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A BAYESIAN APPROACH FOR INFERRING NEURONAL
CONNECTIVITY FROM CALCIUM FLUORESCENT IMAGING DATA

By Yuriy Mishchencko∗, Joshua T. Vogelstein†, and Liam Paninski∗

Deducing the structure of neural circuits is one of the central
problems of modern neuroscience. Recently-introduced calcium fluo-
rescent imaging methods permit experimentalists to observe network
activity in large populations of neurons, but these techniques provide
only indirect observations of neural spike trains, with limited time
resolution and signal quality. In this work, we present a Bayesian ap-
proach for inferring neural circuitry given this type of imaging data.
We model the network activity in terms of a collection of coupled hid-
den Markov chains, with each chain corresponding to a single neuron
in the network and the coupling between the chains reflecting the net-
work’s connectivity matrix. We derive a Monte Carlo Expectation-
Maximization algorithm for fitting the model parameters; to obtain
the sufficient statistics in a computationally-efficient manner, we in-
troduce a specialized blockwise-Gibbs algorithm for sampling from
the joint activity of all observed neurons given the observed fluo-
rescence data. We perform large-scale simulations of randomly con-
nected neuronal networks with biophysically realistic parameters and
find that the proposed methods can accurately infer the connectivity
in these networks given reasonable experimental and computational
constraints. In addition, the estimation accuracy may be improved
significantly by incorporating prior knowledge about the sparseness
of connectivity in the network, via standard L1 penalization methods.

1. Introduction. Since Ramon y Cajal discovered that the brain is a rich and dense
network of neurons (Ramon y Cajal, 1904; Ramon y Cajal, 1923), neuroscientists have been
intensely curious about the details of these networks, which are believed to be the biological
substrate for memory, cognition, and perception. While we have learned a great deal in the
last century about “macro-circuits” (the connectivity between coarsely-defined brain areas),
a number of key questions remain open about “micro-circuit” structure, i.e., the connectivity
within populations of neurons at a fine-grained cellular level. Two complementary strate-
gies for investigating micro-circuits have been pursued extensively. Anatomical approaches
to inferring circuitry do not rely on observing neural activity; some recent exciting examples
include array tomography (Micheva and Smith, 2007), genetic “brainbow” approaches (Livet
et al., 2007), and serial electron microscopy (Briggman and Denk, 2006). Our work, on the
other hand, takes a functional approach: our aim is to infer micro-circuits by observing the
simultaneous activity of a population of neurons, without making direct use of fine-grained
anatomical measurements.

Experimental tools that enable simultaneous observations of the activity of many neurons
are now widely available. While arrays of extracellular electrodes have been exploited for this
purpose (Hatsopoulos et al., 1998; Harris et al., 2003; Stein et al., 2004; Santhanam et al.,
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2006; Luczak et al., 2007), the arrays most often used in vivo are inadequate for inferring
monosynaptic connectivity in large populations of neurons, as the inter-electrode spacing is
typically too large to record from closely neighboring neurons1; importantly, neighboring neu-
rons are more likely connected to one another than distant neurons (Abeles, 1991; Braitenberg
and Schuz, 1998). Alternately, calcium-sensitive fluorescent indicators allow us to observe the
spiking activity of on the order of 103 neighboring neurons (Tsien, 1989; Yuste et al., 2006;
Cossart et al., 2003; Ohki et al., 2005) within a micro-circuit. Some organic dyes achieve
sufficiently high signal-to-noise ratios (SNR) that individual action potentials (spikes) may
be resolved (Yuste et al., 2006), and bulk-loading techniques enable experimentalists to si-
multaneously fill populations of neurons with such dyes (Stosiek et al., 2003). In addition,
genetically encoded calcium indicators are under rapid development in a number of groups,
and are approaching SNR levels of nearly single spike accuracy as well (Wallace et al., 2008).
Microscopy technologies for collecting fluorescence signals are also rapidly developing. Cooled
CCDs for wide-field imaging (either epifluorescence or confocal) now achieve a quantum ef-
ficiency of ≈ 90% with frame rates up to 60 Hz or greater, depending on the field of view
(Djurisic et al., 2004). For in vivo work, 2-photon laser scanning microscopy can achieve sim-
ilar frame rates, using either acoustic-optical deflectors to focus light at arbitrary locations in
three-dimensional space (Iyer et al., 2006; Salome et al., 2006; Reddy et al., 2008), or resonant
scanners (Nguyen et al., 2001). Together, these experimental tools can provide movies of cal-
cium fluorescence transients from large networks of neurons with adequate SNR, at imaging
frequencies of 30 Hz or greater, in both in vitro and in vivo preparations.

Given these experimental advances in functional neural imaging, our goal is to develop
efficient computational and statistical methods to exploit this data for the analysis of neural
connectivity; see Figure 1 for a schematic overview. One major challenge here is that calcium
transients due to action potentials provide indirect observations, and decay about an order of
magnitude slower than the time course of the underlying neural activity (Yuste et al., 2006;
Roxin et al., 2008). Thus, to properly analyze the network connectivity, we must incorporate
methods for effectively deconvolving the observed noisy fluorescence signal to obtain estimates
of the underlying spiking rates (Yaksi and Friedrich, 2006; Greenberg et al., 2008; Vogelstein
et al., 2009). To this end we introduce a coupled Markovian state-space model that relates the
observed variables (fluorescence traces from the neurons in the microscope’s field of view) to
the hidden variables of interest (the spike trains and intracellular calcium concentrations of
these neurons), as governed by a set of biophysical parameters including the network connec-
tivity matrix. As discussed in (Vogelstein et al., 2009), this parametric approach effectively
introduces a number of constraints on the hidden variables, leading to significantly better
performance than standard blind deconvolution approaches. Given this state-space model,
we derive a Monte Carlo Expectation Maximization algorithm for obtaining the maximum a
posteriori estimates of the parameters of interest. Standard sampling procedures (e.g., Gibbs
sampling or sequential Monte Carlo) are inadequate in this setting, due to the high dimen-
sionality and non-linear, non-Gaussian dynamics of the hidden variables; we therefore develop
a specialized blockwise-Gibbs approach for efficiently computing the sufficient statistics. This
strategy enables us to accurately infer the connectivity matrix from large simulated neural
populations, under realistic assumptions about the dynamics and observation parameters.

1It is worth noting, however, that multielectrode arrays which have been recently developed for use in the
retina (Segev et al., 2004; Litke et al., 2004; Petrusca et al., 2007; Pillow et al., 2008) or in cell culture (Lei
et al., 2008) are capable of much denser sampling.
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Fig 1. Schematic overview. The raw observed data is a large-scale calcium fluorescence movie, which is pre-
processed to correct for movement artifacts and find regions-of-interest, i.e., putative neurons. (Note that
we have omitted details of these important preprocessing steps in this paper; see, e.g., (Cossart et al., 2003;
Dombeck et al., 2007) for further details.) Given the fluorescence traces Fi(t) from each neuron, we estimate
the underlying spike trains (i.e., the time series of neural activity) using statistical deconvolution methods.
Then we estimate the parameters of a network model given the observed data. Our major goal is to obtain an
accurate estimate of the network connectivity matrix, which summarizes the information we are able to infer
about the local neuronal microcircuit. (We emphasize that this illustration is strictly schematic, and does not
correspond directly to any of the results described below.) This figure adapted from personal communications
with R. Yuste, B. Watson, and A. Packer.

