PTT velocity tuning function (Fig. 6, A1, A2), we see
that, for this neuron—although not necessarily for all neu-
rons—the 2 concepts of tuning effectively coincide.

Neurons in MI were also tuned for hand position (Fig. 6B)
during the PTT. For the position tuning functions in polar
coordinates, the firing rate is plotted against distance from the
origin (�) and direction (�), where � � 0 corresponds to
rightward locations. Sinusoidal tuning in �, similar to that
observed in Fig. 6A for velocity, is evident. The firing rate

FIG. 6. Spatial tuning functions for (A) velocity and
(B) position plotted in rectilinear (i.e., Cartesian) (1)
and polar (2) coordinates, for illustrative purposes (data
shown from 2 different cells; A1, A2, and A3 correspond
to one cell; B1 and B2 to the other). Firing rates are
color coded with red as the highest value (see colorbar).
Speed (�) and sinusoidal direction (�) tuning are evident
in the velocity polar plot (A2); distance (�) and sinusoi-
dal direction (�) tuning are evident in position plot.
Each tuning function is well fit by a planar model. A3:
direction tuning curve (from center-out task) for cell
shown in A1 and A2; note the close agreement between
the 2 types of tuning.
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increases linearly with � but maintains constant phase; that is,
tuning functions for position are significantly fit by planes as
well (98% of neurons). A planar model significantly fit MI
tuning functions for both velocity and position for 90% of the
cells in our database. In comparison, Kettner et al. (1988)
found that 64% of neurons they recorded in the motor cortex
arm area showed a linear relationship between firing rate and
hand position, although, in their case, the hand was held static
at each position. To examine whether tuning peaked at a
particular value (e.g., akin to tuning of hippocampal place
cells), we tested the fit of 2-D Gaussian functions for these
tuning curves. The Gaussians provided a better fit to the
position tuning functions for only 5 (4%) of the cells, and a
better fit to velocity tuning for only 2 (2%) of the cells, despite
the fact that the Gaussian function had 4 extra free parameters.
Moreover, in each of these 7 cases, the width parameter in the
Gaussian function was quite large, indicating the shallowness
of the observed “peaks.” Thus the simple planar model in Eq.
6 appears to be a reasonable first-order description of the 2-D
tuning of MI cells for both position and velocity. The distri-
bution of R2 values for fits to Eq. 6 are shown in Fig. 9, D and
E. In the following, the fit parameters of the planar model are
used to summarize the tuning properties of the observed MI
population.

Spatial tuning functions shown in Fig. 6 are representative of
a single delay (�), which fails to show the temporal dynamics
of this tuning. Consequently, tuning was examined over mul-
tiple lags and leads �. Figures 7 and 8 each show an example
of spatiotemporal tuning functions for velocity N(v�, �) and
position N(p�, �) for a single cell. These figures illustrate the
heterogeneity of the temporal dynamics of MI tuning for these
variables. Figure 7 depicts the most common MI tuning type.
First, the cell is strongly velocity-tuned, especially at nonnega-
tive delays (� 
 0). Second, velocity tuning peaks at approx-
imately � � 100 ms, a lead consistent with the hypothesis that
these cells signal upcoming observed hand velocity. Tuning
begins to emerge several hundred milliseconds before this time
and fades several hundred milliseconds afterward. Throughout
this time the overall tuning structure remains essentially phase
(�) invariant. The temporal structure of this velocity tuning
function N(v�, �) is, for many cells, largely explained by a
modification of Eq. 6, expressed as

Nv��,�� 	 a0 � a1���� cos �� 	 �PD� (7)

where a1(�) is a smooth function of �, with a maximum at 100
ms, such that a1(�) � 0 for � � 1 s. Equation 7 is a useful
heuristic for understanding how tuning evolves for most cells,
in that it implies a fixed orientation (PD) over all �. In no case
do we see a smooth shift in PD over �. That is, over �, the gain
(i.e., a1) may go from positive to zero to negative—thus
effectively abruptly flipping the PD by 180°—but the �PD term
does not vary as a function of �.

Position tuning showed a spatiotemporal structure that ap-
peared to be directly related to velocity tuning for some neu-
rons, but unrelated for others. The position tuning N(p�, �) of the
neuron in Fig. 7 can be explained in terms of the inherent
dependencies between velocity and position (when considered
as time-varying signals, not as static variables; cf. Fig. 4). To
see why, assume that this cell’s firing rate depends only on
hand velocity. Nevertheless, hand velocity and position are
necessarily correlated for most nonzero lags (although for PTT

data this correlation is fairly weak for all lags, and zero for zero
lag, as shown in Fig. 4). Whenever the hand is moving to the
right at time t � 0, the mean position at time t � 	� will be
to the left of the mean position at time t � ��, for all
sufficiently small positive times �. Thus if we have a neuron
signaling rightward velocity of the hand at � � 100 ms, as does
the cell shown in Fig. 7, we should expect this neuron to signal
the leftward position of the hand at negative time lags (� � 	1
s) and the rightward position at more positive lags (� � �1 s),
as observed here. Thus in this case, the position “tuning” of this
cell can be explained parsimoniously in terms of its velocity
tuning.

