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Abstract

Fluorescent calcium indicators are becoming increasingly popular as a means for observing the spiking activity
of large neuronal populations. Unfortunately, extracting the spike train of each neuron from a raw fluorescence movie
is a nontrivial problem. This work presents a fast non-negative deconvolution filter to infer the approximately most
likely spike train of each neuron, given the fluorescence observations. This algorithm outperforms optimal linear
deconvolution (Wiener filtering) on both simulated and biological data. The performance gains come from restricting
the inferred spike trains to be positive (using an interior-point method), unlike the Wiener filter. The algorithm runs
in linear time, like the Wiener filter, and is fast enough that even when imaging over 100 neurons simultaneously,
inference can be performed on the set of all observed traces faster than real-time. Performing optimal spatial filtering
on the images further refines the inferred spike train estimates. Importantly, all the parameters required to perform the
inference can be estimated using only the fluorescence data, obviating the need to perform joint electrophysiological
and imaging calibration experiments.

1 Introduction
Simultaneously imaging large populations of neurons using calcium sensors is becoming increasingly popular [1],
both in vitro [2, 3] and in vivo [4, 5, 6], and will likely continue as the signal-to-noise-ratio (SNR) of genetic sensors
continues to improve [7, 8, 9]. Whereas the data from these experiments are movies of time-varying fluorescence
traces, the desired signal consists of spike trains of the observable neurons. Unfortunately, finding the most likely
spike train is a challenging computational task, due to limitations on the SNR and temporal resolution, unknown
parameters, and computational intractability.

A number of groups have therefore proposed algorithms to infer spike trains from calcium fluorescence data using
very different approaches. Early approaches simply thresholded dF/F (typically defined as (F − Fb)/Fb where Fb

is baseline fluorescence; e.g., [10, 11]) to obtain “event onset times.” More recently, Greenberg et al [12] developed a
template matching algorithm to identify individual spikes. Holekamp et al [13] then applied an optimal linear decon-
volution (i.e., the Wiener filter) to the fluorescence data. This approach is natural from a signal processing standpoint,
but does not utilize the knowledge that spikes are always positive. Sasaki et al [14] proposed using machine learning
techniques to build a nonlinear supervised classifier, requiring many hundreds of examples of joint electrophysiolog-
ical and imaging data to “train” the algorithm to learn what effect spikes have on fluorescence. Vogelstein et al [15]
proposed a biophysical model-based sequential Monte Carlo method to efficiently estimate the probability of a spike
in each image frame, given the entire fluorescence time-series. While effective, that approach is not suitable for online
analyses of populations of neurons, as the computations run in about real-time per neuron (i.e., analyzing one minute
of data requires about one minute of computational time on a standard laptop computer).

In the present work, a simple model is proposed relating spiking activity to fluorescence traces. Unfortunately,
inferring the most likely spike train given this model is computationally intractable. Making some reasonable ap-
proximations leads to an algorithm that infers the approximately most likely spike train, given the fluorescence
data. This algorithm has a few particularly noteworthy features, relative to other approaches. First, spikes are as-
sumed to be positive. This assumption often improves filtering results when the underlying signal has this property
[16, 17, 18, 19, 20, 21, 22, 23]. Second, the algorithm is fast: it can process a calcium trace from 50,000 images in about
one second on a standard laptop computer. In fact, filtering the signals for an entire population of over 100 neurons
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runs faster than real-time. This speed facilitates using this filter online, as observations are being collected. In addition
to these two features, the model may be generalized in a number of ways, including incorporating spatial filtering of
the raw movie, which can improve effective SNR. The utility of the proposed filter is demonstrated on several biolog-
ical data-sets, suggesting that this algorithm is a powerful and robust tool for online spike train inference. The code
(which is a simple Matlab script) is available for free download from http://wwww.optophysiology.org.

2 Methods

2.1 Data driven generative model
Figure 1 shows data from a typical in vitro epifluorescence experiment (see Section 2.7 for data collection details).
The top panel shows the mean frame of this movie, including 3 neurons, two of which are patched. To build the model,
the pixels within a region-of-interest (ROI) are selected (white circle). Given the ROI, all the pixel intensities of each
frame can be averaged, to get a one-dimensional fluorescence time-series, as shown in the bottom left panel (black
line; bottom left panel). By patching onto this neuron, the spike train can also be directly observed (black bars; bottom
left panel). Previous work suggests that this fluorescence signal might be well characterized by convolving the spike
train with an exponential, and adding noise [1]. This model is confirmed by convolving the true spike train with an
exponential (gray line; bottom left panel), and then looking at the distribution of the residuals. The bottom right panel
shows a histogram of the residuals (dashed line), and the best fit Gaussian distribution (solid line).

The above observations may be formalized as follows. Assume there is a one-dimensional fluorescence trace, F ,
from a neuron (throughout this text X indicates the vector (X1, . . . , XT ), where T is the index of the final frame). At
time t, the fluorescence measurement Ft is a linear-Gaussian function of the intracellular calcium concentration at that
time, [Ca2+]t:

Ft = α[Ca2+]t + β + εt, εt
iid∼ N (0, σ2). (1)

The parameter α absorbs all experimental variables impacting the scale of the signal, including the number of sensors
within the cell, photons per calcium ion, amplification of the imaging system, etc. Similarly, the offset, β, absorbs
the baseline calcium concentration of the cell, background fluorescence of the fluorophore, imaging system offset,
etc. The noise at each time, εt, is independently and identically distributed according to a normal distribution with
zero mean and σ2 variance, as indicated by the notation iid∼ N (0, 1). This noise results from calcium fluctuations
independent of spiking activity, fluorescence fluctuations independent of calcium, and other sources of imaging noise.

Then, assuming that the intracellular calcium concentration, [Ca2+]t, jumps by A µM after each spike, and subse-
quently decays back down to baseline, Cb µM, with time constant τ sec, one can write:

[Ca2+]t+1 = (1−∆/τ)[Ca2+]t + (∆/τ)Cb + Ant (2)

where ∆ is the time step size — which is the frame duration, or 1/(frame rate) — and nt indicates the number of times
the neuron spiked in frame t. Note that because [Ca2+]t and Ft are linearly related to one another, the fluorescence
scale, α, and calcium scale, A, are not identifiable. In other words, either can be set to unity without loss of generality,
as the other can absorb the scale entirely. Similarly, the fluorescence offset, β, and calcium baseline, Cb are not
identifiable, so either can be set to zero without loss of generality. Finally, letting γ = (1 − ∆/τ), Eq. (2) can be
rewritten replacing [Ca2+]t with its non-dimensionalized counterpart, Ct:

Ct = γCt−1 + nt. (3)

Note that Ct does not refer to absolute intracellular concentration of calcium, but rather, a relative measure (see [15]
for a more general model). The gray line in the bottom left panel of Figure 1 corresponds to the putative C of the
observed neuron.

To complete the “generative model” (i.e., a model from which simulations can be generated), the distribution from
which spikes are sampled must be defined. Perhaps the simplest first order description of spike trains is that at each
time, spikes are sampled according to a Poisson distribution with some rate:

nt
iid∼ Poisson(λ∆) (4)

where λ∆ is the expected firing rate per bin, and ∆ is included to ensure that the expected firing rate is independent
of the frame rate. Thus, Eqs. (1), (3), and (4) complete the generative model.
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Figure 1: Typical in vitro data suggest that a reasonable first order model may be constructed by convolving the
spike train with an exponential and adding Gaussian noise. Top panel: the average (over frames) of a field-of-view.
Bottom left: true spike train recorded via a patch electrode (black bars), convolved with an exponential (gray line),
superimposed on the OGB-1 fluorescence trace (black line). While the spike train and fluorescence trace are measured
data, the calcium is not directly measured, but rather, inferred. Bottom right: a histogram of the residual error between
the gray and black lines from the bottom left panel (dashed line), and the best fit Gaussian (solid line). Note that the
Gaussian model provides a good fit for the residuals here.