2. Methods.

2.1. Model. We begin by detailing a parametric generative model for the (unobserved)
joint spike trains of all N observable neurons, along with the observed calcium fluorescence
data. Each neuron is modeled as a generalized linear model (GLM). This class of models
is known to capture the statistical firing properties of individual neurons fairly accurately
(Brillinger, 1988; Chornoboy et al., 1988; Brillinger, 1992; Plesser and Gerstner, 2000; Paninski
et al., 2004; Paninski, 2004; Rigat et al., 2006; Truccolo et al., 2005; Nykamp, 2007; Kulkarni
and Paninski, 2007; Pillow et al., 2008; Vidne et al., 2009; Stevenson et al., 2009). We denote
the i-th neuron’s activity at time t as ni(t): in continuous time, ni(t) could be modeled as
an unmarked point process, but we will take a discrete-time approach here, with each ni(t)
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Fig 2. A plot of the firing rate nonlinearity f(J) used in our simulations. Note that the firing rate saturates
at 1/∆, because of our Bernoulli assumption (i.e., the spike count per bin is at most one). Here the binwidth
∆ = (60 Hz)−1. The horizontal gray line indicates 5 Hz, the baseline firing rate for most of the simulations
discussed in the Results section.

taken to be a binary random variable. We model the spiking probability of neuron i via an
instantaneous nonlinear function, f(·), of the filtered and summed input to that neuron at
that time, Ji(t). This input is composed of: (i) some baseline value, bi; (ii) some external
vector stimulus, Sext(t), that is linearly filtered by ki; and (iii) spike history terms, hij(t),
encoding the influence on neuron i from neuron j, weighted by wij :

(1) ni(t) ∼ Bernoulli [f (Ji(t))] , Ji(t) = bi + ki · Sext(t) +
N∑

j=1
wijhij(t).

To ensure computational tractability of the parameter inference problem, we must impose
some reasonable constraints on the instantaneous nonlinearity f(·) (which plays the role of
the inverse of the link function in the standard GLM setting) and on the dynamics of the
spike-history effects hij(t). First, we restrict our attention to functions f(·) which ensure the
concavity of the spiking loglikelihood in this model (Paninski, 2004; Escola and Paninski,
2008), as we will discuss at more length below. In this paper, we use

(2) f(J) = P
[
n > 0 | n ∼ Poiss

(
eJ∆

)]
= 1− exp[−eJ∆]

(Figure 2), where the inclusion of ∆, the time step size, ensures that the firing rate scales
properly with respect to the time discretization; see (Escola and Paninski, 2008) for a proof
that this f(·) satisfies the required concavity constraints. However, we should note that in our
experience the results depend only weakly on the details of f(·) within the class of log-concave
models (Li and Duan, 1989; Paninski, 2004) (see also section 3.4 below).

Second, because the algorithms we develop below assume Markovian dynamics, we model
the spike history terms as autoregressive processes driven by the spike train nj(t):

(3) hij(t) = (1−∆/τh
ij)hij(t−∆) + nj(t−∆) + σh

ij

√
∆εh

ij(t),

where τh
ij is a decay time constant, σh

ij is a standard deviation parameter,
√

∆ ensures that
the statistics of this Markov process have a proper Ornstein-Uhlenbeck limit as ∆ → 0, and
throughout this paper, ε denotes an independent standard normal random variable. Note
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that this model generalizes (via a simple augmentation of the state variable hij(t)) to allow
each neuron pair to have several spike history terms, each with a unique time constant,
which when weighted and summed allow us to model a wide variety of possible post-synaptic
effects, including bursting, facilitating, and depressing synapses; see (Vogelstein et al., 2009)
for further details. We restrict our attention to the case of a single time constant τh

ij per
synapse here, so the deterministic part of hij(t) is a simple exponentially-filtered version of
the spike train nj(t). Furthermore, we assume that τh

ij is the same for all neurons and all
synapses, although in principle each synapse could be modeled with its unique τh

ij . We do
that both for simplicity and also because we find that the detailed shape of the coupling
terms hij(t) had a limited effect on the inference of the connectivity matrix, as illustrated in
Figure 12 below. Thus, we treat τh

ij and σh
ij as known synaptic parameters which are the same

for each neuron pair (i, j), and denote them as τh and σh hereafter. We chose values for τh

and σh in our inference based on experimental data (Lefort et al., 2009); see Table 1 below.
Therefore our unknown spiking parameters are {wi, ki, bi}i≤N , with wi = (wi1, . . . , wiN ).

The problem of estimating the connectivity parameters w = {wi}i≤N in this type of GLM,
given a fully-observed ensemble of neural spike trains {ni(t)}i≤N , has recently received a great
deal of attention; see the references above for a partial list. In the calcium fluorescent imaging
setting, however, we do not directly observe spike trains; {ni(t)}i≤N must be considered a
hidden variable here. Instead, each spike in a given neuron leads to a rapid increase in the
intracellular calcium concentration, which then decays slowly due to various cellular buffering
and extrusion mechanisms. We in turn make only noisy, indirect, and subsampled observa-
tions of this intracellular calcium concentration, via fluorescent imaging techniques (Yuste
et al., 2006). To perform statistical inference in this setting, (Vogelstein et al., 2009) proposed
a simple conditional first-order hidden Markov model (HMM) for the intracellular calcium
concentration Ci(t) in cell i at time t, along with the observed fluorescence, Fi(t):

Ci(t) = Ci(t−∆) +
(
Cb

i − Ci(t−∆)
)

∆/τ c
i + Aini(t) + σc

i

√
∆εc

i (t),(4)

Fi(t) = αiS(Ci(t)) + βi +
√

(σF
i )2 + γiS(Ci(t))εF

i (t).(5)

This model can be interpreted as a simple driven autoregressive process: under nonspiking
conditions, Ci(t) fluctuates around the baseline level of Cb

i , driven by normally-distributed
noise εc

i (t) with standard deviation σc
i

√
∆. Whenever the neuron fires a spike, ni(t) = 1,

the calcium variable Ci(t) jumps by a fixed amount Ai, and subsequently decays with time
constant τ c

i . The fluorescence signal Fi(t) corresponds to the count of photons collected at
the detector per neuron per imaging frame. This photon count may be modeled with normal
statistics, with the mean given by a saturating Hill-type function S(C) = C/(C+Kd) (Yasuda
et al., 2004) and the variance scaling with the mean; see (Vogelstein et al., 2009) for further
discussion. Because the parameter Kd effectively acts as a simple scale factor, and is a property
of the fluorescent indicator, we assume throughout this work that it is known. Figure 3 shows
a couple examples depicting the relationship between spike trains and observations. It will be
useful to define an effective SNR as

(6) eSNR =
E[Fi(t)− Fi(t−∆) | ni(t) = 1]

E[(Fi(t)− Fi(t−∆))2/2 | ni(t) = 0]1/2
,

i.e., the size of a spike-driven fluorescence jump divided by a rough measure of the standard
deviation of the baseline fluorescence. For concreteness, the effective SNR values in Fig. 3
were 9 and 3 in the left and right panels, respectively.
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Fig 3. Two example traces of simulated fluorescence data, at different SNR levels, demonstrating the rela-
tionship between spike trains and observed fluorescence in our model. Note that both panels have the same
underlying spike train. Simulation parameters: ki = 0.7, Cb

i = 1 µM, τ c
i = 500 msec, Ai = 50 µM, σc

i = 0.1
µM. γi = 0.004 (effective SNR ≈ 9, as defined in Eq. (6); see also Figure 9 below) in the left panel and
γi = 0.016 (eSNR ≈ 3) in the right panel, and σF

i = 0, ∆ = (60 Hz)−1.

To summarize, Eqs. (1-5) define a coupled HMM: the underlying spike trains {ni(t)}i≤N

and spike history terms {hij(t)}i,j≤N evolve in a Markovian manner given the stimulus Sext(t).
These spike trains in turn drive the intracellular calcium concentrations {Ci(t)}i≤N , which
are themselves Markovian, but evolving at a slower timescale τ c

i . Finally, we observe only
the fluorescence signals {Fi(t)}i≤N , which are related in a simple Markovian fashion to the
calcium variables {Ci(t)}i≤N .