In contrast, Fig. 8 shows an example of a neuron whose
position tuning cannot be readily explained from velocity tun-
ing, suggesting that it specifically encodes position separately
from velocity. In this example, position tuning is more pro-
nounced and more temporally invariant than velocity; peak
position tuning remains stable at � 
 �/4, whereas the velocity
tuning peak changes from � 
 �/4 to � 
 	2�/3 between � �
	1 and � � 0.88 s. Note that this change in phase is not a
continuous shift, with peaks at intermediate angles, but a
bimodal function in which, at intermediate values of �, the
tuning diminishes and then reappears. As described above, and
consistent with Eq. 7, phase shifts of a more continuous (i.e.,
rotational) nature were not observed in this population. Having

FIG. 7. Spatiotemporal tuning curves for velocity (A) and position (B) for
one primary motor cortex (MI) neuron. Each panel shows the spatial tuning
function in polar coordinates (see Fig. 6) at a different value of � (s). Note that
velocity tuning emerges over time, peaks near 100 ms, and then dissipates. For
this neuron, position tuning shows a spatiotemporal structure that can be
explained by the cell’s velocity tuning (see RESULTS), suggesting that the
neuron provides no unique coding for position. Velocity and position are
plotted on different time scales. Position autocorrelation is broader than the
velocity autocorrelation; thus the position curves change more slowly with �,
making a slower time base necessary.
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recorded this cell during an experiment in which pursuit-
tracking and center-out trials were interleaved, we can observe
that the center-out target location tuning (Fig. 8, inset) matches
closely that predicted by integrating the spatiotemporal tuning
function for position, but not velocity, over �.

Figure 9 summarizes the spatial aspects of these velocity-

and position-tuning functions. The distribution of the optimal
planar angle (a1 in Eq. 7) and major axis (�PD) is shown for
both position (Fig. 9A) and velocity (Fig. 9B). The distributions
of �PD were indistinguishable from uniform on [0, 2�] for both
variables (Kolmogorov–Smirnov test); that is, even within the
small patches of MI sampled by the electrode array, a broad
representation of hand position and velocity is present. The
position and velocity major axes are weakly statistically de-
pendent: when the differences modulo � between the major
axes (Fig. 9C) are plotted, the position and velocity major axes
for a neuron tend to be close [Kolmogorov–Smirnov deviation
from uniformity (i.e., independent velocity and position �PD),
P � 0.0001], as shown by the peak at 0. Position and velocity
appear, for about half our recorded population, to be encoded
essentially independently (�PD � �/8). For the other half
(corresponding to the peak at zero in Fig. 9C) position and
velocity tuning mirror each other, as in Fig. 7.

Temporal dynamics of encoding

An information-theoretic analysis was used to provide a
direct measure of position and velocity information available
from the recorded neurons and to describe more quantitatively
the temporal evolution of this encoding. The results in Figs.
6–8 demonstrate that by observing the position or velocity of
the hand it is possible to derive information about the activity
of a given MI neuron. The converse, by Bayes’s rule, is also
true: information about position or velocity can be decoded
from MI firing rates. Figure 10 shows the conditional proba-
bility distributions, with corresponding Gaussian fits, of the
horizontal hand velocity at t � �, � � 100 ms, given that this
cell fired zero (Fig. 10A), one (B), 2 (C), or 3 (D) spikes within
a 50-ms window around time t. The marked overlap in the set
of curves demonstrates that the firing rate of MI neurons
typically conveys highly ambiguous information with the small
numbers of spikes observed in a narrow time window.

These conditional probability distributions can be used to
quantify the temporal evolution of tuning in individual neu-

FIG. 8. Spatiotemporal tuning curves for a cell with uncoupled velocity (A)
and position (B) tuning. For this cell, velocity tuning changes, whereas position
tuning remains nearly constant, suggesting that this cell conveys position
information separately from velocity. Inset: plots target location tuning (firing
rate 
 SD vs. target location) for this same cell recorded in center-out task.
Note the correspondence between this cell’s center-out direction tuning and its
position tuning during tracking. Conventions as in Fig. 7.

FIG. 9. Summary of spatial tuning of MI neurons. A, B:
scatter plot of the major axis (abscissa) and planar slope (ordi-
nate) for single cells in position (A) and velocity (B) space. As
an example, if a neuron had a major position axis of 0° (i.e., the
neuron fired at a higher rate when the hand was on the right than
when on the left) and a planar slope of 1, the corresponding
point would appear in A at (0, 1). Only neurons with significant
planar fits for both position and velocity are analyzed here (n �
100; 81%). Note that these distributions are approximately
radially symmetric; i.e., the distributions of major axis direction
are close to uniform on the circle [0, 2�], indicating that all
axes are represented within the sample. C: distribution of the
differences between the velocity and position major axis for
each neuron (modulo �). Note peak at zero, but the range of
values at other differences, suggesting lack of a consistent
relationship between the two variables. D: cumulative distribu-
tion function of the R2 values for planar fit (Eq. 6) to each
position spatiotemporal tuning function. E: same as D, but for
velocity tuning functions.
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rons. For this analysis the mutual information between the
cell’s firing rate and the kinematics of the hand is computed as
a function of �, I[N(0); S(�)]. Here N(0) represents the cell’s
activity in a given short time interval (here, 5 ms; the interval
is taken to be short to avoid redundancy effects induced by the
fact that the hand position and velocity change relatively
slowly) and S(�) denotes the value of position or velocity some
time � before or after the current time, t � 0. This information
statistic is an objective measure of how well these neurons are
tuned for these behavioral variables; the more tuned a given
cell is at a given value of �, the more highly separated are the
probability distributions corresponding to those shown in Fig.
10, and the higher the value of I[N(0); S(�)]. Because this
quantity is calculated directly from the underlying probability
distributions it does not depend on any underlying assumptions
about the linearity of the relationship between the neural firing
rate and the behavioral variable, as do standard correlational
statistics. The resulting curves, as functions of �, discard all
spatial tuning properties (e.g., preferred direction) and there-
fore show only temporal (�-dependent) tuning features.