2.2 Goal
Given the above model, the goal is to find the maximum a posteriori (MAP) spike train, i.e., the most likely spike train,
n̂, given the fluorescence measurements, F :

n̂ = argmax
nt∈N0∀t

P [n|F ], (5)

where P [n|F ] is the posterior probability of a spike train, n, given the fluorescent trace, F , and nt is constrained to
be an integer, N0 = {0, 1, 2, . . .}, because of the above assumed Poisson distribution. From Bayes’ rule, the posterior
can be rewritten:

P [n|F ] =
P [n,F ]
P [F ]

=
1

P [F ]
P [F |n]P [n], (6)

where P [F ] is the evidence of the data, P [F |n] is the likelihood of observing a particular fluorescence trace F , given
the spike train n, and P [n] is the prior probability of a spike train. Plugging the far right-hand-side of Eq. (6) into
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Eq. (5), yields:

n̂ = argmax
nt∈N0∀t

1
P [F ]

P [F |n]P [n] = argmax
nt∈N0∀t

P [F |n]P [n], (7)

where the second equality follows because P [F ] merely scales the results, but does not change the relative quality
of any particular spike train. Note that the prior P [n] acts as a regularizing term, potentially imposing sparseness or
smoothness, depending on the assumed distribution [24, 25]. Both P [F |n] and P [n] are available from the above
model:

P [F |n] = P [F |C] =
T∏

t=1

P [Ft|Ct], (8a)

P [n] =
T∏

t=1

P [nt], (8b)

where the first equality in Eq. (8a) follows because C is deterministic given n, and the second equality follows from
Eq. (1). Further, Eq. (8b) follows from the Poisson process assumption, Eq. (4). Both P [Ft|Ct] and P [nt] can be
written explicitly using:

P [Ft|Ct] = N (αCt + β, σ2), (9a)
P [nt] = Poisson(λ∆), (9b)

where both equations follow from the above model, and the Poisson distribution acts as a sparse prior. Now, plugging
Eq. (9) back into (8), and plugging that result into Eq. (7), yields:

n̂ = argmax
nt∈N0∀t

T∏
t=1

1√
2πσ2

exp
{
−1

2
(Ft − αCt − β)2

σ2

}
exp{−λ∆}(λ∆)nt

nt!
(10a)

= argmax
nt∈N0∀t

T∑
t=1

{
− 1

2σ2
(Ft − αCt − β)2 + nt lnλ∆− lnnt!

}
, (10b)

where the second equality follows from taking the logarithm of the right-hand-side and dropping terms that do not
depend on n. Unfortunately, solving Eq. (10b) exactly is computationally intractable, as it requires a nonlinear search
over an infinite number of possible spike trains. The search space could be restricted by imposing an upper bound, k,
on the number of spikes within a frame. However, in that case, the computational complexity scales exponentially with
the number of image frames — i.e., the number of computations required would scale with kT — which for pragmatic
reasons is intractable.

2.3 Inferring the approximately most likely spike train, given a fluorescence trace
The goal here is to develop an algorithm to efficiently approximate n̂, the most likely spike train, given the fluo-
rescence trace. Because of the computational intractability described above, one can approximate Eq. (4) by replac-
ing the Poisson distribution with an exponential distribution of the same mean (note that other—potentially more
accurate—approximations are possible, as described in the discussion section). Modifying Eq. (10) to incorporate this
approximation yields:

n̂ ≈ argmax
nt>0 ∀t

T∏
t=1

[
1√

2πσ2
exp

{
−1

2
(Ft − αCt − β)2

σ2

}
(λ∆) exp{−ntλ∆}

]
(11a)

= argmax
nt>0 ∀t

T∑
t=1

− 1
2σ2

(Ft − αCt − β)2 − ntλ∆ (11b)

where the second equality follows from taking the log of the right-hand-side (ln is a monotone function, and therefore
does not change the relative likelihood of particular spike trains) and dropping terms constant in nt. Note that the
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constraint on nt has been relaxed from nt ∈ N0 to nt ≥ 0 (since the exponential distribution can yield any non-
negative number). The exponential prior, much like the Poisson prior, imposes a sparsening effect, by penalizing the
objective function for large values of nt. Further, the exponential approximation makes the optimization problem
concave in C, meaning that any gradient ascent method guarantees achieving the global maximum (because there are
no local maxima, other than the single global maximum). To see that Eq. (11b) is concave in C, rearrange Eq. (3) to
obtain, nt = Ct − γCt−1, so Eq. (11b) can be rewritten:

Ĉ = argmax
Ct−γCt−1>0 ∀t

T∑
t=1

− 1
2σ2

(Ft − αCt − β)2 − (Ct − γCt−1)λ∆ (12)

which is a sum of terms that are concave in C, so the whole right-hand-side is concave in C. Unfortunately, the
integer constraint has been lost, i.e., the answer could include “partial” spikes. This disadvantage can be remedied by
thresholding (i.e., setting nt = 1 for all nt greater than some threshold, and the rest setting to zero), or by considering
the magnitude of a partial spike at time t as a rough indication of the probability of a spike occurring during frame
t. Note the relaxation of a difficult discrete optimization problem into an easier continuous problem is a common
approximation technique in the machine learning literature [26, 23]. In particular, the exponential distribution is a
convenient non-negative log-concave approximation of the Poisson (see the discussion section for more details).

While this convex relaxation makes the problem tractable, the “sharp” threshold imposed by the non-negativity
constraint prohibits the use of standard gradient ascent techniques. This may be rectified by utilizing an “interior-
point” method [26]. Interior point methods solve non-differentiable problems indirectly by instead solving a series of
differentiable subproblems that converge to the solution of the original non-differentiable problem. In particular, each
subproblem within the series drops the sharp threshold, and adds a weighted barrier term that approaches −∞ as nt

approaches zero. Iteratively reducing the weight of the barrier term guarantees convergence to the correct solution.
Thus, the goal is to efficiently solve:

Ĉz = argmax
C

T∑
t=1

(
− 1

2σ2
(Ft − αCt − β)2 − (Ct − γCt−1)λ∆ + z ln(Ct − γCt−1)

)
, (13)

where ln(·) is the “barrier term”, and z is the weight of the barrier term (note that the constraint has been dropped).
Iteratively solving for Ĉz for z going down to nearly zero, guarantees convergence to Ĉ [26]. The concavity of
Eq. (13) facilitates utilizing any number of techniques guaranteed to find the global maximum. Because the argument
of Eq. (13) is twice analytically differentiable, one can use the Newton-Raphson technique [27]. The special tridiagonal
structure of the Hessian enables each Newton-Raphson step to be very efficient (as described below). To proceed,
Eq. (13) is first rewritten in more compact matrix notation. Note that:

MC =


−γ 1 0 0 · · · 0
0 −γ 1 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 −γ 1 0
0 · · · 0 0 −γ 1




C1

C2

...
CT−1

CT

 =


n1

n2

...
nT−1

 , (14)

where M ∈ R(T−1)×T is a bidiagonal matrix. Then, letting 1 be a T − 1 dimensional column vector, β be a T
dimensional column vector of β’s, and λ = λ∆1 yields the objective function, Eq. (13), in more compact matrix
notation (note that throughout we will use the subscript � to indicate element wise operations):

Ĉz = argmax
MC≥�0

− 1
2σ2
‖F − αC − β‖22 − (MC)Tλ + z ln�(MC)T1, (15)

where MC ≥� 0 indicates an element-wise greater than or equal to zero, ln�(·) indicates an element-wise logarithm,
and ‖x‖2 is the standard L2 norm, i.e., ‖x‖22 =

∑
i x2

i ,. When using Newton-Raphson to ascend a surface, one
iteratively computes both the gradient, g, (first derivative) and Hessian, H , (second derivative) of the argument to be
maximized, with respect to the variables of interest (C here). Then, the estimate is updated using Cz ← Cz + sd,
where s is the step size and d is the step direction obtained by solving Hd = g. The gradient and Hessian for this
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model, with respect to C, are given by:

g = − α

σ2
(F − αC − β) + MTλ− zMT(MC)−1

� (16a)

H =
α2

σ2
I + zMT(MC)−2

� M (16b)

where the exponents on the vector MC indicate element-wise operations. The step size, s, is found using “backtrack-
ing linesearches”, which finds the maximal s that increases the posterior and is between zero and one [27].