2.2. Goal and general strategy. Our primary goal is to estimate the connectivity matrix,
w, given the observed set of calcium fluorescence signals F = {Fi}i≤N , where Fi = {Fi(t)}t≤T .
We must also deal with a number of intrinsic parameters2, θ̃i: the intrinsic spiking parame-
ters3 {bi, wii}i≤N , the calcium parameters {Cb

i , τ
c
i , Ai, σ

c
i }i≤N , and the observation parameters

{αi, βi, γi, σ
F
i }i≤N . We addressed the problem of estimating these intrinsic parameters in ear-

lier work (Vogelstein et al., 2009); thus our focus here will be on the connectivity matrix w.
A Bayesian approach is natural here, since we have a good deal of prior information about
neural connectivity; see (Rigat et al., 2006) for a related discussion. However, a fully-Bayesian
approach, in which we numerically integrate over the very high-dimensional parameter space
θ = {θi}i≤N , where θi = {wi, bi, C

b
i , τ

c
i , Ai, σ

c
i , αi, βi, γi, σ

F
i }, is less attractive from a compu-

tational point of view. Thus, our compromise is to compute maximum a posteriori (MAP)
estimates for the parameters via an expectation-maximization (EM) algorithm, in which the
sufficient statistics are computed by a hybrid blockwise Gibbs sampler and sequential Monte

2The intrinsic parameters for neuron i are all its parameters, minus the cross-coupling terms, i.e. θ̃i =
θi\{wij}i6=j .

3To reduce the notational load, we will ignore the estimation of the stimulus filter ki below; this term may
be estimated with bi and wii using very similar convex optimization methods, as discussed in (Vogelstein et al.,
2009).
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Carlo (SMC) method. More specifically, we iterate the steps:

E step: Evaluate Q(θ, θ(l)) = EP [X|F;θ(l)] lnP [F,X|θ] =
∫

P [X|F; θ(l)] lnP [F,X|θ]dX

M step: Solve θ(l+1) = argmax
θ

{
Q(θ, θ(l)) + lnP (θ)

}
,

where X denotes the set of all hidden variables {Ci(t), ni(t), hij(t)}i,j≤N,t≤T and P (θ) denotes
a (possibly improper) prior on the parameter space θ. According to standard EM theory
(Dempster et al., 1977; McLachlan and Krishnan, 1996), each iteration of these two steps
is guaranteed to increase the log-posterior ln P (θ(l)|F), and will therefore lead to at least a
locally maximum a posteriori estimator.

Now, our major challenge is to evaluate the auxiliary function Q(θ, θ(l)) in the E-step. Our
model is a coupled HMM, as discussed in the previous section; therefore, as usual in the HMM
setting (Rabiner, 1989), Q may be broken up into a sum of simpler terms:

Q(θ, θ(l)) =
∑
it

∫
lnP [Fi(t)|Ci(t);αi, βi, γi, σ

F
i ]dP [Ci(t)|F; θ(l)]

+
∑
it

∫
lnP [Ci(t)|Ci(t−∆), ni(t);Cb

i , τ
c
i , Ai, σ

c
i ]dP [Ci(t), Ci(t−∆)|F; θ(l)]

+
∑
it

∫
lnP [ni(t)|hi(t); bi,wi]dP [ni(t),hi(t)|F; θ(l)],(7)

where hi(t) = {hij(t)}j≤N . Note that each of the three sums here corresponds to a different
component of the model described in Eqs. (1-5): the first sum involves the fluorescent obser-
vation parameters, the second the calcium dynamics, and the third the spiking dynamics.

Thus we need only compute low-dimensional marginals of the full posterior distribution
P [X|F; θ]; specifically, we need the pairwise marginals P [Ci(t)|F; θ], P [Ci(t), Ci(t−∆)|F; θ],
and P [ni(t),hi(t)|F; θ]. Details for calculating P [Ci(t), Ci(t−∆)|Fi; θ̃i] and P [Ci(t)|Fi; θ̃i] are
found in (Vogelstein et al., 2009), while calculating the joint marginal for the high dimensional
hidden variable hi necessitates the development of specialized blockwise Gibbs-SMC sampling
methods, as we describe in the subsequent sections 2.3 and 2.4. Once we have obtained these
marginals, the M-step breaks up into a number of independent optimizations that may be
computed in parallel and which are therefore relatively straightforward (Section 2.5); see
section 2.6 for a pseudocode summary along with some specific implementation details.

2.3. Initialization of intrinsic parameters via sequential Monte Carlo methods. We be-
gin by constructing relatively cheap, approximate preliminary estimators for the intrinsic
parameters, θ̃i. The idea is to initialize our estimator by assuming that each neuron is ob-
served independently. Thus we want to compute P [Ci(t), Ci(t−∆)|Fi; θ̃i] and P [Ci(t)|Fi; θ̃i],
and solve the M-step for each θ̃i, with the connectivity matrix parameters held fixed. This
single-neuron case is much simpler, and has been discussed at length in (Vogelstein et al.,
2009); therefore, we only provide a brief overview here. The standard forward and backward
recursions provide the necessary posterior distributions, in principle (Shumway and Stoffer,
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2006):

P [Xi(t)|Fi(0 : t)] ∝ P [Fi(t)|Xi(t)]
∫

P [Xi(t)|Xi(t−∆)]P [Xi(t−∆)|Fi(0 : t−∆)]dXi(t−∆),

(8)

P [Xi(t), Xi(t−∆)|Fi] = P [Xi(t)|Fi]
P [Xi(t)|Xi(t−∆)]P [Xi(t−∆)|Fi(0 : t−∆)]∫

P [Xi(t)|Xi(t−∆)]P [Xi(t−∆)|Fi(0 : t−∆)]dXi(t−∆)
,

(9)

where Fi(s : t) denotes the time series Fi from time points s to t, and we have dropped
the conditioning on the parameters for brevity’s sake. Eq. (8) describes the forward (filter)
pass of the recursion, and Eq. (9) describes the backward (smoother) pass, providing both
P [Xi(t), Xi(t−∆)|Fi] and P [Xi(t)|Fi] (obtained by marginalizing over Xi(t−∆)).

Because these integrals cannot be analytically evaluated for our model, we approximate
them using a SMC (“marginal particle filtering”) method (Doucet et al., 2000; Doucet et al.,
2001; Godsill et al., 2004). More specifically, we replace the forward distribution with a particle
approximation:

P [Xi(t)|Fi(0 : t)] ≈
M∑

m=1

p
(m)
f (t)δ

[
Xi(t)−X

(m)
i (t)

]
,(10)

where m = 1, . . . ,M indexes the M particles in the set (M was typically set to about 50 in our
experiments), p

(m)
f (t) corresponds to the relative “forward” probability of Xi(t) = X

(m)
i (t),

and δ[·] indicates a Dirac mass. Instead of using the analytic forward recursion, Eq. (8), at
each time step, we update the particle weights using the particle forward recursion

p
(m)
f (t) = P

[
Fi(t)|X(m)

i (t)
]P [

X
(m)
i (t)|X(m)

i (t−∆)
]
p
(m)
f (t−∆)

q
[
X

(m)
i (t)

] ,(11)

where q
[
X

(m)
i (t)

]
is the proposal density from which we sample the particle positions X

(m)
i (t).

In this work, we use the “one-step-ahead” sampler (Doucet et al., 2000; Vogelstein et al., 2009),
i.e., q

[
X

(m)
i (t)

]
= P

[
X

(m)
i (t)|X(m)

i (t−∆), Fi(t)
]
. After sampling and computing the weights,

we use stratified resampling (Douc et al., 2005) to ensure the particles accurately approximate
the desired distribution. Once we complete the forward recursion from t = 0, . . . , T , we begin
the backwards pass from t = T, . . . , 0, using

r(m,m′)(t, t−∆) = p
(m)
b (t)

P
[
X

(m)
i (t)|X(m′)

i (t−∆)
]
p
(m)
f (t−∆)∑

m′ P
[
X

(m)
i (t)|X(m′)

i (t−∆)
]
p
(m′)
f (t−∆)

(12)

p
(m′)
b (t−∆) =

M∑
j=1

r(m,m′)(t, t−∆),(13)

to obtain the approximation

P [Xi(t), Xi(t−∆)|Fi] ≈
∑

m,m′

r
(m,m′)
i (t, t−∆)δ

[
Xi(t)−X

(m)
i (t)

]
δ

[
Xi(t−∆)−X

(m′)
i (t−∆)

]
;

(14)
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for more details, see (Vogelstein et al., 2009). Thus equations (10-14) may be used to compute
the sufficient statistics for estimating the intrinsic parameters θ̃i for each neuron.

