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Neural Decoding of Hand Motion Using a Linear
State-Space Model With Hidden States

Wei Wu, Jayant E. Kulkarni, Nicholas G. Hatsopoulos, and Liam Paninski

Abstract—The Kalman filter has been proposed as a model
to decode neural activity measured from the motor cortex in
order to obtain real-time estimates of hand motion in behavioral
neurophysiological experiments. However, currently used linear
state-space models underlying the Kalman filter do not take into
account other behavioral states such as muscular activity or the
subject’s level of attention, which are often unobservable during
experiments but may play important roles in characterizing
neural controlled hand movement. To address this issue, we depict
these unknown states as one multidimensional hidden state in the
linear state-space framework. This new model assumes that the
observed neural firing rate is directly related to this hidden state.
The dynamics of the hand state are also allowed to impact the
dynamics of the hidden state, and vice versa. The parameters in
the model can be identified by a conventional expectation-maxi-
mization algorithm. Since this model still uses the linear Gaussian
framework, hand-state decoding can be performed by the efficient
Kalman filter algorithm. Experimental results show that this new
model provides a more appropriate representation of the neural
data and generates more accurate decoding. Furthermore, we
have used recently developed computationally efficient methods
by incorporating a priori information of the targets of the reaching
movement. Our results show that the hidden-state model with
target-conditioning further improves decoding accuracy.

Index Terms—Hidden states, Kalman filter, motor cortex, neural
decoding, state-space model.

I. INTRODUCTION

EURAL decoding, which converts brain signals into
N control commands that drive external devices such as
computer cursors or robotic limbs, is a key component of
fast-growing research efforts on brain-machine interfaces or
neural motor prosthetics [1]-[6]. A number of mathematical
algorithms have been developed to decode population neuronal
activity in the motor or the premotor cortex. These methods
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focus on estimating either continuous motor trajectories or pa-
rameters of motor primitives such as hand movement direction.
The methods for decoding motor primitives have largely fo-
cused on center-out type movements [7], with commonly-used
methods including population vectors [7], maximum likelihood
[8]-[10], and maximum a posteriori decoding [11]. There are
significantly more decoding methods for continuous states
which can be categorized based on linearity. Linear models
include population vectors [12], multiple linear regressions
[13], and the Kalman filter [14]. Though relatively simple, these
models provide accurate estimation in practical motor cortical
decoding. Moreover, due to their relatively low computational
costs these methods have been successfully used in various
closed-loop neural control experiments [1], [4], [5].

Recently a number of nonlinear methods have been developed
which focus on accurately characterizing spiking activity. These
methods include particle filters [15], [16], point process filters
[17]-[19], mixture of trajectory models [20], nonlinear dynamic
models [21], [22], neural networks [23], and hybrid filters [24].
Recent studies have also addressed the nonstationarity of neural
signals in various frameworks. The population vector was mod-
ified by adding a supervised learning method for the parameters
by Tillery et al. [25]. Gage et al. examined naive coadaptive cor-
tical control using an adaptive Kalman filter where parameters
in the model were updated over time [26]. Moreover, Eden et al.
provided an adaptive point process filtering method to examine
the dynamic representation of movement information [17].

Regardless of the structures of the above linear and nonlinear
models, spiking activity of each neuron at each time is repre-
sented as a (stochastic) function of certain observed behavioral
states, such as the hand position, and internal signals, such as the
firing rates of all recorded neurons in a truncated history. How-
ever, neurally-controlled, muscle-executed hand movement is a
complicated process. The spiking activity may be affected by
various other factors such as a visually-presented target, sen-
sory-motor transformations, muscular activity of the upper limb,
and movement at joint angles of the shoulder and elbow. This
spiking activity can also be affected by other conditions such as
the ambience of the experimental environment, the comfort and
anxiety of the subject, and even the subject’s level of attention.
While these states (internal or external) are often unobserved or
even unobservable during experiments, they may play important
roles in characterizing neurally-controlled movement.