Standard implementations of the Newton-Raphson algorithm require inverting the Hessian, i.e., solving d =
H−1g, a computation that scales cubically with T (requires on the order of T 3 operations). Already, this would be a
drastic improvement over the most efficient algorithm assuming Poisson spikes, which would require kT operations
(where k is the maximum number of spikes per frame). Here, because M is bidiagonal, the Hessian is tridiagonal, so
the solution may be found in about T operations, via standard banded Gaussian elimination techniques (which can be
implemented efficiently in Matlab using H\g, assuming H is represented as a sparse matrix) [23]. In other words,
the above approximation and inference algorithm reduces computations from exponential to linear time. Appendix A
contains pseudocode for this algorithm, including learning the parameters, as described below. Note that once Ĉ is
obtained, it is a simple linear transformation to obtain n̂, the approximate MAP spike train.

2.4 Learning the parameters
In practice, the model parameters, θ = {α, β, σ, γ, λ}, tend to be unknown. An algorithm to estimate the most likely
parameters, θ̂, could proceed as follows: (i) initialize some estimate of the parameters, θ̂, then (ii) recursively compute
n̂ using those parameters, and update θ̂ given the new n̂, until some convergence criteria is met. This approach may
be thought of as a pseudo-expectation maximization algorithm [28, 15]. Below, details are provided for each step.

2.4.1 Initializing the parameters

Because the model introduced above is linear, the scale of F relative to n is arbitrary. Therefore, before filtering, F
is linearly mapped between zero and one, i.e., F ← (F − Fmin)/(Fmax − Fmin), where Fmin and Fmax are the
observed minimum and maximum of F , respectively. Given this normalization, α is set to one. Because spiking is
sparse in many experimental settings, F tends to be around baseline, so β is initialized to be the median of F , and
σ is initialized as the median absolute deviation of F , i.e., σ = mediant(|Ft−medians(Fs)|)/K, where mediani(Xi)
indicates the median of X with respect to index i, and K = 1.4785 is the correction factor when using median
absolute deviation as a robust estimator of the standard deviation of a normal distribution. Because in these data, the
posterior tends to be relatively flat along the γ dimension, i.e., large changes in γ result in relatively small changes
in the posterior, estimating γ is difficult. Further, previous work has shown that results are somewhat robust to minor
variations in time constant [29]; therefore γ is initialized at 1 −∆/(1sec), which is fairly standard [30]. Finally, λ is
initialized at 1 Hz, which is between average baseline and evoked spike rate for these data.

2.4.2 Estimating the parameters given n̂

Ideally, one could integrate out the hidden variables, to find the most likely parameters:

θ̂ = argmax
θ

∫
P [F ,C|θ]dC = argmax

θ

∫
P [F |C;θ]P [C|θ]dC. (17)

However, evaluating those integrals is not currently tractable. Therefore, Eq. (17) is approximated by simply maxi-
mizing the parameters given the MAP estimate of the hidden variables:

θ̂ ≈ argmax
θ

P [F , Ĉ|θ] = argmax
θ

P [F |Ĉ;θ]P [n̂|θ] = argmax
θ
{lnP [F |Ĉ;θ] + lnP [n̂|θ]}, (18)

where Ĉ and n̂ are determined using the above described inference algorithm. The approximation in Eq. (18) is good
whenever most of the mass in the integral in Eq. (18) is around the MAP sequence, Ĉ.1 The argument from the

1Eq. (18) may be considered a crude Laplace approximation [31].

6



Vogelstein JT, et al Fast spike train inference from calcium imaging

right-hand-side of Eq. (18) may be expanded:

lnP [F |Ĉ;θ] + lnP [n̂|θ] =
T∑

t=1

lnP [Ft|Ĉt;α, β, σ] +
T∑

t=1

lnP [n̂t|λ]. (19)

Note that the right-hand-side of Eq. (19) decouples λ from the other parameters. The maximum likelihood estimate
(MLE) for the observation parameters, {α, β, σ}, is therefore given by:

{α̂, β̂, σ̂} = argmax
α,β,σ>0

T∑
t=1

lnP [Ft|Ĉt;β, σ] = argmax
α,β,σ>0

−1
2
(2πσ2)− 1

2

(
Ft − αĈt − β

σ

)2

. (20)

Note that a rescaling of α may be offset by a complementary rescaling of Ĉ. Therefore, because the scale of Ĉ is
arbitrary (see Eqs. (2) and (3)), α can be set to one without loss of generality. Plugging α = 1 into Eq. (20), and
maximizing with respect to β yields:

β̂ = argmax
β>0

T∑
t=1

−(Ft − Ĉt − β)2. (21)

Computing the gradient with respect to β, setting the answer to zero, and solving for β̂, yields β̂ = 1
T

∑
t(Ft − Ĉt).

Similarly, computing the gradient of Eq. (20) with respect to σ, setting it to zero, and solving for σ̂ yields:

σ̂ =

√
1
T

∑
t

(Ft − Ĉt − β̂)2, (22)

which is simply the root-mean-square of the residual error. Finally, the MLE of λ̂ is given by solving:

λ̂ = argmax
λ>0

∑
t

(ln(λ∆)− n̂tλ∆), (23)

which, again, computing the gradient with respect to λ, setting it to zero, and solving for λ̂, yields λ̂ = T/(∆
∑

t n̂t),
which is the inverse of the inferred average firing rate.

Iterations stop whenever (i) the iteration number exceeds some upper bound, or (ii) the relative change in likelihood
does not exceed some lower bound. In practice, parameter estimates tend to converge after several iterations, given the
above initializations.

2.5 Spatial filtering
In the above, we assumed that the raw movie of fluorescence measurements collected by the experimenter had under-
gone two stages of preprocessing before filtering. First, the movie was segmented, to determine regions-of-interest
(ROIs), yielding a vector, ~Ft = (F1,t, . . . , FNp,t), which corresponded to the fluorescence intensity at time t for each
of the Np pixels in the ROI (note that we use the ~X throughout to indicate row vectors in space, versus X to indicate
column vectors in time). Second, at each time t, that vector was projected into a scalar, yielding Ft, the assumed input
to the filter. In this Section, the optimal projection is determined by considering a more general model:

Fx,t = αxCt + βx + σεx,t, εx,t
iid∼ N (0, 1) (24)

where αx corresponds to the number of photons that are contributed due to calcium fluctuations, Ct, and βx cor-
responds to the static photon emission at each pixel x. Further, the noise is assumed to be both spatially and tem-
porally white, with standard deviation, σ, in each pixel (this assumption can always be approximately accurate by
pre-whitening; alternately, one could relax the spatial independence by representing joint noise over all pixels with a
covariance matrix, Σt, with arbitrary structure). Performing inference in this more general model proceeds in a nearly
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identical manner as before. In particular, the maximization, gradient, and Hessian become:

Ĉz = argmax
MC≥�0

− 1
2σ2

∥∥∥~F −C~α− 1T
~β
∥∥∥2

F
− (MC)Tλ + z ln�(MC)T1 (25)

g = (~F −C~α− 1T
~β)T

~αT

σ2
−MTλ + zMT(MC)−1

� (26)

H = −~α~αT

σ2
I − zMT(MC)−2

� M , (27)

where ~F is an Np × T element matrix, 1T is a column vector of ones with length T , I is an Np ×Np identity matrix,
and ‖x‖F indicates the Frobenius norm, i.e. ‖x‖2F =

∑
i,j x2

i,j , and the exponents and log operator on the vector
MC again indicate element-wise operations. Note that to speed up computation, one can first project the background
subtracted Nc × T dimensional movie onto the spatial filter, ~α, yielding a one-dimensional time series, F , reducing
the problem to evaluating a T × 1 vector norm, as in Eq. (15).