As discussed following Eq. (7), the M-step decouples into three independent subproblems.
The first term depends on only {αi, βi, γi, σi}; since P [Fi(t)|S(Ci(t)); θ̃i] is Gaussian, we can
estimate these parameters by solving a weighted regression problem (specifically, we use a
coordinate-optimization approach: we solve a quadratic problem for {αi, βi} while holding
{γi, σi} fixed, then estimate {γi, σi} by the usual residual error formulas while holding {αi, βi}
fixed). Similarly, the second term requires us to optimize over {τ c

i , Ai, C
b
i }, and then we use

the residuals to estimate σc
i . Note that all the parameters mentioned so far are constrained to

be non-negative, but may be solved efficiently using standard quadratic program solvers if we
use the simple reparameterization τ c

i → 1−∆/τ c
i . Finally, the last term may be expanded:

(15) E[lnP [ni(t),hi(t)|F; θi]]
= P [ni(t),hi(t)|F; θi] ln f [Ji(t)] + (1− P [ni(t),hi(t)|F; θi]) ln[1− f(Ji(t))];

since Ji(t) is a linear function of {bi,wi}, and the right-hand side of Eq. (15) is concave in
Ji(t), we see that the third term in Eq. (7) is a sum of terms which are concave in {bi,wi} —
and therefore also concave in the linear subspace {bi, wii} with {wij}i6=j held fixed — and may
thus be maximized efficiently using any convex optimization method, e.g. Newton-Raphson
or conjugate gradient ascent.

Our procedure therefore is to initialize the parameters for each neuron using some default
values that we have found to be effective in practice in analyzing real data, and then iteratively
(i) estimate the marginal posteriors via the SMC recursions (10-14) (E step), and (ii) maximize
over the intrinsic parameters θ̃i (M step), using the separable convex optimization approach
described above. We iterate these two steps until the change in θ̃i does not exceed some
minimum threshold. We then use the marginal posteriors from the last iteration to seed the
blockwise Gibbs sampling procedure described below for approximating P [ni,hi|F; θi].

2.4. Estimating joint posteriors over weakly coupled neurons. Now we turn to the key
problem: constructing an estimate of the joint marginals {P [ni(t),hi(t)|F; θ]}i≤N,t≤T , which
are the sufficient statistics for estimating the connectivity matrix w (recall Eq. (7)). The SMC
method described in the preceding section only provides the marginal distribution over a single
neuron’s hidden variables; this method may in principle be extended to obtain the desired full
posterior P [X(t),X(t−∆)|F; θ], but SMC is fundamentally a sequential importance sampling
method, and therefore scales poorly as the dimensionality of the hidden state X(t) increases
(Bickel et al., 2008). Thus we need a different approach.

One very simple idea is to use a Gibbs sampler: sample sequentially from

Xi(t) ∼ P [Xi(t)|X\i, Xi(0), . . . , Xi(t−∆), Xi(t + ∆), . . . , Xi(T ),F; θ],(16)

looping over all cells i and all time bins t. Unfortunately, this approach is likely to mix poorly,
due to the strong temporal dependence between Xi(t) and Xi(t + ∆). Instead, we propose a
blockwise Gibbs strategy, sampling one spike train as a block:

Xi ∼ P [Xi|X\i,F; θ].(17)

If we can draw these blockwise samples Xi = Xi(s : t) efficiently for a large subset of
t− s adjacent time-bins simultaneously, then we would expect the resulting Markov chain to
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mix much more quickly than the single-element Gibbs chain. This follows due to the weak
dependence between Xi and Xj when i 6= j, and the fact that Gibbs is most efficient for
weakly-dependent variables (Robert and Casella, 2005).

So, how can we efficiently sample from P [Xi|X\i,F; θ]? One attractive approach is to try to
re-purpose the SMC method described above, which is quite effective for drawing approximate
samples from P [Xi|X\i, Fi; θ] for one neuron i at a time. Recall that sampling from an HMM
is in principle easy by the “propagate forward, sample backward” method: we first compute
the forward probabilities P [Xi(t)|X\i(0 : t), Fi(0 : t); θ] recursively for timesteps t = 0 up to
T , then sample backwards from P [Xi(t)|X\i(0 : T ), Fi(0 : T ), Xi(t−∆); θ]. This approach is
powerful because each sample requires just linear time to compute (i.e., O(T/∆) time, where
T/∆ is the number of desired time steps). Unfortunately, in this case we can only compute the
forward probabilities approximately (via Eqs. 10-11), and so therefore this attractive forward-
backward approach only provides approximate samples from P [Xi|X\i,F; θ], not the exact
samples required for the validity of the Gibbs method.

Of course, in principle we should be able to use the Metropolis-Hastings (M-H) algorithm
to correct these approximate samples. The problem is that the M-H acceptance ratio in
this setting involves a high-dimensional integral over the set of paths that the particle filter
might possibly trace out, and is therefore difficult to compute directly. (Andrieu et al., 2007)
discuss this problem at more length, along with some proposed solutions. A slightly simpler
approach was introduced by (Neal et al., 2003). Their idea is to exploit the O(T/∆) forward-
backward sampling method by embedding a discrete Markov chain within the continuous
state space Xt on which Xi(t) is defined; the state space of this discrete embedded chain
is sampled randomly according to some distribution ρt with support on Xt. It turns out
that an appropriate Markov chain (incorporating the original state space model transition
and observation probabilities, along with the auxiliary sampling distributions ρt) may be
constructed quite tractably, guaranteeing that the samples produced by this algorithm have
the desired equilibrium density. See (Neal et al., 2003) for details.

We can apply this embedded-chain method directly here to sample from P [Xi|X\i,F; θ].
The one remaining question is how to choose the auxiliary densities ρt. We would like to
choose these densities to be close to the desired marginal densities P [Xi(t)|X\i,F; θ], and
conveniently, we have already computed a good (discrete) approximation to these densities,
using the SMC methods described in the last section. The algorithm described in (Neal et al.,
2003) requires the densities ρt to be continuous, so we simply convolve our discrete SMC-
based approximation (specifically, the Xi(t)-marginal of Eq. 14) with an appropriate normal
density to arrive at a very tractable mixture-of-Gaussians representation for ρt.

Thus, to summarize, our procedure for approximating the desired joint state distribu-
tions P [ni(t),hi(t)|F; θ] has a Metropolis-within-blockwise-Gibbs flavor, where the internal
Metropolis step is replaced by the O(T/∆) embedded-chain method introduced by (Neal
et al., 2003), and the auxiliary densities ρt necessary for implementing the embedded-chain
sampler are obtained using the SMC methods from (Vogelstein et al., 2009).

2.4.1. A factorized approximation of the joint posteriors. If the SNR in the calcium imag-
ing is sufficiently high, then by definition the observed fluorescence data Fi will provide
enough information to determine the underlying hidden variables Xi. Thus, in this case the
joint posterior approximately factorizes into a product of marginals for each neuron i:

(18) P [X|F; θ] ≈
∏
i≤N

P [Xi|F; θ̃i].
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We can take advantage of this because we have already estimated all the marginals on the right
hand side using the approximate SMC methods in Section 2.3. This factorized approximation
entails a significant gain in efficiency for two reasons: first, it obviates the need to generate joint
samples via the expensive blockwise-Gibbs approach described above; and second, because we
can easily parallelize the SMC step, inferring the marginals P [Xi(t)|Fi; θ̃i] and estimating the
parameters θi for each neuron on a separate processor. We will discuss the empirical accuracy
of this approximation in the Results section.

2.5. Estimating the connectivity matrix. Computing the M-step for the connectivity ma-
trix, w, is an optimization problem with on the order of N2 variables. The auxiliary function
Eq. (7) is concave in w, and decomposes into N separable terms that may be optimized inde-
pendently using standard ascent methods. To improve our estimates, we will incorporate two
sources of strong a priori information via our prior P (w): first, previous anatomical studies
have established that connectivity in many neuroanatomical substrates is “sparse,” i.e., most
neurons form synapses with only a fraction of their neighbors (Buhl et al., 1994; Thomp-
son et al., 1988; Reyes et al., 1998; Feldmeyer et al., 1999; Gupta et al., 2000; Feldmeyer
and Sakmann, 2000; Petersen and Sakmann, 2000; Binzegger et al., 2004; Song et al., 2005;
Mishchenko et al., 2009), implying that many elements of the connectivity matrix w are zero;
see also (Paninski, 2004; Rigat et al., 2006; Pillow et al., 2008; Stevenson et al., 2008) for fur-
ther discussion. Second, “Dale’s law” states that each of a neuron’s postsynaptic connections
in adult cortex (and many other brain areas) must all be of the same sign (either excitatory
or inhibitory). Both of these priors are easy to incorporate in the M-step optimization, as we
discuss below.