As indicated in our recent study [19], there are many sources
of variability that the standard state-space model is missing (and
therefore the decoding performance of the standard model suf-
fers). We developed a “common-input” model to include more
of this excess variability in a specific, tractable model. Based
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on this idea, we propose to represent all these states as a mul-
tidimensional hidden state and add it to a state-space model.
The system state in the new model includes two parts: one is
the observable behavior state such as the hand state, and the
other is the hidden state. The hidden state could, in principle,
represent any kinematic, kinetic, or cognitive signal, but re-
mains unobserved. The study is based on Bayesian state-space
models which provide a coherent framework to characterize sto-
chastic dynamic systems and have numerous applications in
neuroscience. In this study, we use a Kalman filter which is the
most classical state-space model. It adopts a linear Gaussian rep-
resentation between spike trains and hand motion (the likelihood
term), and a linear auto-regressive prior term for the hand state
[14]. One important benefit of the linear model is that both pa-
rameter identification and system estimation of the model can
be conducted using conventional, efficient methods. The new
model assumes that the observed neural firing rate is linearly
related to the hidden state. Furthermore, the dynamics of the
hand state are allowed to impact the dynamics of the hidden
state in a linear fashion, and vice versa. The parameters in the
model can be identified by the conventional expectation-max-
imization (EM) algorithm. As the new model follows a linear
Gaussian framework, the decoding can still be performed by the
efficient Kalman filter algorithm. We test the method in two data
sets recorded from two Macaque monkeys during a visuo-motor
task.

II. METHODS

A. Experimental Methods

Electrophysiological recording. The neural data used here
were previously recorded and have been described elsewhere
[27]. Briefly, silicon microelectrode arrays containing 100 pla-
tinized-tip electrodes (I2S Micro Implantable Systems, LLC,
Salt Lake City, UT) were implanted in the arm area of pri-
mary motor cortex (MI) in two juvenile male macaque mon-
keys (Macaca mulatta). Signals were filtered, amplified (gain,
5000) and recorded digitally (14-bit) at 30 kHz per channel
using a Cerebus acquisition system (I2S Micro Implantable Sys-
tems, LLC). Only waveforms (1.6 ms in duration) that crossed
a threshold were stored and spike-sorted using Offline Sorter
(Plexon Inc., Dallas, TX). Single units were manually extracted
by the Contours and Templates methods. One data set was col-
lected and analyzed from each monkey (124 and 125 distinct
neural units recorded simultaneously, respectively). The firing
rates of single cells were computed by counting the number of
spikes within the previous 50 ms time window.

Task. The monkeys were operantly trained to perform a
random target-pursuit (RTP) task by moving a cursor to targets
via contralateral arm movements. The cursor and a sequence of
seven targets (target size: 1 cm X 1 cm) appeared on a horizontal
projection surface. At any one time, a single target appeared
at a random location in the workspace, and the monkey was
required to reach it within 2 s. As soon as the cursor reached
the target, the target disappeared and a new target appeared
in a new, pseudo-random location. After reaching the seventh
target, the monkey was rewarded with a drop of water or juice.
A new set of seven random targets was presented on each trial.

The majority of trials were approximately 4-5 s in duration. In
data set one, the first monkey successfully completed 550 trials,
and in data set two, the second monkey completed 400 trials.
The monkeys’ horizontal hand positions were calculated and
recorded using the forward kinematics equations [28] at a sam-
pling rate of 500 Hz. To match time scales, the hand position
were down-sampled every 50 ms and from this we computed
velocity and acceleration using simple differencing. Recent
studies indicated that the averaged optimal latency between
firing activity in MI and hand movement is around 100 ms [12],
[13]. Therefore, in all our analysis we compared the neural
activity in a 50 ms bin with the instantaneous kinematics (po-
sition, velocity, and acceleration) of the arm measured 100 ms
later (i.e., a 2 time bin delay).