Figure 11 shows examples of information curves for hand
velocity (Fig. 11, A1–C1) and position (Fig. 11, A2–C2), for 3
experiments. Individual curves within a panel (A, B, or C) and
between panels (e.g., A1 vs. A2, etc.) can be directly compared
because the neurons shown were recorded simultaneously (and
therefore the information curves were constructed using iden-
tical kinematic data). These temporal tuning curves were het-
erogeneous, especially in the position domain; some are uni-
modal, others multimodal, some peak at � � 0 and others at
� � 0, all within the same set of simultaneously recorded data.
The widths and shapes of the curves vary widely (note that the
position curves change more slowly than do the velocity
curves, partially because of the autocorrelation structure, as
discussed above) and there does not appear to be any simple

rule relating the curves for velocity and position. The width of
the velocity information curves is uncorrelated with those of
the corresponding position curve (Spearman’s rank-order cor-
relation coefficient, P � 0.05; test performed only on the 77
cells with significant velocity and position information con-
tent). This analysis also showed differences in the time at
which peak information was available about position and ve-
locity (Fig. 11, D and E). Temporal tuning peaks are always
markedly more clustered for velocity than for position, with
velocity curves consistently peaking near � � 100 ms (i.e.,
firing leads behavior by 100 ms), and position peaks more
temporally dispersed, suggesting that cells carry feedback as
well as advance position information.

Figure 12 summarizes the information content of the ob-
served MI cells and confirms quantitatively the considerable
heterogeneity of these neurons. Information content ranges
over 2 orders of magnitude. A weak but statistically significant
correlation was present between velocity and position infor-
mation content (Spearman’s rank-order correlation coeffi-
cient � 0.69; P � 0.05) (Fig. 12A). Moreover, information
values did not cluster by mean hand speed during the experi-
ment (Spearman’s rank-order correlation coefficient; P �
0.05), indicating that position and velocity tuning is an intrinsic
property of these cells, independent of the details of the par-
ticular sample of movements tested. On average, cells carry
small amounts of information for position and velocity and
only 10% more information for velocity than for position
(median peak velocity information � 0.0011 bits per 5-ms bin;
median peak position information � 0.0010 bits; 64% of cells
carried more velocity than position information). Neurons with
low average activity conveyed about as much information as
those with high average firing rates, indicating that there is no
dependency of information content on mean firing rate (Fig.
12B; Spearman’s rank-order correlation coefficient � 	0.06,

FIG. 11. Temporal tuning functions for multiple, simultaneously recorded
neurons from 3 data sets (A–C). Column 1: velocity. Column 2: position
curves. Information was calculated in 5-ms bins (see METHODS). A1 and A2 are
taken from an experiment with mean speed 2.5 cm/s; B1 and B2, from an
experiment with mean speed 2.9 cm/s; and C1 and C2, 4.7 cm/s. Position and
velocity curves from the same neuron are drawn in the same color across each
row. D, E: peak time histogram for information curves in A–C, taken over all
cells with significant information values. Velocity peaks consistently occur
near 100 ms, whereas the position peaks occur at various leads and lags.

FIG. 10. Conditional distributions of horizontal hand velocity given spike
counts for a single cell, � � 100 ms. Each plot shows the probability of a
particular hand velocity given that zero (A), one (B), 2 (C), or 3 (D) spikes were
observed in a given 50-ms interval. Solid curve shows a Gaussian fit to each
histogram. Note the small amount of information conveyed about hand veloc-
ity by firing rate, i.e., the large degree of overlap between these distributions.
Cell used in this figure had peak position information of 0.003 bits, and peak
velocity information of 0.006 bits (cf. Fig. 11). Its spatiotemporal tuning
function for velocity (position) was planar with an R2 of 0.89 (0.78) and a gain
of 2.2 Hz s	1 cm	1 (2.2 Hz/cm).
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n.s.). By extension, the information content of a given cell did
not depend on firing rate variance (recall Fig. 5). It should be
noted that, even though we find no dependency between mean
hand speed and either 1) position information, 2) velocity
information, or 3) mean firing rate (Fig. 12), the range of mean
speeds sampled is relatively small. It may be that dependencies
would be observed if a broader range of mean speeds were
tested.

Figure 13 graphically illustrates position information (Fig.
13A) or velocity information (Fig. 13B) versus planar gain (see
Fig. 9), as derived from the fit to Eq. 6. In general, gain and
information are correlated (correlation coefficient 0.65 for ve-
locity, 0.73 for position). Gain increases as information in-
creases, in keeping with the standard notion that a cell is more
strongly tuned if its firing rate is more modulated by the
variable of interest. Note, however, that there are cells that are
1) well fit by the planar model (R2 � 0.5; “�” symbols in
figure) and 2) provide a relatively large amount of information,
but 3) have a relatively small gain. This is consistent with the
idea that cell tuning is a function of not only the depth of
modulation but also the variability in firing rate. This means
that cells can convey large amounts of information about a
variable even if they do not exhibit large, obvious rate modu-
lations.

Signal reconstruction

The preceding analyses demonstrate that individual MI neu-
rons carry information about hand position and velocity. To
determine what information is present in the MI population, we
attempted to reconstruct, or decode, hand position from the
activity of the population, using simultaneously recorded MI
neurons. Hand position reconstruction at any given time t was
estimated using a weighted linear combination of the neural
activity from all observed cells, some time Tpre before and Tpost
after time t (Neter et al. 1985; Paninski et al. 1999; see
METHODS). This linear correlation approach returned a moder-
ately good reconstruction of the hand trajectory with no a priori
assumptions (e.g., cosine tuning) on the tuning process other
than linearity. Figure 14 shows 3 reconstructed signals for x
and y position over time, as well as an example of recon-
structed hand path (x vs. y), with the corresponding true signals
for comparison. The quality of reconstruction is summarized
by the usual correlation statistic r2 in Table 1. The performance
of the linear estimator ranged from marginal up to about 50%
of variance captured. The data in Table 1 also show that the
observation of neural data after the kinematic event occurred
(i.e., Tpost � 0) robustly improves the reconstructions (Wil-
coxon paired-sample rank test, P � 0.05), as expected given
the results in Fig. 11E; this suggests that MI encodes some-
thing akin to a feedback copy of the ongoing hand motion in
addition to the feedforward “drive” signal embodied in corti-
comotoneuronal cells.