The parameters ~α and ~β tend to be unknown, and therefore must be estimated from the data. Following the
strategy developed in the last section, we first initialize the parameters. Because each voxel contains some number of
fluorophores, which sets both the baseline fluorescence and the fluorescence due to calcium fluctuations, let both the
initial spatial filter and initial background be the median image frame, i.e., α̂x = β̂x = mediant(Fx,t). Given these
robust initializations, the maximum likelihood estimator for each αx and βx is given by:

{α̂x, β̂x} = argmax
αx,βx

P [F x|Ĉ] (28a)

= argmax
αx,βx

∑
t

lnP [Fx,t|Ĉt] (28b)

= argmax
αx,βx

∑
t

{
−1

2
ln(2πσ2)− 1

2σ2

(
Fx,t − αxĈt − βx)

)2
}

(28c)

= argmax
αx,βx

−
∑

t

(Fx,t − αxĈt − βx)2, (28d)

where the first equalities follow from Eq. (1), and the last equality follows from dropping irrelevant constants. Because
this is a standard linear regression problem, let A = [Ĉ,1T ]T be a 2 × T element matrix, and Y x = [αx, βx]T be a
2× 1 element column vector. Substituting A and Y x into Eq. (28d) yields:

Ŷ x = argmax
Y x

−
∥∥∥F x −ATY x

∥∥∥2

2
, (29)

which can be solved by computing the derivative of Eq. (29) with respect to Y x and setting to zero, or using Matlab
notation: Ŷ x = A\F x. Note that solving Np 2-dimensional quadratic problems is more efficient than solving a single
(2 × Np)-dimensional quadratic problem. Also note that this approach does not regularize the parameters at all, by
smoothing or sparsening, for instance. In the discussion we propose several avenues for further development, including
the elastic net [32] and simple parametric models of the neuron. As in the scalar Ft case, we iterate estimating the
parameters of this model, θ = {~α, ~β, σ, γ, λ}, and the spike train, n. Because of the free scale term discussed in
Section 2.4, the absolute magnitude of ~α is not identifiable. Thus, convergence is defined here by the “shape” of the
spike train converging, i.e., the norm of the difference between the inferred spike trains from subsequent iterations,
both normalized such that max(n̂t) = 1. In practice, this procedure converged after several iterations.

2.6 Overlapping spatial filters
It is not always possible to segment the movie into pixels containing only fluorescence from a single neuron. Therefore,
the above model can be generalized to incorporate multiple neurons within an ROI. Specifically, letting the superscript
i index the Nc neurons in this ROI yields:

~Ft =
Nc∑
i=1

~αiCi
t + ~β + ~εt, ~εt

iid∼ N (0, σ2I) (30)

Ci
t = γiCi

t−1 + ni
t, ni

t
iid∼ Poisson(ni

t;λi∆) (31)
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where each neuron is implicitly assumed to be independent, and each pixel is conditionally independent and identically
distributed with variance σ2, given the underlying calcium signals. To perform inference in this more general model,
let nt = [n1

t , . . . , n
Nc
t ] and Ct = [C1

t , . . . , CNc
t ] be Nc dimensional column vectors. Then, let Γ =diag(γ1, . . . , γNc )

be a Nc ×Nc diagonal matrix, and let I and 0 be an identity and zero matrix of the same size, respectively, yielding:

MC =


−Γ I 0 0 · · · 0
0 −Γ I 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 −Γ I 0
0 · · · 0 0 −Γ I




C1

C2

...
CT−1

CT

 =


n1

n2

...
nT−1

 (32)

and proceed as above. Note that Eq. (32) is very similar to Eq. (14), except that M is no longer bidiagonal, but rather,
block bidiagonal (and Ct and nt are vectors instead of scalars), making the Hessian block-tridiagonal. Importantly,
the Thomas algorithm, which is a simplified form of Gaussian elimination, finds the solution to linear equations with
block tridiagonal matrices in linear time, so the efficiency gained from utilizing the tridiagonal structure is maintained
for this block tridiagonal structure [27]. Performing inference in this more general model proceeds similarly as above,
letting ~α = [~α1, . . . , ~αNc ]:

Ĉz = argmax
MC≥�0

− 1
2σ2

∥∥∥~F −C~α− 1T
~β
∥∥∥2

F
− (MC)Tλ + z ln�(MC)T1, (33)

g = (~F −C~α− 1T
~β)T

~αT

σ2
−MTλ + zMT(MC)−1

� (34)

H = −
~α~αT

σ2
I − zMT(MC)−2

� M . (35)

If the parameters are unknown, they must be estimated. Initialize ~β as above. Then, define αx = [α1
x, . . . , αNc

x ]T, and
initialize manually by assigning some pixels to each neuron (of course, more sophisticated algorithms could be used,
as described in the discussion). Given this initialization, iterations and stopping criteria proceed as above, with the
minor modification of incorporating multiple spatial filters, yielding:

{α̂x, β̂x} = argmax
αx,βx

−1
2

∑
t

(Fx,t −
Nc∑
i=1

αi
xĈi

t − βx)2, (36)

Now, generalizing the above single spatial filter case, let A = [Ĉ,1T ]T be a (Nc + 1) × T element matrix, and
Y x = [αx, βx]T be a (Nc + 1) dimensional column vector. Then, one can again use Eq. (29) to solve for α̂x and β̂x

for all x.

2.7 Experimental Methods
2.7.1 Slice Preparation and Imaging

All animal handling and experimentation was done according to the National Institutes of Health and local Institutional
Animal Care and Use Committee guidelines. Somatosensory thalamocortical or coronal slices 350-400 µm thick were
prepared from C57BL/6 mice at age P14 as described [33]. Pyramidal neurons from layer V somatosensory cortex
were filled with 50 µM Oregon Green Bapta 1 hexapotassium salt (OGB-1; Invitrogen, Carlsbad, CA) through the
recording pipette or bulk loaded with Fura-2 AM (Invitrogen, Carlsbad, CA). Pipette solution contained 130 mM K-
methylsulfate, 2 mM MgCl2, 0.6 mM EGTA, 10 mM HEPES, 4 mM ATP-Mg, and 0.3 mM GTP-Tris, pH 7.2 (295
mOsm). After cells were fully loaded with dye, imaging was performed in one of two ways. First, when using Fura-
2, images were collected using a modified BX50-WI upright microscope (Olympus, Melville, NY) with a confocal
spinning disk (Solamere Technology Group, Salt Lake City, UT) and an Orca CCD camera from Hamamatsu Photonics
(Shizuoka, Japan), at 33 Hz. Second, when using Oregon Green, images were collected using epifluorescence with
the C9100-12 CCD camera from Hamamatsu Photonics (Shizuoka, Japan) with arclamp illumination with excitation
and emission bandpass filters at 480-500 nm and 510-550 nm, respectively (Chroma, Rockingham, VT). Images were
saved and analyzed using custom software written in Matlab (Mathworks, Natick, MA).

9
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2.7.2 Electrophysiology

All recordings were made using the Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, CA), digitized with
National Instruments 6259 multichannel cards and recorded using custom software written using the LabView platform
(National Instruments, Austin, TX) . Square pulses of sufficient amplitude to yield the desired number of action
potentials were given as current commands to the amplifier using the LabView and National Instruments system.

2.7.3 Fluorescence preprocessing

Traces were extracted using custom Matlab scripts to segment the mean image into ROIs. The Fura-2 fluorescence
traces were inverted. As some slow drift was sometimes present in the traces, each trace was Fourier transformed, and
all frequencies below 0.5 Hz were set to zero (0.5 Hz was chosen by eye), and the resulting fluorescence trace was
then normalized to be between zero and one.

3 Results

3.1 Main Result
The main result of this paper is that the fast filter can find the approximately most likely spike train, n̂, very efficiently,
and that this approach yields more accurate spike train estimates than optimal linear deconvolution. Fig. 2 depicts
a simulation showing this result. Clearly, the fast filter’s inferred “spike train” (third panel) more closely resembles
the true spike train (second panel) than the optimal linear deconvolution’s inferred spike train (bottom panel; Wiener
filter). Note that neither filter results in an integer sequence, but rather, each infers a real number at each time.

The Wiener filter implicitly approximates the Poisson spike rate with a Gaussian spike rate (see Appendix B for
details). A Poisson spike rate indicates that in each frame, the number of possible spikes is an integer, e.g., 0, 1, 2,
. . . . The Gaussian approximation, however, allows any real number of spikes in each frame, including both partial
spikes, e.g., 1.4, and negative spikes, e.g., -0.8. While a Gaussian well approximates a Poisson distribution when rates
are about 10 spikes per frame, this example is very far from that regime, so the Gaussian approximation performs
relatively poorly. Further, the Wiener filter exhibits a “ringing” effect. Whenever fluorescence drops rapidly, the most
likely underlying spiking signal is a proportional drop. Because the Wiener filter does not impose a non-negative
constraint on the underlying spiking signal, it infers such a drop, even when it causes nt to go below zero. After such
a drop has been inferred, since no corresponding drop occurred in the true underlying signal here, a complementary
jump is often then inferred, to re-align the inferred signal with the observations. This oscillatory behavior results in
poor inference quality. The non-negative constraint imposed by the fast filter prevents this because the underlying
signal never drops below zero, so the complementary jump never occurs either.