B. Statistical Methods

We have previously characterized the relationship between
the hand kinematics and firing rates using a Kalman filter model
[14]. To incorporate the effect of other behavioral states, here we
add a hidden state to the Kalman filter. The new model assumes
that the observed neural firing rate is directly related to the
hidden state. Furthermore, the dynamics of the hand state are al-
lowed to impact the dynamics of the hidden state, and vice versa
(see graphical model in Fig. 1). Let xi = [z, Y, Vs, vy, G, ay] 7
represent z-position, y-position, z-velocity, y-velocity, x-ac-
celeration, and y-acceleration of the hand at time ¢, = kAt
(At = 50 ms in our experiments), and y, € RC represent a
C x 1 vector containing the firing rates at time ¢ for C' ob-
served neurons. Also, let nj represent a d-dimensional hidden
state at time ¢ which is always unknown. Now, the likelihood
term, prior term, and initial condition of the hidden state in the
new model can be formulated in the following three equations:

vr = Hxi + Gng + qx, (1

Xk4+1 Xk
= A 2
() =a () + @
n; ~ N(p,X) 3)

where H € REX6, G € RE¥4 and A € ROE+TDX(6+d) gre the
linear coefficient matrixes. The noise terms qj, Wy, are assumed
normally distributed with zero mean, i.e., qi. ~ N(0,Q),Q €
REXC and wy, ~ N(0, W), W € RETDXE+D) g, wy are
also assumed independent of each other. In the initial normal
distribution, the mean and covariance are x € R? and ¥ €
RIxd | respectively.

1) Model Identification: In (1)—(3), the parameters are § =
(H,G,Q,A, W, 1,Y). We can estimate them using a training
set where both kinematics, {x;}, and firing rates, {yx}, are
known. The estimation is to maximize the marginal log-likeli-

hood
log p({xx,yr};0)

with respect to §. Equations (1)—(3) follow a general state-space
framework, and we use the conventional EM algorithm to iden-
tify the model [29]. The EM algorithm was first introduced to
leaning partially unknown linear dynamic systems [30] and non-
linear dynamic systems [31]. A point process version of the EM
algorithm was recently developed in the analysis of spike trains
[32] and other behavioral data [33], [34].
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Fig. 1. Graphical model for the hidden-state-included Kalman filter. The neural
firing rate, y ., is directly related to both the hand kinematics, X ., and the hidden
state, ny, . The dynamics of the hand kinematics and hidden state are both Mar-
kovian and impact each other over time.

The E-step. The EM algorithm is an iterative method. As-
suming all the parameters, denoted as 6;, are identified at the
sth iteration, the E-step is to estimate the first and second order
statistics of ny conditioned on {xy, y} and 6;. To this end, we
at first partition A and wy, in the prior (2) following the order
of hand kinematics and hidden state; that is, we let

A Ap Wik
A= and wy = .
<A21 Azz) . F <W2k>
where A;; € §R6X6, A € §R6Xd, Ay € §Rd><6, and Ay €

R4*¥d are four submatrixes, and w;, € RS and wy € R? are two
subvectors. Then the prior equation can be written as

Xk41 A Ap X Wik
= . 4
<nk+1> <A21 A22> <nk>+<wzk) @)

Therefore, (1) and (2) can be reorganized as

yr — Hxy G ar
= 5
(Xk+1_A11Xk) <A12>nk+ <W1k> )
N1 = Agony, + Agixy +wa  (6)

To separate wy;, and wy, we need to assume independence
between them; that is, we have

CTW1k Wi, 0
~NO, W), W =
( WoL ) ( ! )/ < 0 W22>

where W1; € R6%6 and Way € R?¥*? are two submatrixes.
Then the two noise terms in (5) and (6) also follow a normal
distribution with

(i) ¥ (0 (5 ) ot w0 W

Hence, (5) and (6) constitute a new Kalman filter model where
{n} is the only system state. Ao;x; can be looked as a
linear control term in the new prior model. Using the Kalman
smoother, we can calculate the distribution of n; conditioned
on {Xg,y}. See Appendix A for mathematical details.

The M-step. In the M-step, we update 6; to get 6,1 by max-
imizing

Epne | {xe.yr}:6:) 08 P({ Xk, Y, ng }5 6)

with respect to the parameters #. To simplify the notation, we
use p(-| - ) to replace p(- | {Xk, Y }; 0:). Then

Eptni) | {xe.yr}:6:) 108 D({ Xk, Y, ng }3 6)

/ p({nu} | {0, ya i 60)
J{ny}

x log p({Xk, yi,nx }; 0)d{ny}

= [ w1
x log p({yx} [{xr, nx}; 0)d{n }

+ / p({ni} | - ) log p({xx, 11 }: 6)d{n}
J{ny}
=E; +E;

where E; is a function of H, G, Q, and Es is a function of
A W, 1, X. These parameters can be updated in closed-forms
by maximizing E; and E,, respectively. The details are shown
in Appendix B.