The linear regression technique can be used to quantitatively
evaluate which aspects of the tracking are contained in MI
activity. For example, Fig. 15 indicates that reconstructions
capture information only about the lower-frequency compo-
nents of the hand trajectory. We quantified this observation by
reconstructing the position signal directly in the frequency
domain. Across the 11 experiments, the SNR of the reconstruc-
tion consistently dropped to the unity level by about 0.5 Hz
(Fig. 15), indicating that the linear technique fails to extract
information about hand position above this frequency from
neural activity recorded during PTT. By contrast, the monkey
tracks the stimulus at much higher frequencies, as shown in the
average coherence plot between the hand and visual target
position (dashed line, Fig. 15). This rapid falloff of SNR
sharply limits the overall information rates for hand position in

FIG. 12. Distribution of information values
for velocity and position. A: position vs. veloc-
ity information content for all recorded neurons.
Each point corresponds to a single neuron; in-
formation was calculated in 5-ms bins (see
METHODS). This graph illustrates the wide range
of information values observed and the weak
correlation of position and velocity information.
Solid black line is unity line; MI cells carry only
slightly more information about velocity than
position. Significance level for information val-
ues � 10	4 bits (dashed line). B: velocity in-
formation, for � � 0.1 s, vs. mean firing rate.
Graph shows that information about velocity
can be borne by neurons with low as well as
high firing rates.

FIG. 13. Shannon information vs. planar gain for position (A) and velocity
(B). Amount of information (Eq. 3) a cell’s firing provides about hand position
(A) or velocity (B) is, in general, correlated with the gain of its tuning function
(“planar gain”). However, there are cells with relatively large information
values and small planar gains, indicating that depth of modulation is only one
aspect of tuning strength (see RESULTS). “�” symbols: R2 for planar fit �0.5;
dot symbols: R2 �0.5.
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the observed MI populations; using Shannon’s formula, we
obtain rates of only about 2 bits/s, even in the most informative
populations observed. This translates to a maximal rate of
about 0.1 bit cell	1 s	1.

The PTT makes it possible to examine the effect of the
duration of spike observation (filter duration) and number of
neurons on reconstruction quality. Reconstructions improved

as spiking over longer times was considered (Fig. 16). To
compare between experiments, the raw r2 values were normal-
ized by the peak r2 observed during the given experiment, so
that these curves range from 0 to 1. Figure 16A gives a sense
of the typical trade-off between how quickly the reconstruction
can be computed and reconstruction accuracy: the more time
bins examined, the better the reconstructions, but at the cost of
a greater delay in the reconstruction output. The slope of this
Tpre versus r2 graph is quite sharply peaked near zero, indicat-
ing a kind of “diminishing returns” in Tpre: when Tpre is small,
we have to observe relatively fewer neural data to achieve a
given increase in r2 than when Tpre is already large. Increasing
the number of neurons considered also improves reconstruction
(Spearman rank-order correlation coefficient between number
of cells observed and r2; P � 0.05). However, the degree of
improvement depends on which population of cells is observed
(Fig. 16B). In particular, it is difficult to extrapolate from the
curves shown here, to make any quantitative statements about
the asymptotic behavior of the estimator as the number of cells
observed becomes large (cf. Wessberg et al. 2000).

D I S C U S S I O N

The pursuit-tracking task, coupled with the multielectrode
recording technique, enabled us to characterize 3 novel fea-
tures of the relationship between motor cortical activity and
hand movement. First, we were able to describe the temporal
dynamics of position and velocity tuning as a function of lag
and compare the resulting “spatiotemporal” tuning functions
directly for simultaneously recorded cells. We found that these
tuning functions wax and wane over time (lag); velocity infor-
mation typically leads behavior and peaks within a narrow
temporal window, whereas position tuning curves are much
more heterogeneous. We did not find evidence for temporal
segregation of tuning, either within individual cells or across
the population tuning, because position and velocity could
overlap in time. Furthermore, we confirmed, under novel (dy-
namically varying) behavioral conditions, that individual neu-
rons encode both position and velocity information, and that
both types of tuning can be locally summarized as cosine
functions that are “gain modulated” by speed (Moran and
Schwartz 1999a) or distance (Kettner et al. 1988). Second,

FIG. 14. Reconstruction of hand paths based on single trial firing from a
group of neurons. A–C: hand paths at different average speeds (A) mean
speed � 2.5 cm/s, (B) 3.0 cm/s, and (C) 4.7 cm/s, from 3 different animals,
reconstructed by linear regression. Reconstructions plotted in red, actual paths
in black. Column 1 (A1, B1, C1) depicts horizontal position; Column 2 (A2, B2,
C2), vertical position. Note that horizontal and vertical trajectories are fairly
well reconstructed, but high-frequency information seems to be lost. D: data
from C plotted with horizontal vs. vertical position.