2.5.1. Imposing a sparse prior on the connectivity. It is well-known that imposing sparse-
ness via an L1-regularizer can dramatically reduce the amount of data necessary to accurately
reconstruct sparse high-dimensional parameters (Tibshirani, 1996; Tipping, 2001; Donoho and
Elad, 2003; Ng, 2004; Candes and Wakin, 2008; Mishchenko, 2009). We incorporate a prior
of the form ln p(w) = const.−λ

∑
i,j |wij |, and additionally enforce the constraints |wij | < L,

for a suitable constant L (since both excitatory and inhibitory cortical connections are known
to be bounded in size). Since the penalty ln p(w) is concave, and the constraints |wij | < L are
convex, we may solve the resulting optimization problem in the M-step using standard convex
optimization methods (Boyd and Vandenberghe, 2004). In addition, the problem retains its
separable structure: the full optimization may be broken up into N smaller problems that
may be solved independently.

2.5.2. Imposing Dale’s law on the connectivity. Enforcing Dale’s law requires us to solve
a non-convex, non-separable problem: we need to optimize the concave function Q(θ, θ(l)) +
lnP (θ) under the non-convex, non-separable constraint that all of the elements in any column
of the matrix w are of the same sign (either nonpositive or nonnegative). It is difficult to solve
this nonconvex problem exactly, but we have found that simple greedy methods are quite
efficient in finding good approximate solutions.

We begin with our original sparse solution, obtained as discussed in the previous subsection
without enforcing Dale’s law. Then we assign each neuron as either excitatory or inhibitory,
based on the weights we have inferred in the previous step: i.e., neurons i whose inferred post-
synaptic connections wij are largely positive are tentatively labeled excitatory, and neurons
with largely inhibitory inferred postsynapic connections are labeled inhibitory. Neurons which
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Algorithm 1 Pseudocode for estimating connectivity from calcium imaging data using EM;
η1 and η2 are user-defined convergence tolerance parameters.

while |w(l) −w(l−1)| > η1 do
for all i = 1 . . . N do

while |θ̃(l)
i − θ̃

(l−1)
i | > η2 do

Approximate P [Xi(t)|Fi; θ̃i] using SMC (Section 2.3)
Perform the M-step for the intrinsic parameters θ̃i (Section 2.3)

end while
end for
for all i = 1 . . . N do

Approximate P [ni(t),hi(t)|F; θi] using either the blockwise Gibbs
method or the factorized approximation (Section 2.4)

end for
for all i = 1 . . . N do

Perform the M-step for {bi,wi}i≤N using separable convex optimization methods (Section 2.5)
end for

end while

are highly ambiguous may be unassigned in the early iterations, to avoid making mistakes
from which it might be difficult to recover. Given the assignments ai (ai = 1 for putative
excitatory cells, −1 for inhibitory, and 0 for neurons which have not yet been assigned) we
solve the convex, separable problem

(19) argmax
aiwij≥0,|wij |<L ∀i,j

Q(θ, θ(l))− λ
∑
ij

|wij |

which may be handled using the standard convex methods discussed above. Given the new
estimated connectivities w, we can re-assign the labels ai, or flip some randomly to check for
local optima. We have found this simple approach to be effective in practice.

2.6. Specific implementation notes. Pseudocode summarizing our approach is given in Al-
gorithm 1. As discussed in Section 2.3, the intrinsic parameters θ̃i may be initialized effectively
using the methods described in (Vogelstein et al., 2009); then the full parameter θ is esti-
mated via EM, where we use the embedded-chain-within-blockwise-Gibbs approach discussed
in Section 2.4 (or the cheaper factorized approximation described in Section 2.4.1) to obtain
the sufficient statistics in the E step and the separable convex optimization methods discussed
in Section 2.5 for the M step.

As emphasized above, the parallel nature of these EM steps is essential for making these
computations tractable. We performed the bulk of our analysis on a 256-processor cluster of
Intel Xeon L5430 based computers (2.66 GHz). For 10 minutes of simulated fluorescence data,
imaged at 30 Hz, calculations using the factorized approximation typically took 10-20 minutes
per neuron (divided by the number of available processing nodes on the cluster), with time
split approximately equally between (i) estimating the intrinsic parameters θ̃i, (ii) approxi-
mating the posteriors using the independent SMC method, and (iii) estimating the connectiv-
ity matrix, w. The hybrid embedded-chain-within-blockwise-Gibbs sampler was substantially
slower, up to an hour per neuron, with the Gibbs sampler dominating the computation time,
because we thinned the chain by a factor of five, following preliminary quantification of the
autocorrelation timescale of the Gibbs chain (data not shown).
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2.7. Simulating a neural population. To test the described method for inferring connec-
tivity from calcium imaging data, we simulated networks of spontaneously firing randomly
connected neurons according to our model, Eqs. (1-5), and also using other network models
(see section 3.4). Although simulations ran at 1 msec time discretization, the imaging rate
was assumed to be much slower: 5–200 Hz (c.f. Fig. 8 below).

Model parameters were chosen based on experimental data available in the literature for
cortical neural networks (Sayer et al., 1990; Braitenberg and Schuz, 1998; Gomez-Urquijo
et al., 2000; Lefort et al., 2009). More specifically, the network consisted of 80% excitatory
and 20% inhibitory neurons (Braitenberg and Schuz, 1998; Gomez-Urquijo et al., 2000), each
respecting Dale’s law (as discussed in section 2.5 above). Neurons were randomly connected to
each other in a spatially homogeneous manner with probability 0.1 (Braitenberg and Schuz,
1998; Lefort et al., 2009). Synaptic weights for excitatory connections, as defined by excitatory
postsynaptic potential (PSP) peak amplitude, were randomly drawn from an exponential
distribution with the mean of 0.5 mV (Lefort et al., 2009; Sayer et al., 1990). Inhibitory
connections were also drawn from an exponential distribution; their strengths chosen so as
to balance excitatory and inhibitory currents in the network, and achieve an average firing
rate of ≈ 5 Hz (Abeles, 1991). Practically, this meant that the mean strength of inhibitory
connections was about 10 times larger than that of the excitatory connections. PSP shapes
were modeled as an alpha function (Koch, 1999): roughly, the difference of two exponentials,
corresponding to a sharp rise and relatively slow decay (Sayer et al., 1990). We neglected
conduction delays, given that the time delays below ∼ 1 msec expected in the local cortical
circuit were far below the time resolution of our simulated imaging data.

Note that PSP peak amplitudes measured in vitro (as in, e.g., (Song et al., 2005)) cannot
be incorporated directly in Eq. (1), since the synaptic weights in our model — wij in Eq. (1)
— are dimensionless quantities representing the change in the spiking probability of neuron i
given a spike in neuron j, whereas PSP peak amplitude describes the physiologically measured
change in the membrane voltage of a neuron due to synaptic currents triggered by a spike in
neuron j. To relate the two, note that in order to trigger an immediate spike in a neuron that
typically has its membrane voltage Vb mV below the spiking threshold, roughly nE = Vb/VE

simultaneous excitatory PSPs with the peak amplitude VE would be necessary. Therefore, the
change in the spiking probability of a neuron due to excitatory synaptic current VE can be
approximately defined as

(20) δPE = VE/Vb

(so that δPEnE ≈ 1). Vb ≈ 15 mV here, while values for the PSP amplitude VE were chosen
as described above. Similarly, according to Eq. 1, the same change in the spiking probability
of a neuron i following the spike of a neuron j in the GLM is roughly

(21) δPE = [f(bi + wij)− f(bi)] τh,

where recall τh is the typical PSP time-scale, i.e. the time over which a spike in neuron j
significantly affects the firing probability of the neuron i. Equating these two expressions
gives us a simple method for converting the physiological parameters VE and Vb into suitable
GLM parameters wij .