2) Decoding: Decoding involves estimating the state of the
hand at each time where only firing rates of neuronal ensemble
are observed. The estimation is based on the new Kalman filter
model with hidden states. One key benefit in the new model is
that it keeps the desired linear Gaussian structure. Therefore,
the efficient Kalman filter algorithm can be fully exploited [14],
where both kinematics and hidden states can be jointly esti-
mated.

The forward Kalman filter algorithm follows a recursive
scheme. At first, let X; and nj represent the estimated hand
state and hidden state at each time ¢, respectively, and let P,
represent their error covariance. Initially, X; is set to the true
hand state, and nj is set to pu. Py is set to a block-diagonal
matrix, where the first block is a 6 X 6 zero matrix, and the
second block is 3.

At each time 5, with & > 2, we use the prior model (2) to
estimate the a priori state, (fck_,, ﬁ,;), and its error covariance
matrix, P, from the previous time #;_{

X, | Xp—1
()] o
P, = AP, AT + W. (8)

Using the firing rate vector yj and the likelihood model (1),
we update the estimation by computing the a posteriori state
and its error covariance matrix

(i’“> = (x,;) +Ki(yr — HX; —Gag) (9
Ilk ’ ’

ny
P,=(1I-K;(H G))P, (10)
where K, is the Kalman gain matrix, given by
K,=P,(HG)'(HGP,(HG)"+Q)™' D

3) Target Conditioning: The accuracy of the hand-state
estimates can be further improved by incorporating a priori
information of the targets. The method is well described in [35],
[36]. Briefly, let zx denote a noise-contaminated observation
of the final hand state Xy ; we are interested in computing
p(Xk | X1,25,{yr}), where {yx } denotes the neural firing-rate
observations up to time k. Then

p(Xk|X1,ZK,{yk})
= (1/2)p(xx, {yr}, 2K | X1)
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(1/Z)p(xk; {yx} | x1)p(zK | XKs %1, {y5})

(1/Z)p(xk, {yr} |X1)/p(ZK

X )p(Xx | Xk )dxx
where Z is a normalizing constant. The key fact now is that all
of the terms in the above equation may be computed quite ef-
ficiently. The term p(x¢, {yx} | X1) corresponds exactly to the
forward sweep of the Kalman filter [14]. The remaining term
fp(zK Xk )p(XK | X )dxf turns out to be similarly easy to
compute. Discrete-time recursions for this backwards proba-
bility and recursing backwards fort = K — 1, K — 2,...,1)
are well known; see [37] for the basic theory or [35], [36] for
an implementation in the Gaussian model under consideration
here.

III. RESULTS

We examine the new model on two experimental data sets
recorded from two Macaque monkeys. In each set, we use the
first 100 trials of the RTP task as the training data. These training
trials are about 7-8 min, which provides sufficient samples to
estimate the parameters in the model. The remaining trials (450
in Monkey 1, and 300 in Monkey 2) are used as testing data to
measure the effectiveness of the method in the decoding.

A. Data Representation

The EM algorithm identifies the model by maximizing the
likelihood in the training data. A model with more sophisticated
structure often has a better likelihood score on the training data,
but may over-fit (i.e., lead to a reduced likelihood on the test
data, and therefore generalize poorly). To examine the good-
ness-of-fit, we calculate the likelihood of each model in both
training and testing data. The comparison is based on the nor-
malized log-likelihood ratio (NLLR) with respect to the clas-
sical Kalman filter. Let L, represent the marginal likelihood of
the observed data under the model with a d-dimensional hidden
state, and Lg, the likelihood under the classical Kalman filter
model. Then the NLLR is calculated as

Lq

To 12)

- I

N 082
where N denotes the sample size. With base 2, the NLLR is
measured in the units of bits, and is actually a normalized ver-
sion of the standard likelihood ratio, Lo/ L. The NLLR equals
zero when the likelihood of the Kalman filter model is compared
to itself in the same dataset. To indicate the difference between
training and testing sets, the NLLR of the Kalman filter between
them can be calculated as

1

logy Lg™™" — - logy L™ (13)

train test

where Nipain(Niest) and LE#P (L) are sample size and like-
lihood in the training (testing) data, respectively. We expect a
positive difference as the model should fit better in the training
set.