The inferred “spikes”, however, are still not binary events when using the fast filter. This is a by-product of
approximating the Poisson distribution on spikes with an exponential (cf. Eq. (11a)), because the exponential is a
continuous distribution, versus the Poisson, which is discrete. The height of each spike is therefore proportional to
the inferred calcium jump size, and can be thought of as a proxy for the confidence with which the algorithm believes
a spike occurred. Importantly, by utilizing the Gaussian elimination and interior-point methods, as described in the
Methods section, the computational complexity of the fast filter is the same as an efficient implementation of the
Wiener filter. Note that while the Gaussian approximation imposes a shrinkage prior on the spike trains [24], the
exponential approximation imposes a sparse prior on the inferred spike trains [25].

Figure 3 quantifies the relative performance of the fast and Wiener filters. The top left panel shows a typical
simulated spike train (bottom), a corresponding relatively low SNR fluorescence trace (middle), and a relatively high
SNR fluorescence trace (top), as examples. The top right panel compares the mean-squared-error (MSE) of the inferred
spike trains using the fast (solid) and Wiener (dashed) filter, as a function of expected firing rate. Clearly, the fast filter
has a better (lower) MSE for all rates. The bottom left panel shows a receiver-operator-characteristic (ROC) curve [34]
for another simulation. Again, the fast filter dominates the the Wiener filter, have a higher true positive rate for every
false negative rate. Finally, the bottom right panel shows that the area-under-curve (AUC) of the fast filter is better
(higher) than the Wiener filter until the noise is very large. Collectively, these analyses suggest that for a wide range
of firing rates and signal quality, the fast filter outperforms the Wiener filter.

Although in Figure 2 the model parameters were provided, in the general case, the parameters are unknown, and
must therefore be estimated from the observations (as described in Section 2.4). Importantly, this algorithm does not
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Figure 2: A simulation showing that the fast filter’s inferred spike train is significantly more accurate than the output
of the optimal linear deconvolution (Wiener filter). Note that neither filter constrains the inference to be a sequence
of integers; rather, the fast filter relaxes the constraint to allow all non-negative numbers, and the Wiener filter allows
for all real numbers. The restriction of the fast filter to exclude negative numbers eliminates the ringing effect seen in
the Wiener filter output, resulting in a much cleaner inference. Note that the magnitude of the inferred spikes in the
fast filter output is proportional to the inferred calcium jump size. Top panel: fluorescence trace. Second panel: spike
train. Third panel: fast filter inference. Bottom panel: Wiener filter inference. Note that the gray bars in the bottom
panel indicate negative spikes. Gray ’+’s indicate true spike times. Simulation details: T = 400 time steps, ∆ = 33.3
msec, α = 1, β = 0, σ = 0.2, τ = 1 sec, λ = 1 Hz. Parameters and conventions are consistent across figures, unless
indicated otherwise.

require labeled training data, i.e., there is no need for joint imaging and electrophyiological experiments to estimate the
parameters governing the relationship between the two. Figure 4 shows another simulated example; in this example,
however, the parameters are estimated from the observed fluorescence trace. Again, it is clear that the fast filter far
outperforms the Wiener filter.

Given the above two results, the fast filter was applied to real data. More specifically, by jointly recording elec-
trophysiologically and imaging, the true spike times are known, and the accuracy of the two filters can be compared.
Figure 5 shows a result typical of the 12 joint electrophysiological and imaging experiments conducted (see Methods
section for details). As in the simulated data, the fast filter output is much “cleaner” than the Wiener filter, spikes are
more well defined, and not spread out, due to the sparse prior imposed by the exponential approximation. Note that
this trace is typical of epifluorescence techniques, which makes resolving individual spikes quite difficult, as evidenced
by a few false positives in the fast filter. Regardless, the fast filter output is still more accurate than the Wiener filter,
both as determined qualitatively by eye, and as quantified (described below). Furthermore, although it is difficult to
see in this figure, the first four events are actually pairs of spikes, which is reflected by the width and height of the
corresponding inferred spikes when using the fast filter. This suggests that although the scale of n is arbitrary, the fast
filter can correctly ascertain the number of spikes within spike events.

Figure 6 further evaluates this claim. While recording and imaging, the cell was forced to spike once, twice, or
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Figure 3: In simulations, the fast filter quantitatively and significantly achieves higher accuracy than the Wiener filter.
Top left panel: a spike train (bottom), and two simulated fluorescence traces, using the same spike train, one with low
signal-to-noise-ratio (SNR) (middle), and one with high SNR (top). Simulation parameters: τ = 0.5 sec, λ = 3 Hz,
∆ = 1/30 sec, σ = 0.6 (low SNR) and 0.1 (high SNR). Simulation parameters in other panels are the same, except
where explicitly noted. Top right panel: mean-squared-error (MSE) for the fast (solid line) and Wiener (dash-dotted
line) filter, for varying the expected firing rate λ. Note that both axes are on a log-scale. Further note that the fast filter
has a better (lower) MSE for all expected firing rates. Errorbars show standard deviation over 10 repeats. Simulation
parameters: σ = 0.2, T = 1000 time steps. Bottom left: Receiver-operator-characteristic (ROC) curve comparing
the fast (solid line) and Wiener (dashed-dotted line) filter. Note that for any given threshold, the Wiener filter has a
better (higher) ration of true positive rate to false positive rate. Simulation parameters as in top right panel, except
σ = 0.35 and T = 10, 000 time steps. Bottom right panel: Area-under-curve (AUC) for fast (solid line) and Wiener
(dashed-dotted line) filter as a function of standard deviation σ. Note that the fast filter has a better (higher) AUC
for all σ until noise gets very high. The two simulated fluorescence traces in the top left panel show the bounds for
standard deviation here. Errorbars show standard deviation over 10 repeats.

thrice, for each spiking event. The fast filter infers the correct number of spikes in each event. On the contrary, there
is no obvious way to count the number of spikes within each event when using the Wiener filter. We confirm this
impression by computing the correlation coefficient, r2, between the sum of each filter’s output and the true number of
spikes, for all 12 joint electrophysiological and imaging traces. Indeed, while the fast filter’s r2 was 0.47, the Wiener
filter’s r2 was −0.01 (after thresholding all negative spikes), confirming that the Wiener filter output can not reliably
convey the number of spikes in a fluorescence trace, whereas the fast filter can. Furthermore, varying the magnitude
of the threshold for the Wiener filter to discard more “low-amplitude noise” could increase the magnitude of r2, up to
0.24, still significantly lower than the fast filter’s r2 value. On the other hand, no amount of thresholding the fast filter
yielded an improved r2, indicating that thresholding the output of the fast filter is unlikely to improve spike inference
quality.
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Figure 4: A simulation showing that the fast filter achieves significantly more accurate inference than the Wiener filter,
even when the parameters unknown. For both filters, the appropriate parameters were estimated using only the data
shown above, unlike Figure 2, in which the true parameters were provided to the filters. Simulation details different
from those in Figure 2: T = 1000 time steps, ∆ = 16.7 msec, σ = 0, 4.

3.2 Online analysis of spike trains using the fast filter
A central aim for this work was the development of an algorithm that infers spikes fast enough to use online while
imaging a large population of neurons (e.g., > 100). Figure 7 shows a segment of the results of running the fast filter
on 136 neurons, recorded simultaneously, as described in Section 2.7. Note that the filtered fluorescence signals show
fluctuations in spiking much more clearly than the unfiltered fluorescence trace. These spike trains were inferred in less
than imaging time, meaning that one could infer spike trains for the past experiment while conducting the subsequent
experiment. More specifically, a movie with 5,000 frames of 100 neurons can be analyzed in about ten seconds on a
standard desktop computer. Thus, if that movie was recorded at 50 Hz, while collecting the data required 100 seconds,
inferring spikes only required ten seconds, a ten-fold improvement over real-time.

3.3 Extensions
Section 2.1 describes a simple principled first-order model relating the spike trains to the fluorescence trace. A number
of the simplifying assumptions can be straightforwardly relaxed, as described below.