Finally, parameters for the internal calcium dynamics and fluorescence observations were
chosen according to our experience with several cells analyzed using the algorithm of (Vogel-
stein et al., 2009), and conformed to previously published results (Yuste et al., 2006; Helmchen
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et al., 1996; Brenowitz and Regehr, 2007). Table 1 summarizes the details for each of the pa-
rameters in our model.

Table 1
Table of simulation parameters. E(λ) indicates an exponential distribution with mean λ, and Np(µ, σ2)
indicates a normal distribution with mean µ and variance σ2, truncated at lower bound pµ. Units (when

applicable) are given with respect to mean values (i.e., units are squared for variance).

Variable Value/Distribution Unit

Total neurons 10-500 #
Excitatory neurons 80 %
Connections sparseness 10 %
Baseline firing rate 5 Hz

Excitatory PSP peak height ∼ E(0.5) mV
Inhibitory PSP peak height ∼ −E(2.3) mV
Excitatory PSP rise time 1 msec
Inhibitory PSP rise time 1 msec
Excitatory PSP decay time ∼ N0.5(10, 2.5) msec
Inhibitory PSP decay time ∼ N0.5(20, 5) msec
Refractory time, wii ∼ N0.5(10, 2.5) msec

Calcium std. σc ∼ N0.4(28, 10) µM
Calcium jump after spike, Ac ∼ N0.4(80, 20) µM
Calcium baseline, Cb ∼ N0.4(24, 8) µM
Calcium decay time, τc ∼ N0.4(200, 60) msec
Dissociation constant, Kd 200 µM

Fluorescence scale, α 1 n/a
Fluorescence baseline, β 0 n/a
Signal-dependent noise, γ 10−3-10−5 n/a
Signal-independent noise, σF 4 · 10−3-4 · 10−5 n/a

3. Results. In this section we study the performance of our proposed network estimation
methods, using the simulated data described in section 2.7 above. Specifically, we estimated
the connectivity matrix using both the embedded-chain-within-blockwise-Gibbs approach and
the simpler factorized approximation. Figure 4 summarizes one typical experiment: the EM
algorithm using the factorized approximation estimated the connectivity matrix about as
accurately as the full embedded-chain-within-blockwise-Gibbs approach (r2 = 0.47 versus
r2 = 0.48). Thus in the following we will focus primiarily on the factorized approximation,
since this is much faster than the full blockwise-Gibbs approach (recall section 2.6).

3.1. Impact of coarse time discretization of calcium imaging data and scale factor of inferred
connection weights. A notable feature of the results illustrated in the left panel of Fig. 4 is
that our estimator is biased downwards by a roughly constant scale factor: our estimates ŵij

are approximately linearly related to the true values of wij in the simulated network, but the
slope of this linear relationship is less than one. At first blush, this bias does not seem like
a major problem: as we discussed in section 2.7, even in the noiseless case we should at best
expect our estimated coupling weights ŵij to correspond to some monotonically increasing
function of the true neural connectivities, as measured by biophysical quantities such as the
peak PSP amplitude. Nonetheless, we would like to understand the source of this bias more
quantitatively; in this section, we discuss this issue in more depth and derive a simple method
for correcting the bias.

The bias is largely due to the fact that we suffer a loss of temporal resolution when we
attempt to infer spike times from slowly-sampled fluorescence data. As discussed in (Vogel-
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Fig 4. Quality of the connectivity matrix estimated from simulated calcium imaging data. Inferred connection
weights ŵij are shown in a scatter plot versus real connection weights wij, with inference performed using the
factorized approximation, exact embedded-chain-within-blockwise-Gibbs approach, and true spike trains down-
sampled to the frame rate of the calcium imaging. A network of N = 25 neurons was used, firing at ≈ 5 Hz,
and imaged for T = 10 min at 60 Hz with intermediate eSNR ≈ 6 (see Eq. (6) and Figure 9 below). The
squared correlation coefficient between the connection weights calculated using the factorized approximation
and true connection weights was r2 = 0.47, compared with the embedded-chain-within-blockwise-Gibbs method’s
r2 = 0.48. For connection weights calculated directly from the true spike train down-sampled to the calcium
imaging frame rate we obtained r2 = 0.57. (For comparison, r2 = 0.71 for the connectivity matrix calculated
using the full spike trains with 1 ms precision; data not shown.) Here and in the following figures the gray
dashed line indicates unity, y = x. The inferred connectivity in the left panel shows a clear scale bias, which
can be corrected by dividing by the scale correction factor calculated in section 3.1 below (right panel). The
vertical lines apparent at zero in both subplots are due to the fact that the connection probability in the true
network was significantly less than one: i.e., many of the true weights wij are exactly zero.

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Time discretization, ms

S
ca

lin
g 

fa
ct

or

 

 

theor.
actual

Fig 5. The low frame rate of calcium imaging explains the scale error observed in the inferred connectivity
weights shown in Figure 4. A correction scale factor may be calculated analytically (thick line) as discussed
in the main text (Eq. 25). The scale error observed empirically (thin line) matches well with this theoretical
estimate. In the latter case, the scale error was calculated from the fits obtained directly from the true spike
trains, down sampled to different ∆, for a network of N = 25 neurons firing at ≈ 5 Hz and observed for T = 10
min. The error-bars indicate 95% confidence intervals for scale error at each ∆.

stein et al., 2009), we can recover some of this temporal information by using a finer time
resolution for our recovered spike trains than ∆, the time resolution of the observed fluores-
cence signal. However, when we attempted to infer w directly spike trains sampled from the
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posterior P [X|F] at higher-than-∆ resolution, we found that the inferred connectivity matrix
was strongly biased towards the symmetrized matrix (w + wT )/2 (data not shown). In other
words, whenever a nearly synchronous jump was consistently observed in two fluorescent
traces Fi(t) and Fj(t) (at the reduced time resolution ∆), the EM algorithm would typically
infer an excitatory bidirectional connection: i.e., both ŵij and ŵji would be large, even if only
a unidirectional connection existed between neurons i and j in the true network. While we
expect, by standard arguments, that the Monte Carlo EM estimator constructed here should
be consistent (i.e., we should recover the correct w in the limit of large data length T and
many Monte Carlo samples), we found that this bias persisted given experimentally-reasonable
lengths of data and computation time.

Therefore, to circumvent this problem, we simply used the original imaging time resolution
∆ for the inferred spike trains: note that, due to the definition of the spike history terms
hij in Eq. (3), a spike in neuron j at time t will only affect neuron i’s firing rate at time
t+∆ and greater. This successfully counteracted the symmetrization problem (and also sped
the calculations substantially), but resulted in the scale bias exhibited in Figure 4, since any
spikes that fall into the same time bin are treated as coincidental: only spikes that precede
spikes in a neighboring neuron by at least one time step will directly affect the estimates of
wij , and therefore grouping asynchronous spikes within a single time bin ∆ results in a loss
of information.

To estimate the magnitude of this time-discretization bias more quantitatively, we consider
a significantly simplified case of two neurons coupled with a small weight w12, and firing with
baseline firing rate of r = f(b). In this case an approximate sufficient statistic for estimating
w12 may be defined as the expected elevation in the spike rate of neuron one on an interval
of length T , following a spike in neuron two:

(22)
SS = E

[
t′+T∫
t′

n1(t)dt

∣∣∣∣ n2(t′) = 1, n2(t) = 0 ∀t ∈ (t′, t′ + T ]

]
≈ rT + f ′(b)w12τh,

where f ′(b) represents the slope of the nonlinear function f(.) at the baseline level b. This
approximation leads to a conceptually simple method-of-moments estimator,

(23) ŵ12 = (SS − rT )/f ′(b)τh.