The NLLRs of both data sets are estimated and summarized
in Table I where the dimension of the hidden state, d, varies
from 1 to 3. The NLLR displays an increasing trend as a func-
tion of d. This is true for training and testing sets in both mon-

TABLE I
NLLRS OF THE KALMAN FILTER AND THE NEW MODELS WITH
DIFFERENT DIMENSIONS OF THE HIDDEN STATE

training set 1 testing set 1 training set 2 testing set 2
KF 0 0 [12.67] 0 0 [8.24]
=1 | 0.27 (3 x 103%) 0.27 0.26 (4 x 103%) 0.24
=2 | 0.46 (5 x 103%) 0.42 0.46 (7 x 103%) 0.43
d=3 | 1.16 (1 x 10%%) 1.10 0.69 (1 x 10%*) 0.62

keys’ data. These results show that: 1) including the hidden state
does not introduce over-fit, but rather improves the represen-
tation of the neural and kinematic signals; 2) the new models
with higher-dimensional hidden states provide a better repre-
sentation than the simple Kalman model with no hidden states.
Note that the Kalman filter and the hidden state models are ac-
tually nested (the former one can be looked as a latter model
where the dimension of the hidden state is zero). Thus, the sig-
nificance of the improvement in the new models can also be
demonstrated using a standard Chi-square test. The NLLR (in
the units of bits) of each model with respect to the Kalman
filter is shown in the two training set columns in Table I. Num-
bers in the square brackets indicate the NLLR of the baseline
Kalman filter between training and testing sets (13). Numbers
in the parentheses indicate the standard likelihood ratio statis-
tics between the new model (with each hidden state dimension)
and the classical Kalman filter. Stars denote the improvement is
statistically significant (Chi-square test, p-value < 0.01).

Note that we also tested higher dimensional cases for the
hidden state (when d > 3). We found that the parameters in the
model cannot be identified in the EM process; that is, the like-
lihood of the model remains nearly constant over the iterations.
The dimension of the hidden state is, therefore, limited to 1, 2,
and 3 in this study. In general, this dimension could depend on
number of observed neurons, dimension of the behavioral state,
and amount of training data.

In addition to the likelihood, alternative approaches can be
used to compare the representation of each model. For example,
we can measure the estimated noise covariance matrix Q (1). As
including the hidden state in the model should account for some
of the “over-dispersion” in the observed neural data, Q is ex-
pected to be “smaller” when the hidden state is included than
that in the classical Kalman filter. Similarly, we can compare
the “over-dispersion” in the kinematics which is described by
the first 6 X 6 sub-matrix in the main diagonal of the noise co-
variance matrix W. In the d-dimensional hidden state model,
we use Qg and W to represent QQ and the first 6 X 6 main-di-
agonal submatrix of W, respectively. Likewise, Qg and W, are
used for the classical Kalman filter. We find all the eigenvalues
inboth (Qp—Q4) and (Wy—W ) are nonnegative ford = 1, 2,
and 3 (Fig. 2); i.e., all the differences are semi-positive definite
matrixes, and therefore the new models lower the variability of
noise term in the likelihood equation. This variability study pro-
vides supporting evidence that the new models better represent
the observed data.

B. Decoding With and Without Target Location Information

In the decoding stage, only firing rates {y} are observed.
We use these rates to estimate kinematics {x;} and hidden
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Fig. 2. (A) Eigenvalues of the matrixes (Qo — Q1), (Qo —Q2), and (Qo —
Q3) in dataset 1. The eigenvalues are shown in descending order of the mag-
nitude, and only the first 7 of the total 124 values are shown. (B) Eigenvalues
of the matrixes (Wo — W), (W, — Ws), and (W, — W3) in dataset 1.
(C) The eigenvalues are also shown in descending order of the magnitude. (D)
Same as (A) and (B) except for dataset 2.