3.3.1 Replacing Gaussian observations with Poisson

In the above, observations were assumed to have a Gaussian distribution. The statistics of photon emission and
counting, however, suggest that a Poisson distribution would be more natural in some conditions, especially for two-
photon data [35], yielding:

Ft
iid∼ Poisson(αCt + β), (37)
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Figure 5: in vitro data showing that the fast filter significantly outperforms the Wiener filter, using OGB-1. Note that
all the parameters for both filters were estimated only from the fluorescence data in the top panel (i.e., not considering
the voltage data at all). ’+’s denote true spike times extracted from the patch data, not inferred spike times from F .

where αCt + β ≥ 0. One additional advantage to this model over the Gaussian model, is that the variance parameter,
σ2, no longer exists, which might make learning the parameters simpler. Importantly, the log-posterior is still concave
in C, as the prior remains unchanged, and the new log-likelihood term is a sum of terms concave in C:

lnP [F |C] =
T∑

t=1

lnP [Ft|Ct] =
T∑

t=1

{Ft ln(αCt + β)− (αCt + β)− ln(Ft!)}. (38)

The gradient and Hessian of the log-posterior can therefore be computed analytically by substituting the above like-
lihood terms for those implied by Eq. (1). In practice, however, modifying the filter for this model extension did not
seem to significantly improve inference results in any simulations or data available at this time (not shown).

3.3.2 Allowing for a time-varying prior

In Eq. (4), the rate of spiking is a constant. Often, additional knowledge about the experiment, including external
stimuli, or other neurons spiking, can provide strong time-varying prior information [15]. A simple model modification
can incorporate that feature:

nt
iid∼ Poisson(λt∆), (39)

where λt is now a function of time. Approximating this time-varying Poisson with a time-varying exponential with
the same time-varying mean (similar to Eq. (11a)), and letting λ = [λ1, . . . , λT ]T∆, yields an objective function very
similar to Eq. (15), so log-concavity is maintained, and the same techniques may be applied. However, as above, this
model extension did not yield any significantly improved filtering results (not shown).
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Figure 6: in vitro data with multi-spike events, showing that the fast filter can often resolve the correct number of spikes
within each spiking event, while imaging using OGB-1, given sufficiently high SNR. It is difficult, if not impossible,
to count the number of spikes given the Wiener filter output. Recording and fitting parameters as in Figure 5. Note that
the parameters were estimated using a 60 sec long recording, of which only a fraction is shown here, to more clearly
depict the number of spikes per event.

3.3.3 Saturating fluorescence

Although all the above models assumed a linear relationship between Ft and Ct, the relationship between fluorescence
and calcium is often better approximated by the nonlinear Hill equation [30]. Modifying Eq. (1) to reflect this change
yields:

Ft = α
Ct

Ct + kd
+ β + εt, εt

iid∼ N (0, σ2). (40)

Importantly, log-concavity of the posterior is no longer guaranteed in this nonlinear model, meaning that converging
to the global maximum is no longer guaranteed. Assuming a good initialization can be found however, and Eq. (40)
is more accurate than Eq. (1), then ascending the gradient for this model is likely to yield improved inference results.
In practice, initializing with the inference from the fast filter assuming a linear model (e.g., Eq. (30)) often resulted in
nearly equally accurate inference, but inference assuming the above nonlinearity was far less robust than the inference
assuming the linear model (not shown).

3.3.4 Using the fast filter to initialize the sequential Monte Carlo filter

A sequential Monte Carlo (SMC) method to infer spike trains can incorporate this saturating nonlinearity, as well as
the other model extensions discussed above [15] . However, this SMC filter is not nearly as computationally efficient
as the fast filter proposed here. Like the fast filter, the SMC filter estimates the model parameters in a completely
unsupervised fashion, i.e., from the fluorescence observations, using an expectation-maximization algorithm (which
requires iterating between computing the expected value of the hidden variables — C and n — and updating the
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Figure 7: The fast filter infers spike trains from a large population of neurons imaged simultaneously in vitro, faster
than real-time. Specifically, inferring the spike trains from this 400 sec long movie including 136 neurons required
only about 40 sec on a standard laptop computer. The inferred spike trains much more clearly convey neural activity
than the raw fluorescence traces. Although no intracellular “ground truth” is available on this population data, the
noise seems to be reduced, consistent with the other examples with ground truth. Left panel: Mean image field,
automatically segmented into ROIs each containing a single neuron using custom software. Middle panel: example
fluorescence traces. Right panel: fast filter output corresponding to each associated trace. Note that neuron identity is
indicated by color across the three panels. Data collected using a confocal microscope and Fura-2, as described in the
Methods section.

paramters). In [15], parameters for the SMC filter were initialized based on other data. While effective, this initializa-
tion was often far from the final estimates, and therefore, required a relatively large number of iterations (e.g., 20–25)
before converging. Thus, it seemed that the fast filter could be used to obtain an improvement to the initial parameter
estimates, given an appropriate rescaling to account for the nonlinearity, thereby reducing the required number of it-
erations to convergence. Indeed, Figure 8 shows how the SMC filter outperforms the fast filter on biological data, and
only required 3–5 iterations to converge on this data, given the initialization from the fast filter (which was typical).
Note that the first few events of the spike train are individual spikes, resulting in relatively small fluorescence fluctu-
ations, whereas the next events are actually spike doublets or triplets, causing a much larger fluorescence fluctuation.
Only the SMC filter correctly infers the presence of isolated spikes in this trace, a frequently occurring result when
the SNR is poor. Thus, these two inference algorithms are complementary: the fast filter can be used for rapid, online
inference, and for initializing the SMC filter, which can then be used to further refine the spike train estimate. Im-
portantly, although the SMC filter often outperforms the fast filter, the fast filter is more robust, meaning that it more
often works “out-of-the-box.” This follows because the SMC filter operates on a highly nonlinear model which is not
log-concave. Thus, although the expectation-maximization algorithm employed often converges to a reasonable local
maxima, it is not guaranteed to converge to a global maxima, and its performance in general will depend on the quality
of the initial parameter estimates.

3.4 Spatial filter
In the above, the filters operated on one-dimensional fluorescence traces. The raw data is in fact a time-series of
images which are first segmented into regions-of-interest (ROI), and then (usually) spatially averaged to obtain a one-
dimensional time-series, F . In theory, one could improve the effective SNR of the fluorescence trace by scaling each
pixel according to its SNR. In particular, pixels not containing any information about calcium fluctuations can be
ignored, and pixels that are partially anti-correlated with one another could have weights with opposing signs.

Figure 9 demonstrates the potential utility of this approach. The top row shows different depictions of an ROI
containing a single neuron. On the far left panel is the true spatial filter for this neuron. This particular spatial filter
was chosen based on experience analyzing both in vitro and in vivo movies; often, it seems that the pixels immediately
around the soma are anti-correlated with those in the soma [33, 36]. This effect is possibly due to the influx of calcium
from the extracellular space immediately around the soma. The standard approach, given such a noisy movie, would
be to first segment the movie to find an ROI corresponding to the soma of this cell, and then spatially average all the
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Figure 8: in vitro data with poor SNR depicting the fast filter effectively initializing the parameters for the SMC filter,
significantly reducing the number of expectation-maximization iterations to convergence, using OGB-1. Note that
while the fast filter clearly infers the spiking events in the end of the trace, those in the beginning of the trace are less
clear. On the other hand, the SMC filter more clearly separates non-spiking activity from true spikes. Also note that
the ordinate on the bottom panel corresponds to the inferred probability of a spike having occurred in each frame.

pixels found to be within this ROI. The second panel shows this standard “boxcar spatial filter.” The third panel shows
the mean frame. The fourth panel shows the learned filter, using Eq. (29) to estimate the spatial filter and background.
Clearly, the learned filter is very similar to the mean filter and the true filter.

The bottom panels of Figure 9 depict the effect of using the various spatial filters. The middle panels show the
fluorescence traces obtained by background subtracting and then projecting each frame onto the corresponding spatial
filter (black line) and true spike train (gray +’s). The bottom panels show the infer spike trains (black bars) using these
various spatial filters, and again the true spike train (gray +’s). While the performance is very similar for all of them,
the boxcar filter’s inferred spike train is not as clean.