FIG. 15. Linear regression analysis in the frequency domain. Signal-to-
noise ratio (SNR) attained by linear regression in the frequency domain (solid
line), for all experiments with peak SNR �1.2 (see METHODS). Dashed line
shows the coherence between the hand and visual target position signals as a
function of frequency; the coherence declines much more slowly than do the
SNR curves, indicating that the monkey’s hand can track the visual stimulus at
higher frequencies than hand motion can be reconstructed from the activity of
MI neurons.

FIG. 16. Effects of filter length and cell number on trajectory reconstruc-
tion. A: plot of normalized r2 vs. filter length (Tpre) for causal filters only.
Graph illustrates the rise in reconstruction accuracy as neural activity is
observed over longer time windows. B: r2 vs. number of cells C included in
regression model. For each value of C, a set of r2 values was calculated for
many randomly chosen subsets of C cells (see METHODS). Shaded area repre-
sents the range of r2 values at each value of C, and emphasizes the dependency
of accuracy gain with increasing C on precisely which neurons are used for
reconstruction.
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information-theoretic analyses suggested a distributed repre-
sentation of this kinematic information in MI; neurons carry
approximately equal amounts of information for position and
velocity, with absolute information values small for any single
cell. Finally, linear regression and frequency domain tech-
niques indicated that ensembles of primary motor cortical
neurons best encode the low-frequency components of the
hand position signal, but that a limited number of MI neurons
is sufficient to predict random, smooth, 2-D hand trajectories
with a moderate degree of precision.

Pursuit-tracking task

In the PTT each hand path can be considered as a novel,
time-varying “stimulus” for the motor system, with the neural
activity representing the observed response. The theoretical
strength of this analogy is debatable, but its empirical utility
should be clear. For example, once we view movement in
terms of a collection of time-varying signals (whether these
signals are hand position and velocity, as analyzed here, or
muscle tensions, joint angles, or any other behavioral signal),
many of the points we emphasized above are immediate. First,
it becomes clear why trial-averaging (averaging neural data
over trials during which the temporal details of the relevant
behavioral signals differ) might obscure essential details of the
encoding process. Figure 4, C and D makes this point dramat-
ically; here, trial-averaging destroys all information about the
relationship between neuronal activity and behavior. Second, it
is clear why control over the animal’s movements is essential
(for the same reasons that control over stimulus parameters is
essential to a sensory physiologist); the PTT provides control
over movements and attentive state because it demands con-
tinual visual monitoring of the stimulus to correctly guide the
hand. Similarly, we see why it is important to study the
response of the system to inputs from as large a portion of the
relevant parameter space as possible, and why we need to be
able to vary the multiple parameters of interest independently.
For instance, the fact that directional tuning emerged from an
analysis of the very large ensemble of random movements used
here demonstrates that this property is not an epiphenomenon
attributed to overtraining on a limited movement repertoire, or
the statistical idiosyncrasies of radial-type tasks (cf. Fig. 1).

Most important, the stationarity of the PTT enabled us to
treat movements as samples from a stochastic process. Each
sample could be treated in a uniform (i.e., identically distrib-
uted) manner. There was no need to attempt to create a period
of stationarity by dividing trials into behaviorally distinct ep-
ochs as done in step-tracking paradigms. This at once increases
the effective size of our data set and allows the use of powerful
statistical tools for systems analysis that depend on stationarity,
such as frequency domain methods (Fig. 15) and all analyses of
�-dependent properties performed here (Figs. 7, 8, and 11). In
contrast, during the radial task trial-time linked rate modula-
tions occur on time scales of the order of hundreds of milli-
seconds (Fig. 1). These nonstationarities would contaminate
the �-dependent properties of the spatiotemporal tuning func-
tions, which vary on a time scale of seconds in the case of
position. These features make the PTT a potentially useful
framework (albeit, of course, not the only such framework) to
study other aspects of movement encoding.

MI tuning functions

The tuning functions N(p�, �) and N(v�, �) examined in this
study (Figs. 6–8) are analogous to the “spatiotemporal recep-
tive fields” analyzed in various visual areas (DeAngelis et al.
1999), or “spectrotemporal” auditory fields (Kowalski et al.
1996), with one exception: the long correlation times of natural
movement, compared with the signals used as stimuli in these
sensory studies, cause our tuning functions to change more
slowly in � than do the functions derived in the sensory
domain. The term “tuning function” is meant to be more
neutral than “receptive field”; the results have not established
what is actually directly encoded by the neuron, only what can
be recovered from firing. Systems analysis approaches in sen-
sory systems have revealed a similar diversity of tuning func-
tions when neuronal firing is considered across the temporal
and spatial domain (DeAngelis et al. 1999).

The recorded MI neurons typically showed spatial and tem-
poral structure in their tuning for both velocity and position.
Where comparisons could be made, our results on the spatial
properties of MI tuning for position and velocity were gener-
ally consistent with previous reports. Both types of tuning
showed a directional dependency fit by a cosine (Ashe and
Georgopoulos 1994; Georgopoulos et al. 1982, 1984; Maynard
et al. 1999; Todorov 2002). Direction tuning is stable across
delay (�) for a majority (60%) of the cells reported here.
Direction tuning during the PTT showed a linear dependency
on speed (or distance, �, for position tuning curves), as ob-
served in center-out–like tasks (Ashe and Georgopoulos 1994;
Hamada 1981; Hamada and Kubota 1979; Moran and Schwartz
1999a; Schwartz 1993). Our results show that speed and dis-
tance scale the directional tuning curve without affecting its
shape; this relationship can be described locally by a simple
planar model (see also Eq. 6; Georgopoulos et al. 1984;
Schwartz 1993). Note that the near-planar form of these tuning
functions implies that single MI neurons do not encode a
particular location, which is quite different from the place
fields of, e.g., hippocampal neurons (Brown et al. 1998). Our
results complement previous work on spatial tuning in 2 main
respects: first, by showing that planar fields persist in a dy-
namic behavior setting. Second, they provide greatly enhanced
local detail about the tuning structure because of the higher-
density sampling properties of the PTT. In addition, our work
emphasizes the heterogeneity of the slope and orientation of
the position and velocity planes within the relatively small
region of cortex covered by the electrodes (Fig. 9), suggesting
that these parameter spaces are fully represented within any
given small patch in the MI arm area. This is consistent with
the view that representations of arm control are very broadly
distributed in MI (Sanes and Donoghue 1997).