Now, if the spike trains are down-sampled into time-bins of size ∆, we must estimate the
statistic SS with a discrete sum instead:

(24)

SSds = E

[
t′+∆+T∑
t=t′+∆

nds
1 (t)

∣∣∣∣ nds
2 (t′) = 1, nds

2 (t) = 0 ∀t ∈ (t′, t′ + T ]

]
≈ rT + f ′(b)

∆∫
0

dt′

∆

∆+T∫
∆

w12 exp(−(t− t′)/τh)dt

≈ rT + f ′(b)w12
1−exp(−∆/τh)

∆/τ2
h

.

nds(t) here are down-sampled spikes, i.e. the spikes defined on a grid t = 0,∆, 2∆, . . .. In the
second equality we made the approximation that the true position of the spike of the second
neuron, nds

2 (t′), may be uniformly distributed in the first time-bin [0,∆], and the discrete
sum over t is from the second time-bin [∆, 2∆] to [T , T + ∆], i.e. over all spikes of the first



INFERRING NEURONAL CONNECTIVITY FROM CALCIUM IMAGING 17

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Actual connection weights

In
fe

rr
ed

 c
on

ne
ct

io
n 

w
ei

gh
ts

No prior

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Actual connection weights

In
fe

rr
ed

 c
on

ne
ct

io
n 

w
ei

gh
ts

Sparse Prior

Fig 6. Imposing a sparse prior on connectivity improves our estimates. Scatter plots indicate the connection
weights wij reconstructed using no prior (r2 = 0.64; left panel) and a sparse prior (r2 = 0.85; right panel)
vs. the true connection weights in each case. These plots were based on a simulation of N = 50 neurons firing
at ≈ 5 Hz, imaged for T = 10 min at 60 Hz, with eSNR ≈ 10. Clearly, the sparse prior reduces the relative
error, as indicated by comparing the relative distance between the data points (black dots) to the best linear fit
(gray dash-dotted line), at the expense of some additional soft-threshold bias, as is usual in the L1 setting.

neuron that occurred in any of the strictly subsequent time-bins up to T + ∆. Forming a
method-of-moments estimator as in Eq. 23 leads to a biased estimate:

(25) ŵds
12 ≈

1− exp(−∆/τh)
∆/τh

ŵ12,

and somewhat surprisingly (given the rather crude nature of these approximations), this
corresponds quite well with the scale bias we observe in practice. In Figure 5 we plot the scale
bias from Eq. 25 versus that empirically deduced from our simulations for different values of
∆; we see that Eq. 25 describes the observed scale bias fairly well. Thus we can divide by
this analytically-derived factor to effectively correct the bias of our estimates, as shown in the
right panel of Fig. 4.

3.2. Impact of prior information on the inference. Next we investigated the importance of
incorporating prior information in our estimates. We found that imposing a sparse prior (as
described in section 2.5) significantly improved our results. For example, Fig. 6 illustrates a
case in which our obtained r2 increased from 0.64 (with no L1 penalization in the M-step) to
0.85 (with penalization; the penalty λ was chosen approximately as the inverse mean absolute
value of wij , which is known here because we prepared the network simulations but is available
in practice given the previous physiological measurements discussed in section 2.7). See also
Fig. 10 below. Furthermore, the weights estimated using the sparse prior more reliably provide
the sign (i.e., excitatory or inhibitory) of each presynaptic neuron in the network (Figure 7).

Incorporation of Dale’s law, on the other hand, only leads to an ≈ 10% change in the
estimation r2 in the absence of an L1 penalty, and no significant improvement at all in the
presence of an L1 penalty (data not shown). Thus Dale’s prior was not pursued further here.

3.3. Impact of experimental factors on estimator accuracy. Next we sought to quantify
the minimal experimental conditions necessary for accurate estimation of the connectivity
matrix. Figure 8 shows the quality of the inferred connectivity matrix as a function of the
imaging frame rate, and indicates that imaging frame rates ≥ 30 Hz are needed to achieve
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Fig 7. The distributions of inferred connection weights using no prior (left panel) and a sparse prior (right
panel) vs. true distributions. When the sparse prior is enforced, zero weights are recovered with substantially
higher frequency (black lines), thus allowing better identification of connected neural pairs. Likewise, excitatory
and inhibitory weights are better recognized (red and blue lines, respectively), thus allowing accurate classifica-
tion of neurons as excitatory or inhibitory. The normalized Hamming distance between the inferred and true
connectivity matrix here (defined as H(w, ŵ) = [N(N − 1)]−1

∑
ij
|sign(wij)− sign(ŵij)|, with the convention

sign(0) = 0) was 0.06. Distributions are shown for a simulated population of N = 200 neurons firing at ≈ 5
Hz and imaged for T = 10 min at 60 Hz, with eSNR ≈ 10. Note that the peak at zero in the true distributions
(black dashed trace) corresponds to the vertical line visible at zero in Figs. 4 and 6.

meaningful reconstruction results. This matches nicely with currently-available technology;
as discussed in the introduction, 30 or 60 Hz imaging is already in progress in a number of
laboratories (Nguyen et al., 2001; Iyer et al., 2006; Salome et al., 2006; Reddy et al., 2008),
though in some cases higher imaging rates come at a cost in the signal-to-noise ratio of the
images or in the number of neurons that may be imaged simultaneously. Similarly, Figure 9
illustrates the quality of the inferred connectivity matrix as a function of the effective SNR
measure defined in Eq. (6).

Finally, Figure 10 shows the quality of the inferred connectivity matrix as a function of the
experimental duration. The minimal amount of data for a particular r2 depended substantially
on whether the sparse prior was enforced. In particular, when not imposing a sparse prior,
the calcium imaging duration necessary to achieve r2 = 0.5 for the reconstructed connectivity
matrix in this setting was T ≈ 10 min, and r2 = 0.75 was achieved at T ≈ 30 min. With a
sparse prior, r2 > 0.7 was achieved already at T ≈ 5 min. Furthermore, we observed that the
accuracy of the reconstruction did not deteriorate dramatically with the size of the imaged
neural population: roughly the same reconstruction quality was observed (given a fixed length
of data) for N varying between 50–200 neurons. These results were consistent with a rough
Fisher information computation which we performed but have omitted here to conserve space.

3.4. Impact of strong correlations and deviations from generative model on the inference.
Estimation of network connectivity is fundamentally rooted in observing changes in the spike
rate conditioned on the state of the other neurons. Considered from the point of view of esti-
mating a standard GLM, it is clear that the inputs to our model (1) must satisfy certain basic
identifiability conditions if we are to have any hope of accurately estimating the parameter
w. In particular, we must rule out highly multicollinear inputs {hij(t)}: speaking roughly,
the set of observed spike trains should be rich enough to span all N dimensions of wi, for
each cell i. In the simulations pursued here, the coupling matrix {wij}i6=j was fairly weak and
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Fig 8. Accuracy of the inferred connectivity as a function of the frame rate of calcium imaging. A population
of N = 25 neurons firing at ≈ 5 Hz and imaged for T = 10 min was simulated here, with eSNR ≈ 10. At 100
Hz, r2 saturated at the level r2 ≈ 0.7 achieved with ∆ → 0.
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Fig 9. Accuracy of inferred connectivity as a function of effective imaging SNR (eSNR, defined in Eq. 6), for
frame rates of 15, 33, and 66 Hz. Neural population simulation was the same as in Figure 8. Vertical black
lines correspond to the eSNR values of the two example traces in Figure 3, for comparison.

neurons fired largely independently of each other: see Fig. 11, upper left for an illustration.
In this case of weakly-correlated firing, the inputs {hij(t)} will also be weakly correlated, and
the model should be identifiable, as indeed we found. Should this weak-coupling condition
be violated, however (e.g., due to high correlations in the spiking of a few neurons), we may
require much more data to obtain accurate estimates due to multicollinearity problems.