TABLE II
DECODING ACCURACY OF THE CLASSICAL KALMAN FILTER AND THE
NEW MODELS WITH DIFFERENT DIMENSIONS OF THE HIDDEN STATE

Dataset 1 Dataset 2

Classical Kalman filter 7.6 (4.5) 8.2 (4.6)
1D hidden state 7.3% (3.8%) | 7.8* (4.3%)
2D hidden state 6.7* (3.3*) | 7.1* (3.8%)
3D hidden state 6.5% (3.3*) | 6.9% (3.7*)

states {ny, } by the Kalman filter algorithm [(7)=(11)]. We mea-
sure the decoding accuracy by the common mean squared error
(MSE, in the units of cm?). The results from the two test sets
are summarized in Table II. Numbers outside of parentheses
indicate the MSEs when target location was not included in
the decoding. Stars denote the improvement is statistically
significant (Wilcoxon signed-rank test, p-value< 0.01). It is
found that the decoding accuracy is significantly improved
when a hidden state is included in the model. Also, the degree
of improvement increases when the dimension of the hidden
state varies from 1 to 3. Two decoding examples are shown in
Fig. 3.

In addition, we examined whether including the target loca-
tion would have any effect on our results, since in many neural
prosthetic applications the location of a set of possible endpoint
target locations are known a priori. We used standard Kalman
forward—backward methods [35], [36] to condition on the end-
point location in each trial; as expected, including this endpoint
information significantly decreased the overall decoding MSE.
In Table II, the numbers inside of parentheses indicate the MSEs
when target location was included in the decoding. Once again,
we find that decoding accuracy is improved when a hidden state
is included in the Kalman model, and the degree of improve-
ment increases with the dimension of the hidden state.
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Fig. 3. (A) True hand trajectory (dashed) and reconstruction using the new
Kalman filter model with a hidden state (d = 3) of an example trial from dataset
1. Left column: the trajectories in the 2-D working space. Right column: the tra-
jectories by their # and y components. (B) Same as (A) except for an example
trial from dataset 2.

C. Analysis of the Hidden State

As emphasized above, the classical Kalman filter approach
represents neural activity using only hand kinematics, which
lacks descriptions of other behavioral states such as kinetic
terms or attentional level. We have added a hidden state to the
model to address this issue, and demonstrated that this extended
model provides better decoding. Next we investigate whether
the inferred hidden state is correlated in some systematic
fashion with the behavioral task variables.

First, we measured the correlation between the hidden state
and kinematics in the test data directly, where both the hand
kinematics and hidden state were estimated from the firing rates
(7)—(11). The averaged correlations (over all test trials) were
calculated for each of the new models with d = 1,2, and 3.
We found that in dataset 1 approximately 39% of the correlation
values are significantly different from O (beyond the significance
level with @ = 0.05). The percentage is approximately 52% in
dataset 2. These results clearly indicate the dependency between
the hidden state and hand kinematics.

To summarize the overall strength of these multivariate cor-
relations, we can simply measure the conditional mutual in-
formation I(ny; x| {yr }x<k) between the hidden state ny,
and the behavioral vector xy, given the observations up to time
t1. After the new model is identified by the EM algorithm, the
decoding error at each time step can be recursively measured
without using testing data (8), (10), and (11). These matrixes
converge to constant values when k is large (in practice, when
k > 20). Let P = limy_, ., P}, which describes the errors for
estimated kinematics and hidden states. For an n-dimensional
random variable with distribution N (mn, V), its entropy is

%log[(ZTre)" det(V)].
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As the joint distribution of kinematics and the hidden state is
normally distributed, we can calculate the mutual information
values between them using P. In dataset 1, the values are 0.11,
0.07, and 0.18 (bits) for d = 1, 2, and 3, respectively. In dataset
2, the values are 0.36, 0.30, and 0.35 (bits). [Note that the mu-
tual information is meaningful as it is a scale-invariant quantity;
the entropy of the hidden state, on the other hand, is harder to
interpret because the units of the hidden state are not specified
in (1) and (2).]