3.5 Overlapping spatial filters
The above shows that if a ROI contains only a single neuron, the effective SNR can be enhanced by spatially filter-
ing. However, this analysis assumes that only a single neuron is in the ROI. Often, ROIs are overlapping, or nearly
overlapping, making the segmentation problem more difficult. Therefore, it is desirable to have an ability to crudely
segment, yielding only a few neurons in each ROI, and then spatially filter within each ROI to pick out the spike trains
of each neuron. This may be achieved in a principled manner by generalizing the model as described in Section 2.6.
The true spatial filters of the neurons in the ROI are often unknown, and thus, must be estimated from the data. This
problem may be considered a special case of blind source separation [37, 38]. Figure 10 shows that given reasonable
assumptions of spiking correlations and SNR, multiple signals can be separated. Note that separation occurs even
though the signal is significantly overlapping (top panels). To estimate the spatial filters, they are initialized using the
boxcar filters (middle panels). After a few iterations, the spatial filters converge to very close approximation to the true
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Figure 9: A simulation demonstrating that using a better spatial filter can significantly enhance the effective SNR.
The true spatial filter was a difference of Gaussians: a positively weighted Gaussian of small width, and a negatively
weighted Gaussian with larger width (both with the same center). Each column shows the spatial filter (top), one-
dimensional fluorescence projection using that spatial filter (middle), and inferred spike train (bottom). From left to
right, columns use the true, boxcar, mean, and learned spatial filter obtained using Eq. (29). Note that the learned filter’s
inferred spike train has fewer false positives and negatives than the boxcar and mean filters. Simulation parameters:
~α = N (0, 2I) − 0.5N (0, 2.5I) where N (µ,Σ) indicates a two-dimensional Gaussian with mean µ and covariance
matrix Σ, ~β = 0, σ = 0.2, τ = 0.85 sec, λ = 5 Hz, ∆ = 5 msec, T = 1200 time steps.

spatial filters (compare true (left) and learned (right) spatial filters for the two neurons). Note that both the true and
learned spatial filters yield much improved spike inference relative to the boxcar filter. This suggests that even when
multiple neuron’s spatial filters are significantly overlapping, each spike train is potentially independently recoverable.

4 Discussion
This work describes an algorithm that finds the approximate maximum a posteriori (MAP) spike train, given a cal-
cium fluorescence movie. The approximation is required because finding the actual MAP estimate is not currently
computationally tractable. Replacing the assumed Poisson distribution on spikes with an exponential distribution
yields a log-concave optimization problem, which can be solved using standard gradient ascent techniques (such as
Newton-Raphson). This exponential distribution has an advantage over a Gaussian distribution by restricting spikes to
be positive, which improves inference quality (cf. Figure 2), is a better approximation to a Poisson distribution with
low rate, and imposes a sparse constraint on spiking. Furthermore, all the parameters can be estimated from only the
fluorescence observations, obviating the need for joint electrophysiology and imaging (cf. Figure 4). This approach is
robust, in that it works “out-of-the-box” on all the in vitro data analyzed (cf. Figure 5 and Figure 6). By utilizing the
special banded structure of the Hessian matrix of the log-posterior, this approximate MAP spike train can be inferred
fast enough on standard computers to use it for online analyses of over 100 neurons simultaneously (cf. Figure 7).

Finally, the fast filter is based on a biophysical model capturing key features of the data, and may therefore be
straightforwardly generalized in several ways to improve accuracy. Unfortunately, some of these generalizations do
not improve inference accuracy, perhaps because of the exponential approximation. Instead, the fast filter output can
be used to initialize the more general SMC filter [15], to further improve inference quality (cf. Figure 8). Another
model generalization allows incorporation of spatial filtering of the raw movie into this approach (cf. Figure 9). Even
when multiple neurons are overlapping, spatial filters may be estimated to obtain improved spike inference results (cf.
Figure 10).

The above work describes but one specific approach to solving a problem that does not admit an exact solution that
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Figure 10: Simulation showing that when two neurons’ spatial filters are largely overlapping, learning the optimal
spatial filters using Eq. 36 can yield improved inference of the standard boxcar type filters. The three columns show
the effect of the true (left), boxcar (center), and learned (right) spatial filters. (a) The sum of the two spatial filters
for each each approach, clearly depicting overlap. (b) The spatial filters (top row), one-dimensional fluorescence
projection and inferred spike train (bottom row) for one of the neurons. (c) Same as (b) for the other neuron. Note
that the inferred spike trains when using the learned filter are close to optimal, unlike the boxcar filter. Simulation
parameters: ~α1 = N ([−1, 0], 2I)− 0.5N ([−1, 0], 2.5I), ~α2 = N ([1, 0], 2I)− 0.5N ([1, 0], 2.5I), ~β = 0, σ = 0.02,
τ = 0.5 sec, λ = 5 Hz, ∆ = 5 msec, T = 1200 time steps (not all time steps are shown).

is computationally feasible. Several other approaches warrant consideration, including (i) a Bayesian approach, (ii) a
greedy approach, and (iii) different analytical approximations.

First, a Bayesian approach could use Markov Chain Monte Carlo methods to recursively sample spikes to estimate
the full joint posterior distribution of the entire spike train, conditioned on the fluorescence data [39, 40, 41]. While
enjoying several desirable statistical properties that are lacking in the current approach (such as consistency), the
computational complexity of such an approach renders it inappropriate for the aims of this work.

Second, a common relatively expedient approximation to Bayesian sampling is a so-called “greedy” approach.
Greedy algorithms are iterative, with each iteration adding another spike to the putative spike train. Each spike that is
added is the most likely spike (hence the greedy term), or the one that most increases the likelihood of the fluorescence
trace. Template matching, projection pursuit regression [42], and matching pursuit [43] are examples of such a greedy
approach (Greenberg et al’s algorithm [12] could also be considered a special case of such a greedy approach, as could
the “peeling” approach described by [44]).

Third, approximations other than the exponential distribution are possible. For instance, the Gaussian approxi-
mation is more appropriate for high firing rates, although in simulations, this more accurate approximation did not
improve the Wiener filter output relative to the fast filter output (cf. Figure 3). Perhaps the best approximation would
use the closest log-concave relaxation to the Poisson model [45]. More formally, let P (i) represent the Poisson
mass at i, and let lnQ be some concave density. Then, one could find the log-density Q such that Q maximizes∑

i P (i)Q(i) − λ
∫

exp{Q(x)}dx over the space of all concave Q. The first term corresponds to the log-likelihood,
equivalent to the Kullback–Leibler divergence [46], and the second is a Lagrange multiplier to ensure that the den-
sity exp{Q(x)} integrates to unity. This is a convex problem because the space of all concave Q is convex, and the
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objective function is concave in Q. In addition, it is easy to show that the optimal Q has to be piecewise linear; this
means that one need not search over all possible densities, but rather, simply vary Q(i) at the integers. Note that∫

exp{Q(x)}dx can be computed explicitly for any piecewise linear Q. This optimization problem can be solved us-
ing simple interior point methods, and in fact the Hessian of the inner loop of the interior point method will be banded
(because enforcing concavity of Q is a local constraint). This approximation could potentially be more accurate than
our exponential approximation. Further, this approximation encourages integer solutions for nt, and is therefore of
interest for future work.

The above three approaches may be thought of as complimentary, as each has unique advantages relative to the
others. Both the greedy methods and the analytic approximations could potentially be used to initialize a Bayesian
approach, possibly limiting the burn-in period, which can be computationally prohibitive in certain contexts. A greedy
approach has the advantage of providing actual spike trains (i.e., binary sequences), unlike the analytic approximations.
However, the actual spike trains could be quite far from the MAP spike train, as greedy approaches, in general, have
no guarantee of consistency. The analytic approximations, on the other hand, are guaranteed to converge to solutions
close to the MAP spike train, where closeness is determined by the accuracy of the above approximation. Thus,
developing these distinct approaches and combining them is a potential avenue for further research.

Furthermore, a few additional extensions follow naturally from this work. First, spatial filtering could be improved
in a number of ways. For instance, pairing this approach with a crude but automatic segmentation tool to obtain ROIs
would create a completely automatic algorithm that converts raw movies of populations of neurons into populations of
spike trains. Furthermore, this filter could be coupled with more sophisticated algorithms to initialize the spatial filters
when they are overlapping (for instance, principal component analysis [47] or independent component analysis [38]).
One could also use a more sophisticated model to estimate the spatial filters. One option would be to assume a simple
parametric form of the spatial filter for each neuron (e.g., a basis set), and then merely estimate the parameters of that
model. Alternately, one could regularize the spatial filters, using an elastic net type approach [32, 48], to enforce both
sparseness and smoothness.