To explore this issue, we carried out a simulation of a hypothetical strongly coupled neural
network, where in addition to the physiologically-relevant weak sparse connectivity discussed
in section 2.7 we introduced a sparse random strong connectivity component. More specifi-
cally, we allowed a fraction of neurons to couple strongly to the other neurons, making these
“command” neurons which in turn could strongly drive the activity of the rest of the popula-
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Fig 10. Accuracy of inferred connectivity as a function of the imaging time and neural population size. Incor-
porating a sparse prior dramatically increases the reconstruction quality (dashed lines). When the sparse prior
is imposed, T = 5 min is sufficient to recover 70% of the variance in the connection weights. Incorporating
Dale’s prior leads to only marginal improvement (dotted line). Furthermore, reconstruction accuracy does not
strongly depend on the neural population size, N . Here, neural populations of size N = 100 and 200 are shown
(black and gray, respectively), with eSNR ≈ 10 and 60 Hz imaging rate in each case.

tion (MacLean et al., 2005). The strength of this strong connectivity component was chosen
to dynamically build up the actual firing rate from the baseline rate of f(b) ≈ 1 Hz to ap-
proximately 5 Hz. Such a network showed patterns of activity very different from the weakly
coupled networks inspected above (Figure 11, top right). In particular, a large number of
highly correlated events across many neurons were evident in this network. As expected, our
algorithm was not able to identify the true connectivity matrix correctly in this scenario (Fig-
ure 11, bottom right panel). For ease of comparison, the left panels show a “typical” network
(i.e., one lacking many strongly coupled neurons), and its associated connectivity inference.

On the other hand, our inference algorithm showed significant robustness to model mis-
specifcation, i.e., deviations from our generative model. One important such deviation is vari-
ation in the time scales of PSPs in different synapses. Up to now, all PSP time-scales were
assumed to be the same, i.e., {τh

ij}i,j≤N = τh. In Figure 12 we introduce additional variability
in τh from one neuron to another. Variability in τh results in added variance in the estimates
of the connectivity weights, wij , through the τh-dependence of the scaling factor Eq. (25).
However, we found that this additional variance was relatively insignificant in cases where τh

varied up to 25% from neuron to neuron. We also found that inference was robust to changes
in the sparseness of the underlying connectivity matrix: we simulated neural populations of
size N = 25 and N = 50 neurons, as above, with connection sparseness varying from 5%
(very sparse) to 100% (all-to-all), and in all cases the performance of our algorithm remained
stable, with r2 ≈ 0.9 for the estimate of the connected weights, wij 6= 0 (data not shown).
Finally, simulations with more biophysically-based conductance-driven noisy integrate-and-
fire network models (Vogels and Abbott, 2005) led to qualitatively similar results, further
establishing the robustness of these methods; again, details are omitted to conserve space.

4. Discussion. In this paper we develop a Bayesian approach for inferring connectivity
in a network of spiking neurons observed using calcium fluorescent imaging. A number of
previous authors have addressed the problem of inferring neuronal connectivity given a fully-
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Fig 11. Diversity of observed neural activity patterns is required for accurate circuit inference. Here, 15 sec of
simulated spike trains for a weakly coupled network (top left panel) and a network with strongly coupled compo-
nent (top right panel) are shown. In weakly coupled networks, spikes are sufficiently uncorrelated to give access
to enough different neural activity patterns to estimate the weights w. In a strongly coupled case, many highly
synchronous events are evident (top right panel), thus preventing observation of a sufficiently rich ensemble
of activity patterns. Accordingly, the connectivity estimates for the strongly coupled neural network (bottom
right panel) does not represent the true connectivity of the circuit, even for the weakly coupled component. This
is contrary to the weakly-coupled network (bottom left panel) where true connectivity is successfully obtained.
Networks of N = 50 neurons firing at ≈ 5 Hz and imaged for T = 10 min at 60 Hz were used to produce this
figure; eSNR ≈ 10.

observed set of spike trains in a network (Brillinger, 1988; Chornoboy et al., 1988; Brillinger,
1992; Paninski et al., 2004; Paninski, 2004; Truccolo et al., 2005; Rigat et al., 2006; Nykamp,
2007; Kulkarni and Paninski, 2007; Vidne et al., 2009; Stevenson et al., 2009; Garofalo et al.,
2009; Cocco et al., 2009), but the main challenge in the present work is the indirect nature
of the calcium imaging data, which provides only noisy, low-pass filtered, temporally sub-
sampled observations of spikes of individual neurons. To solve this problem, we develop a
specialized blockwise-Gibbs sampler that makes use of an embedded Markov chain method
due to (Neal et al., 2003). The connectivity matrix is then inferred in an EM framework; the
M-step parallelizes quite efficiently and allows for the easy incorporation of prior sparseness
information, which significantly reduces data requirements in this context. We have found
that these methods can effectively infer the connectivity in simulated neuronal networks, given
reasonable lengths of data, computation time, and assumptions on the biophysical network
parameters.

To our knowledge, we are the first to address this problem using the statistical deconvolu-
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Fig 12. Inference is robust to deviations of the data from our generative model. With up to 25% variability
allowed in PSP time scales τh (right panel), our algorithm provided reconstructions of almost the same quality
as when all τh’s were the same (left panel). Simulation conditions were the same as in Figure 8, at 60 Hz
imaging rate.

tion methods and EM formulation described here (though see also (Roxin et al., 2008), who
fit simplified, low temporal resolution transition-based models to the 10 Hz calcium data ob-
tained by (Ikegaya et al., 2004)). However, we should note that (Rigat et al., 2006) developed
a closely related approach to infer connectivity from low-SNR electrical recordings involving
possibly-misclassified spikes (in contrast to the slow, lowpass-filtered calcium signals we dis-
cuss here). In particular, these authors employed a very similar Bernoulli GLM and developed
a Metropolis-within-Gibbs sampler to approximate the necessary sufficient statistics for their
model. In addition, (Rigat et al., 2006) develop a more intricate hierarchical prior for the
connectivity parameter w; while we found that a simple L1 penalization was quite effective
here, it will be worthwhile to explore more informative priors in future work.

A number of possible improvements of our method are available. One of the biggest chal-
lenges for inferring neural connectivity from functional data is the presence of indirect inputs
from unobserved neurons (Nykamp, 2005; Nykamp, 2007; Kulkarni and Paninski, 2007; Vidne
et al., 2009; Vakorin et al., 2009): it is typically impossible to observe the activity of all neurons
in a given circuit, and correlations in the unobserved inputs can mimic connections among
different observed neurons. Developing methods to cope with such unobserved common inputs
is currently an area of active research, and should certainly be incorporated in the methods
we have developed here.

Several other important directions for future work are worth noting. First, recently-developed
photo-stimulation methods for activating or deactivating individual neurons or sub-populations
(Boyden et al., 2005; Szobota et al., 2007; Nikolenko et al., 2008) may be useful to increase
statistical power in cases where the circuit’s unperturbed activity may not allow reliable deter-
mination of a circuit’s connectivity matrix; in particular, by utilizing external stimulation, we
can in principle choose a sufficiently rich experimental design (i.e., a sample of input activity
patterns) to overcome the multicollinearity problems discussed in the context of Fig. 11.

Second, improvements of the algorithms for faster implementation are under development.
Specifically, fast non-negative optimization-based deconvolution methods may be a promising
alternative (Vogelstein et al., 2008; Paninski et al., 2009) to the SMC approach used here.
In addition, modifications of our generative model to incorporate non-stationarities in the
fluorescent signal (e.g., due to dye bleaching and drift) are fairly straightforward.
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Third, a fully Bayesian algorithm for estimating the posterior distributions of all the param-
eters (instead of just the MAP estimate) would be of significant interest. Such a fully-Bayesian
extension is conceptually simple: we just need to extend our Gibbs sampler to additionally
sample from the parameter θ given the sampled spike trains X. Since we already have a method
for drawing X given θ and F, with such an additional sampler we may obtain samples from
P (X, θ|F) simply by sampling from X ∼ P (X|θ,F) and θ ∼ P (θ|X), via blockwise-Gibbs.
Sampling from the posteriors P (θ|X) in the GLM setting is quite tractable using hybrid
Monte Carlo methods, since all of the necessary posteriors are log-concave (Ishwaran, 1999;
Gamerman, 1997; Gamerman, 1998; Ahmadian et al., 2009).

Finally, most importantly, we are currently applying these algorithms in preliminary exper-
iments on real data. Checking the accuracy of our estimates is of course more challenging in
the context of non-simulated data, but a number of methods for partial validation are avail-
able, including multiple-patch recordings (Song et al., 2005), photostimulation techniques
(Nikolenko et al., 2007), and fluorescent anatomical markers which can distinguish between
different cell types (Meyer et al., 2002) (i.e., inhibitory vs. excitatory cells; c.f. Fig. 7). We
hope to present our results in the near future.
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