The results of this study provide significant new information
concerning the temporal properties of MI neurons, especially
in the context of their spatial tuning (Figs. 7 and 8). Most of the
cells showed spatiotemporal tuning for both position and ve-
locity, with a continuum between strong velocity encoders
(like the cell shown in Fig. 7) and strong position encoders
(Fig. 8). The population of cells showed a broad range of
properties. In some cases, position tuning could be understood
as a feature of velocity tuning, whereas in other cases position
seemed to be an independently coded variable. Although these
features have not been demonstrated to be the actual variables
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encoded by MI neurons, at a minimum our results constrain the
types of mechanistic models of this encoding process (Pugh et
al. 2000; Todorov 2000).

Our evidence shows that neurons with heterogeneous veloc-
ity and position coding features are commingled even within a
small volume of cortex, but does not support the hypothesis
that position and velocity neurons form separate classes.
Rather, encoding of these variables appears to be represented
across a continuum in which these features are differentially
weighted. Salinas and Abbott (2001) suggest that a mixture of
cells with these sorts of encoding properties is well suited to
form translation-invariant representations. In MI, this could
mean that neural ensembles could represent particular kinds of
movements irrespective of their particular location in space or,
conversely, particular locations, regardless of motion. Such a
network might also account for motor equivalence where the
same action is produced, with structural similarity, from mul-
tiple effectors. Distributed, multiple representation with gain
fields is also thought to be useful to provide signals that can be
readily decoded by their target structures (Salinas and Abbott
2001).

Our data differ significantly from previous studies of the
temporal properties of motor cortical cells. For example, John-
son et al. (1999b), using a hybrid pursuit/center-out paradigm,
reported that speed tuning was specified before direction, with
little overlap in speed and direction coding in time, suggesting
that the 2 signals are not combined. Distinct temporal ordering
was also found in a study using a center-out task with multiple
radii (i.e., 8 directions with 6 distances each) (Fu et al. 1995).
Cell discharge was first correlated with direction, then target
position, and finally with distance.

We believe that the discrepancies between these findings
and ours arise because the studies quoted address a funda-
mentally different question than that examined here. Spe-
cifically, these previous studies examined the way in which
tuning tracks the evolution of task requirements. That is, the
differences in temporal ordering of encoding can be attrib-
uted to the fact that nonstationary tasks, such as the standard
center-out task, impose a particular temporal order due to
the ordering of task requirements [i.e., the variables of
interest are highly dependent on trial time (t); thus so is the
neural activity with which they are correlated]. For example,
as Johnson et al. (1999) suggest with regard to their results,
preferred direction shifts during the delay period were re-
lated to alignment of visual and movement signals—an
occurrence temporally linked to a behavioral epoch. In other
words, it is likely that the demands of the task evoke an early
correlation between hand speed and firing rate, followed
later by a correlation with direction, given that a judgment
of target speed would aid the animal in timing its intercep-
tion before tracking. Similar arguments apply to the results
presented in Fu et al. (1995). In contrast, as described
below, the PTT does not impose any temporal ordering in
the coding of kinematic parameters. This means that the
dynamics we report describe the evolution of tuning as a
function of the delay (�) between spiking and behavior
[rather than as a function of trial time (t)], a description that,
to the best of our knowledge, has not been examined in
detail before in the motor system. Note that lag-dependent
tuning could also be examined in the context of nonstation-
ary behavioral tasks (that is, tasks for which the distribu-

tions of the variables of interest depend explicitly on trial
time t; recall, for example, the t-dependency of the mean
hand speed in Fig. 1). However, to compute tuning dynam-
ics in this case, one must, in general, examine a new tuning
function not just for each �, but also for each t (necessitating
an average over a large number of trials, instead of the
average over t we took advantage of here). Of course, this
does not solve the undersampling problem facing tasks of
radial type (recall Fig. 1); because a small set of similar
hand paths are repeated in these tasks, any tuning functions
computed from such data will implicitly be dependent on
these particular trajectory histories, and might therefore
function poorly as a general description of the cell’s encod-
ing properties.

Temporal dynamics of position and velocity information

The purely temporal (that is, �-dependent) properties of MI
spatiotemporal tuning functions have not, to our knowledge,
been previously studied in detail. We introduced a way to
measure these temporal tuning properties, without any assump-
tions of linearity in the encoding process, by computing the
“temporal tuning curves” for velocity I[N(0); v� (�)], and posi-
tion I[N(0); p� (�)] (Fig. 11). Analysis of these objects quantified
the heterogeneity visible in Figs. 7 and 8; the shapes of these
temporal tuning curves varied considerably from cell to cell.
This diversity was evident even when the curves were con-
structed using exactly the same behavioral data and thus cannot
be explained in terms of kinematic or motivational differences
between experiments; the ability to remove these confounds
represents an important advantage of simultaneous multielec-
trode recording. Temporal heterogeneity was not predicted by
previous work; nevertheless, this wide range of tuning proper-
ties is consistent with previous descriptions of the diversity of
the correlation strength between neural activity and various
behavioral parameters (Kakei et al. 1999; Porter and Lemon
1993).