Third, in this work, we made two simplifying assumptions that can easily be relaxed: (i) instantaneous rise time
of the fluorescence transient after a spike, and (ii) constant background. In practice, often either or both of these
assumptions are inaccurate. Specifically, genetic sensors tend to have a much slower rise time than organic dyes [49].
Further, the background often exhibits slow baseline drift due to movement, temperature fluctuations, laser power, etc.,
not to mention bleaching, which is ubiquitous for long imaging experiments. Both slow rise and baseline drift can be
incorporated into our forward model using a straightforward generalization.

Consider the following illustrative example: the fluorescence rise time in a particular data set is quite slow, much
slower than a single image frame. Thus, fluorescence might be well modeled as the difference of two different calcium
extrusion mechanisms, with different time constants. To model this scenario, one might proceed as follows: posit
the existence of an 2-dimensional time-varying signal, each like the calcium signal assumed in the simpler models
described above. Therefore, each signal has a time constant, and each signal is dependent on spiking. Finally, the
fluorescence could be a weighted difference of the two signals. To formalize this model, and generalize it, let (i)
X = (X1, . . . , Xd) be an d-dimensional time varying signal, (ii) Γ be an d × d dynamics matrix, where diagonal
elements correspond to time constants of individual variables, and off-diagonal elements correspond to dependencies
across variables, (iii) A be an d-dimensional binary column vector encoding whether or not each variable depends on
spiking, and (iv) α be an d-dimensional column vector of weights, determining the relative impact of each dimension
on the total fluorescence signal. Given these conventions, we have the following generalized model:

Ft = αTXt + β + ε, ε
iid∼ N (0, σ2) (41)

Xt = ΓXt−1 + Ant, nt
iid∼ Poisson(λ∆) (42)

Note that this model simplifies to the model proposed earlier when d = 1. Because X is still Markov, all the
theory developed above still applies directly for this model. There are, however, additional complexities with regard
to identifiability. Specifically, the parameters α and A are closely related. Thus, we enforce that A is a known
binary vector, simply encoding whether a particular element responds to spiking. The matrix Γ will not be uniquely
identifiable, for the same reason that γ was not identifiable as described in Section 2.4. Thus, we would assume Γ
was known, a priori. Note that other approaches to dealing with baseline drift are also possible, such as letting β be a
time-varying state: βt = βt−1 + εt, where εt is a normal random variable with variance σ2

β that sets the effective drift
rate. Both these models are the subject of further development.
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In summary, the model and algorithm proposed in this work potentially provide a useful tool to aid in the analysis
of calcium dependent fluorescent imaging, and establish the groundwork for significant further development.
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A Pseudocode

Algorithm 1 Pseudocode for inferring the approximately most likely spike train, given fluorescence data. Note that
the algorithm is robust to small variations ξz, ξn. The equations listed below refer to the most general equations in the
text (simpler equations could be substituted when appropriate). Curly brackets, {·}, indicate comments.

1: initialize parameters, θ (Section 2.4.1)
2: while convergence criteria not met do
3: for z = 1, 0.1, 0.01, . . . , ξz do {interior point method to find Ĉ}
4: Initialize nt = ξn for all t = 1, . . . , T , C1 = 0 and Ct = γCt−1 + nt for all t = 2, . . . , T .
5: let Cz be the initialized calcium, and P̂z , be the posterior given this initialization
6: while P̂z′ < P̂z do {Newton-Raphson with backtracking line searches}
7: compute g using Eq. (34)
8: compute H using Eq. (35)
9: compute d using H\g {block-tridiagonal Gaussian elimination}

10: let Cz′ = Cz + sd, where s is between 0 and 1, and P̂z′ > P̂z {backtracking line search}
11: end while
12: end for
13: check convergence criteria
14: update ~α and ~β using Eq. (36) {only if spatial filtering}
15: let σ be the root-mean square of the residual
16: let λ = T/(∆

∑
t n̂t)

17: end while
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B Wiener Filter
The Poisson distribution in Eq. (4) can be replaced with a Gaussian instead of a Poisson distribution, ie, nt

iid∼
N (λ∆, λ∆), which, when plugged into Eq. (7) yields:

n̂ = argmax
nt

T∑
t=1

(
1

2σ2
(Ft − αCt − β)2 +

1
2λ∆

(nt − λ∆)2
)

. (43)

Note that since fluorescence integrates over ∆, it makes sense that the mean scales with ∆. Further, since the Gaus-
sian here is approximating a Poisson with high rate [35], the variance should scale with the mean. Using the same
tridiagonal trick as above, Eq. (11b) can be solved using Newton-Raphson once (because this expression is quadratic
in n). Writing the above in matrix notation, substituting Ct − γCt−1 for nt, and letting α = 1 yields:

Ĉ = argmax
C

− 1
2σ2
‖F −C − β1T ‖2 −

1
2λ∆

‖MC − λ∆1‖2 , (44)

which is quadratic in C. The gradient and Hessian are given by:

g = − 1
σ2

(C − F − β1T )− 1
λ∆

((MĈ)TM + λ∆MT1), (45)

H =
1
σ2

I +
1

λ∆
MTM . (46)

Note that this solution is the optimal linear solution, under the assumption that spikes follow a Gaussian distribution,
and is often referred to as the Wiener filter, regression with a smoothing prior, or ridge regression [26]. Estimating the
parameters for this model follows similarly as described in Section 2.4.
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[39] C. Andrieu, É. Barat, and A. Doucet, “Bayesian deconvolution of noisy filtered point processes,” IEEE Transac-
tions on Signal Processing, vol. 49, no. 1, pp. 134–146, 2001.

25



Vogelstein JT, et al Fast spike train inference from calcium imaging

[40] Y. Mishchenko, J. Vogelstein, and P. L, “A Bayesian approach for inferring neuronal connectivity from calcium
fluorescent imaging data,” Annals of Applied Statistics, vol. in press, 2009.

[41] S. Joucla, A. Pippow, P. Kloppenburg, and C. Pouzat, “Quantitative estimation of calcium dynamics from ratio-
metric measurements: a direct, nonratioing method.,” J Neurophysiol, vol. 103, pp. 1130–1144, Feb 2010.

[42] J. H. Friedman and W. Stuetzle, “Projection Pursuit Regression.,” J. AM. STAT. ASSOC., vol. 76, no. 376,
pp. 817–823, 1981.

[43] S. Mallat and Z. Zhang, “Matching pursuit with time-frequency dictionaries: IEEE Trans,” Signal Processing,
vol. 41, pp. 3397–3415, 1993.

[44] B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals
neuronal network activity with near-millisecond precision.,” Nature Methods, Apr 2010.

[45] R. Koenker and I. Mizera, “Quasi-concave density estimation,” Annals of Statistics, in presss.

[46] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley Interscience, 1991.

[47] R. Horn and C. Johnson, Matrix analysis. Cambridge Univ Pr, 1990.

[48] L. Grosenick, T. Anderson, and S. Smith, “Elastic source selection for in vivo imaging of neuronal ensembles,”
pp. 1263–1266, 2009.

[49] D. F. Reiff, A. Ihring, G. Guerrero, E. Y. Isacoff, M. Joesch, J. Nakai, and A. Borst, “In vivo performance of
genetically encoded indicators of neural activity in flies.,” J Neurosci, vol. 25, pp. 4766–4778, May 2005.

26


	Introduction
	Methods
	Data driven generative model
	Goal
	Inferring the approximately most likely spike train, given a fluorescence trace
	Learning the parameters
	Initializing the parameters
	Estimating the parameters given n"0362n

	Spatial filtering
	Overlapping spatial filters
	Experimental Methods
	Slice Preparation and Imaging
	Electrophysiology
	Fluorescence preprocessing


	Results
	Main Result
	Online analysis of spike trains using the fast filter
	Extensions
	Replacing Gaussian observations with Poisson
	Allowing for a time-varying prior
	Saturating fluorescence
	Using the fast filter to initialize the sequential Monte Carlo filter

	Spatial filter
	Overlapping spatial filters

	Discussion
	Pseudocode
	Wiener Filter
	References