D. Reduced Models

In the hidden-state-included Kalman filter model, we assume
that the hidden state is directly related to both neural activity (1)
and hand kinematics (2). Here we examine whether we could
limit the effect of the hidden state to only one of these variables.
Such a limitation would result in a reduced representation. One
reduced model is built by removing the hidden state from the
likelihood (1); that is, the model is composed of (2) and the
following equation:

yir = Hx + qp.

Likewise, the other reduced model is built by removing the de-
pendence of the hidden state and kinematics from the prior (2);
that is, we let Ao and Aoy in (4) be zero matrixes, and the
model is composed of (1) and the following equations:

Xp+1 = AniXp + Wiz

Ny = Agong + wo.

We tested the above two reduced models in the two experimental
data sets. It was found that the EM algorithm cannot fit either
model; that is, the likelihood in the algorithm remains nearly a
constant over iterations. This indicates that only including the
hidden state in one equation will not make a reasonable fit. The
hidden state should be directly related to both neural activity and
dynamics of the hand state.

E. Nonstationarity Check

Finally, it is known that neural activity in motor cortex may be
strongly nonstationary over time [38]. For example, our recent
study indicates that firing rates of approximately 50% of the
neurons in these two data sets have a significant linear trend
(ascending or descending) over time [27]. It is natural to ask
whether the improvements in decoding we have seen here is
simply due to the ability of the hidden state to represent the
nonstationarity of neural signals.

To this end, we calculate the linear trend in the hidden state in
each test set estimated from the neural activity. It is found that
the slope of each component is statistically not different from
zero. This indicates that each dimension of the hidden state has
either very weak or no trend over time. As an example, the 3-D
hidden states in both datasets are shown in Fig. 4. No apparent
trend is observed in each dimensional component. This suggests

Data 1, Dimension 1 Data 2, Dimension 1

1 0.2

0.5 0
0

-05 -0.2

100 200 300 400
Data 1, Dimension 2

50 100 150 200 250 300
Data 2, Dimension 2

05 0.2
0
0 -0.2
-0.4
-0.5 -0.6
100 200 300 400 50 100 150 200 250 300
Data 1, Dimension 3 Data 2, Dimension 3
04 0.2
0.2 0
0
—02 -0.2

100 200 300 400
test trial number

50 100 150 200 250 300
test trial number

Fig. 4. Three components (three rows) of the estimated 3-D hidden state in two
test data sets (two columns), where the hidden state is averaged as one value in
each test trial.

that the hidden state does not appear to represent the nonstation-
arity of neural signals.

IV. DiscussIioN

Various internal and external states may play important roles
during brain-controlled, muscle-executed hand movement.
Since these states are often unobserved or even unobservable
during recordings, they have not been used in characterizing
spiking activity in the motor cortex. To overcome this problem,
we propose to describe these important yet unknown states as
one multidimensional hidden state. This hidden state could, in
principle, represent any kinematic, kinetic, or cognitive signal.
In this manuscript, we examine the hidden state in a linear
state-space model which is a natural extension of the classical
Kalman filter [14]. We propose a different approach by adding
a hidden state in both likelihood and prior equations.

One important benefit of the linear model is that both pa-
rameter identification and system estimation of the model can
be conducted using conventional, efficient methods such as the
EM algorithm and Kalman filter algorithm. Our results indicate
that the new method provides a better characterization of the
firing rate data than does the classical Kalman filter. More im-
portantly, it provides more accurate decoding (around 15% im-
provement) while preserving real-time efficiency. The standard
Kalman filter has been successfully used in closed-loop neural
control for animals [39] and human subjects [40]. We expect the
improvement in this investigation could significantly impact the
performance in the use of practical neural control.

The results in the new model suggest the hidden state may
play a “common input” role [19] and the decoding improvement
may result from the fact that the observation noise is reduced
(the excess variability is being accounted for by the hidden
state). Indeed, since the Kalman filter is a linear time-invariant
(LTD) filter, one simple interpretation of our results is that it
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is useful to search over a larger class of LTI filters than that
spanned by the classical Kalman filter, without searching over
the class of all possible LTI filters (since in practice this un-
restricted search results in overfitting; this is why direct linear
regression approaches perform suboptimally).