Temporal tuning curves were heterogeneous not just in
their shape but also in their overall amplitude (Fig. 12);
information content for hand velocity and position varied
over 2 orders of magnitude. Moreover, these information
values did not depend on the mean firing rate of a given
neuron (or on the variance of the firing rate; Fig. 5), or the
dynamic range of the behavioral signal. In other words, this
measure of information content appears to quantify an in-
trinsic property of MI cells, one that is relatively insensitive
to these gross neural and behavioral parameters. However,
information content for these variables might depend on
other parameters (e.g., the posture of the animal or orienta-
tion of the arm) (Scott and Kalaska 1997), which were not
systematically varied in the present study.

Finally, the information values computed for instanta-
neous position or velocity during tracking were perhaps
surprisingly small, compared with those previously com-
puted for static target location in the center-out task (Hat-
sopoulos et al. 1998; adjusted for differences in bin size).
Firing rate appears to vary smoothly as a function of posi-
tion and velocity, and the conditional distributions of the
kinematic signal given spike count depended only weakly
on the spike count (Fig. 10); in other words, MI cells are
broadly, not sharply, tuned for these variables. This is in
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agreement with previous results, including those of Ashe
and Georgopoulos, (1994), where ANOVA techniques per-
formed on radial task data indicate that (static) target loca-
tion accounted for much more of the variance in firing rate
than did time-varying hand position, velocity, or accelera-
tion. However, we found that the information content of MI
cells for velocity was only 10% greater, on average, than the
information content for position (Fig. 12), whereas Ashe
and Georgopoulos (1994) found a much stronger preference
for hand velocity than position. These discrepancies may be
attributed either to the many statistical differences between
the tracking and center-out paradigms or to differences
between the (linear) ANOVA procedure employed in Ashe
and Georgopoulos (1994) and the slightly more general
information-theoretic analysis employed here. In addition, it
is worth remembering that single-unit recording studies
typically search for highly modulated cells, whereas we
derived data from any well-isolated cell that could be re-
trieved from the electrode array, and thus these differences
might result partially from selection bias. A more quantita-
tive analysis of how these properties depend on cortical
layer and area would be useful.

In sum, position and velocity are weakly encoded in the
observed population of MI cells, when one compares the
encoding of single-joint–related motor variables (Humphrey et
al. 1970), or of higher-level variables such as target location
(Ashe and Georgopoulos 1994; Hatsopoulos et al. 1998). Ad-
ditionally, information content for velocity and position are
weakly correlated (Fig. 12), which indicates that MI cells
directly encode variables that are, in turn, indirectly linked to
hand velocity and position. Correlation with other arm motion
variables would help to determine which parameters are best
represented by MI neurons.

Signal reconstruction

We demonstrated that a linear algorithm, given a small,
randomly chosen set of neurons and �20 min of training data,
can reconstruct the random trajectory of a monkey’s hand
through 2-D space (Figs. 14–16, Table 1). (Neurons were
“randomly chosen” in the sense that no preselection of well-
tuned neurons was performed; all well-isolated units that hap-
pened to be within the recording range of our chronically
implanted electrode array during a given experiment were
analyzed.) Moreover, relatively small subpopulations of cells
can capture significant fractions of the available information
(Fig. 16B). The ability to reconstruct a trajectory using a simple
algorithm from small sets of neurons suggests that it would be
relatively straightforward to control devices in complex ways
using limited neural samples from MI (Kennedy and Bakay
1998; Moxon et al. 1999; Wessberg et al. 2000) and our
decoding approach (Serruya et al. 2002). Such neural prosthet-
ics could be used to restore movement to paralyzed individuals
as indicated by recent real-time control studies in monkeys
(Serruya et al. 2002; Taylor et al. 2002).

Our approach was closest to that of Humphrey et al. (1970),
Paninski et al. (1999), and Wessberg et al. (2000) (see Rieke et
al. 1997 and references therein for similar approaches in var-
ious sensory domains, and Brown et al. 1998 for applications
of various reconstruction methods in the study of hippocampal
place cells). Humphrey et al. successfully estimated various

single-joint–related parameters with time-domain linear regres-
sion techniques, using 3 to 8 simultaneously recorded MI units.
More recently, Wessberg et al. (2000) obtained results similar
to ours, using one task in which the hand was constrained to
move along a 1-D track and another in which the monkey made
stereotyped reaching movements. Our work is the first to show
that nonstereotyped, random, multidimensional hand motion
can be reconstructed with moderate accuracy. Although our
estimation efforts, as well as those of Wessberg et al. and
Taylor et al. (2002), successfully extracted a significant amount
of information about hand position in one, two, and three
dimensions the linear method does miss a large fraction of the
variance in the hand position signal. There is a great deal of
variability across our experiments (Table 1), some of which
can be at least partially accounted for by differences in the time
we observed the cells and in the total number of cells observed
(see our Fig. 16B and Wessberg et al.’s Figs. 2, E and F and 3,
F and G; note that they plotted r in these figures, not r2 as in
ours). However, even in our best experiments, when we com-
pare our results to those from other cortical data sets with
different associated behavioral or sensory signals, typically
consisting of fewer neurons (e.g., Buracas et al. 1998; Hum-
phrey et al. 1970), we were able to account for a perhaps
surprisingly low percentage of the available variance (and
almost none �0.5 Hz). The rate of information extracted from
the population by linear estimation reaches a maximum of
approximately 1 bit/s in the experiments analyzed here. See
Rieke et al. (1997) and references to compare this finding with
sensory coding, where information rates are 2 orders of mag-
nitude larger than for MI.

This low information rate might simply mean that linear
estimation is not an optimal solution for reconstruction of hand
motion. However, there are a few reasons to believe that
nonlinear estimators will not drastically outperform linear
ones. First, our information-theoretic results above indicate
that these cells contain a limited amount of information about
position or velocity; no nonlinear operation can extract nonex-
istent information (Cover and Thomas 1991). Second, Wess-
berg et al. were unable to find a neural network that performed
significantly better than the simple linear estimator. There are
more sophisticated nonlinear methods for signal estimation
given neural activity; work on the application of more elegant
Bayesian and/or recursive estimators, which require the devel-
opment of explicit models of the information encoding process,
is in progress (Gao et al. 2002). However, in the absence of any
robustly superior nonlinear estimator, we must provisionally
conclude that information about hand position is only weakly
(perhaps only indirectly) encoded in the activity of these MI
neurons. It seems plausible that a more indirect reconstruction
approach, using a model that incorporates the dependency of
neural firing rate on joint angle, might significantly improve
the quality of the achievable hand position reconstructions; this
experiment has yet to be carried out.

The linear technique fails to capture effectively all of the
variance above 0.5 Hz (Fig. 15). This does not rule out the
hypothesis that MI cells encode higher-frequency information
about other aspects of the kinematic behavior of the arm,
including joint angles and muscle activity (see, e.g., Lemon
1988 for clear examples of higher-frequency EMG information
available in cortical spike trains). Nor does it rule out the idea
that higher-frequency information is contained in the spike
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trains, but is not being extracted by the linear algorithm,
although as above, we can argue that this is unlikely. Our
results here seem to disagree with those of Wessberg et al. who
show results of a frequency coherence analysis in their Fig. 2,
A and B. Their cells appear to be significantly coherent with the
position of the hand at frequencies 
5 Hz, and none of their
cells appears to be significantly correlated with frequency
components below 0.5 Hz, where our signal-to-noise ratio is
greatest. It is unclear what accounts for these discrepancies;
they could be related to the particular tasks, or to analytical or
statistical differences. This apparent absence of high-frequency
hand position has important consequences both for the design
of neural prosthetic systems and for our understanding of
general neural coding in MI.

A P P E N D I X

Method for assessing neural stationarity

We tested neural activity for trends in both 1) firing rate over the
course of each experiment and 2) firing rate across trial time. The
firing rate as a function of time (intratrial or across the experiment)
was fit by a line and the slope was tested to see whether it was
significantly different from zero. This was done through a bootstrap
procedure, described below. Tests were done separately for each cell.

For trends across experimental time the total number of spikes in
the tracking phase of each trial was used. A line was fit to these spike
counts as a function of experimental time to determine a slope. To test
whether this slope was significantly different from zero we performed
400 bootstrap reshufflings. For each iteration of the bootstrap the
relationship between the experimental time and the firing rate at that
time was broken and randomly shuffled. A line was fit for each
iteration to determine a slope, and a distribution of the absolute values
of these slopes was constructed. If the absolute value of the slope of
the rate trend for a cell was �95% of the randomly shuffled slopes it
was considered significantly different from zero. Otherwise, it was not
considered to exhibit a rate trend.

For intratrial rate trends a similar procedure was used. In this case,
trials were aligned on the start of the tracking phase and the neural
activity was averaged over the ensemble of trials to get a mean spike
count in each time bin. Spike count as a function of trial time was then
subjected to the bootstrap procedure as described above.

Cells with significant rate trends across experimental time were
further tested to determine whether the trend in rate affected the
tuning functions we compute. A spatiotemporal tuning function (as
described above) was computed for each of these cells using data from
the first half of the experiment, and a second tuning function was
computed using data from the second half of the experiment. A plane
(Eq. 6, above) was fitted to each and the gain (slope) and orientation
(major axis) were compared. If both of these differed significantly
between the first and second halves of the experiment the cell was
considered to be nonstationary and was not included in any further
analyses. Determination of significance was carried out by generating
surrogate data to construct a distribution of gains and orientations. The
procedure carried out for each cell was as follows.

1) Divide the experiment into two parts so that one part, D1,
contains the first half of the trials, and the other part, D2, contains the
rest.

2) For trials in D1 compute the spatiotemporal tuning function, and
fit Eq. 6 to obtain the planar fit parameters, a0, a1, and �PD (offset,
gain, and orientation, respectively). This was repeated for trials in D2.

3) Generate surrogate data is as follows.
a) Using trials in D1, generate tuned Poisson spike counts as

follows: For each kinematic sample (�, �), generate a Poisson spike
count with parameter �, given by � � a0 � a1� cos (� 	 �PD).

b) Using the Poisson counts from Step 3a, the spatiotemporal

tuning function was calculated, and Eq. 6 was fit to determine the
offset (a0

(1)), gain (a1
(1)), and orientation (�PD

(1) ) parameters for the
surrogate.

c) Steps 3a and 3b were repeated, this time using only trials from
D2, to determine a0

(2), a1
(2), and �PD

(2) .
d) The difference in the gains between D1 and D2 [i.e., abs(a1

(2) 	
a1

(1))] and the percentage change in orientation i.e., abs[(�PD
(2) 	

�PD
(1) )/�PD

(1) ], were calculated, where abs( � ) means absolute value.
4) Step 3 was repeated 100 times for each cell to obtain a distri-

bution of gain differences and orientation changes under the Poisson
assumption.

A cell was considered nonstationary, and excluded from all further
analyses, if its gain difference, or orientation change was �97% of the
surrogate values [i.e., P � 0.03 (Bonferroni-corrected, P � 0.05)].
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