Note that our major goal in this manuscript is to demon-
strate that hidden noise terms can significantly improve the basic
Kalman filter decoding method. We do not argue that linear
Kalman filter methods are better than recently developed gener-
alized linear model (GLM)-based methods [18], [19], and there-
fore we do not make comparisons between the linear and GLM-
based methods here. Though accurate and efficient, the Kalman
filter model assumes a simple linear, Gaussian model on the
integer-valued spiking process. To better characterize the ac-
tivity, a number of powerful models have been developed [41],
[18], [19], [24]. These models often focus on the nonlinearity of
the representation or the nonstationarity (dynamic variation) of
the observed data. They have been shown to appropriately rep-
resent the neural activity and to accurately perform decoding
in simulated and/or experimental data. These more powerful
models often involve more complicated operations, and various
approximations (such as linearization, Gaussian approximation,
or Laplace approximation) are needed in order to make these
methods efficient in practical use. Note that the proposed hidden
state is entirely compatible with these nonlinear methods. We
plan to characterize the spiking activity as a multivariate point
process in a generalized linear model (GLM) where the condi-
tional density for a neuron is a function of the hand state, spike
history, and the hidden state [18], [19]. The identification and
estimation in these models, however, will be significantly more
challenging.

In summary, we expect that the proposed linear state-space
model introduced here could potentially be a useful tool in
prosthetic applications, and can be easily incorporated in cur-
rent real-time, online experimental decoding experiments. In
the future we plan to include hidden states in the more physio-
logically-accurate point-process filters [19], [42]. It would be
greatly interesting to compare the computational complexity
and accuracy of all these linear and nonlinear methods.

APPENDIX

A. The E-Step

To simplify the notation, welet p(- | - --) = p(- | {xk, Y }; 0:)
where 6, represents the parameters at the ith iteration. Assuming
the total number of time steps is K in training data, we can
calculate

K

= Z { nip(ng| - )dnk} x{
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B. The M-Step

From Section II-B1, recall

/{ el )y
x p({yr} | {xx,nr}; 0)d{ny}

K
> [ togp(y . nei6)p(on] s

k=1"

Using the likelihood (1)

E,

log p(yr | X, ng; 0)
1

= —5((}% — Hx;, — Gn)TQ !

+ log det Q) + constant.

(yx — Hxp — Gny)
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This indicates that E; only contains parameters H, G, and Q.

Let partial derivatives

OE, OE, 0OE,

= =—=0
OH oG oQ
we have
K T 1\
K _ L XpXL o«
(H G)= (T, vwxi of) <Ek_(111 E a;)
A K
Q= E ZW«Y% - HZxkyf - Gay
k=1 k=1
Similarly
E; - /{ ({m} |-l m ) )
J{ny
= log p(x1,n1;0)p(ny | ---))dny
K1
+ Z/ / log p(Xk41, g1 | Xk, 05 60)
k=1 Y Dk+1 /N
X p(p, Dpy1 | -+ )dngdngyq.

Using the prior equation and initial condition (2) and (3)

log p(x1,n1;06)
= log p(ny;6) + constant
1
=-3 (logdet X

+ (ny — pu)"¥ 7 (ny — p)) + constant.
and

log p(Xk+41, Nit1 | Xk, 0z 0)

1
=3 (logdetW
T
(i) -a() we
Ngyq ng
((Xk'H ) - A (Xk>>> + constant.
Ngyq ng

This indicates that E, only contains parameters A, W i, and

.. Let partial derivatives

OBy, OB, OE, 0E,

JA oW~ op om0
we have

A =Byt

1
W=—(35-A

(B — ABY)

M:/ nip(ny | - )dny
5 = / nnTp(ny | --)dny

_ / nyp(ny | - -)dny / nTp(ny | ---)dn,.

n;

Note that i, and X only depend on values at one step. Hence,
their estimation may not be robust. In practical data analysis,
they can simply be replaced with zero matrixes. Such change
has little effect on the decoding performance [14].
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