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Part III

Estimation theory
We’ve established some solid foundations; now we can get to what is really
the heart of statistics.
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Point estimation

“Point estimation” refers to the decision problem we were talking about last
class: we observe data Xi drawn i.i.d. from pθ(x)16, and our goal is to
estimate the parameter θ ∈ Θ from the data. An “estimator” is any decision
rule, that is, any function from the data space XN into the parameter space
Θ. E.g. the sample mean, in the Gaussian case. Or the function that assigns
“2” to every possible observed data sample.

Bias and variance17

There are two important functions associated with any estimator θ̂ that are
useful as a thumbnail sketch of how well the estimator is doing: the “bias”
Bθ̂(θ) =

Eθ(θ̂−θ) =

∫ ∞

−∞
...

∫ ∞

−∞

N
∏

i=1

pθ(Xi)

(

θ̂({X1, X2, ...XN})−θ
) N

∏

i=1

dXi = Eθ(θ̂)−θ

and the variance
Vθ̂(θ) = Vθ(θ̂)

There is a very useful relationship between the bias, variance, and the
mean-square error (MSE) of any estimator. Using the usual rules for expec-
tations of squares, it’s easy to show that the square error decomposes into a
bias and variance term:

Eθ

(

(θ − θ̂)2

)

= Bθ̂(θ)
2 + Vθ̂(θ)

So the MSE of an estimator can be simply described as a sum of a term
measuring how far off the estimator is “on average” (not average square) and
a term measuring the variability of the estimator.

16Note that this is a huge assumption, or rather set of assumptions. We assume that
the data is mutually independent — that is, seeing one data point doesn’t affect the other
data points at all — and even more strongly, that the true underlying distribution of
the data happens, rather too conveniently, to some easy-to-analyze family of distributions
pθ(x), where θ is some simple parameter that tells us everything we need to know about
the data. The message is to take all of the following with a grain of salt: this i.i.d. story
is a simple, tractable model of the data — while it’s a very helpful model, as we’ll see, it’s
important to remember that in 99% of cases it’s something of a caricature.

17HMC 4.1
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Note that both the bias and variance are functions of θ (and are there-
fore usually unknown, although we will see some exceptions to this below);
the bias could be positive for some parameters but negative for others, for
example.

Here’s an example: let xi be i.i.d. coin flips from some coin that has p
probability of coming up heads. We want to estimate p. Then it’s easy to
compute the bias if we take our estimator to be the sample mean number of
heads: we just need to compute

EBN,p
(n/N) = p.

Therefore the bias is zero, no matter what p is. The variance is also easy
to compute, if we recall the binomial variance and use our scaling rule for
variance:

VBN,p
(n/N) =

1

N
p(1 − p).

Here the variance of our estimator depends on the parameter p.
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Unbiased, minimum-variance estimators

This bias-variance decomposition leads to another possible way to choose
between all possible admissible estimators. (Recall that we discussed two
such principles before, the Bayes — minimum average error — principle and
the minimax — minimum worst-case error.)

Here’s a third: choose the best unbiased estimator. That is, choose an
estimator θ̂ such that

Bθ̂(θ) = 0 ∀θ,

and such that the variance is minimized over the class of all such unbiased
estimators. Unbiased estimators are right “on average,” which is not a bad
thing to aim for (although the condition of exactly zero bias turns out to
be pretty strong, ruling out a lot of otherwise good estimators, so it’s much
more questionable whether we should exclude all estimators with any bias
whatsoever).

Exercise 52: Is the sample mean unbiased for Poisson data?
Exercise 53: Provide an unbiased estimator for b if the data is U([0, b]).
Exercise 54: Provide an unbiased estimator for σ2, the variance param-

eter of the Gaussian distribution N (µ,σ2): 1) in the case that µ is known;
2) in the case that µ is unknown.

Note that this unbiasedness condition rules out trivial estimators such
as θ̂(D) ≡ 2 ∀D, which is nice. In fact, in some situations we’ll see that a
“uniformly minimum-variance unbiased” estimator (UMVUE) exists: such
an estimator satisfies

Vθ̂UMV U
(θ) ≤ Vθ̂(θ) ∀θ,

for any unbiased estimator θ̂; therefore an UMVUE dominates all other un-
biased estimators under the squared-error cost function. In this case, it
obviously makes sense to use the UMVUE.

One last interesting thing to note: when a UMVUE does exist, it is
automatically unique. Suppose U1 and U2 are both UMVUE, with variance
V (θ), then the average U = (U1 + U2)/2 is also an unbiased estimator. Now
let’s look at the new function W = (U1 − U2)/2. Now

VU + VW =
VU1 + VU2

2
= VU1 ≤ VU .

This means VW = 0, i.e., U1 = U2 with probability 1.
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Exercise 55: Is the sample mean from a Gaussian with known variance
(say, N (µ, 1)) a UMVUE for the mean parameter µ? If not, can you think
of one, or prove that none exists? (Hint: try the case N = 1, then N = 2,
first.)

Exercise 56: Is the sample maximum from a uniform distribution U(a, b)
a UMVUE for the maximum parameter b? If not, can you think of one, or
prove that none exists? (Hint: try the case N = 1, then N = 2, first.)

Reparameterization

One very important thing to note about the unbiasedness property is that
it is not invariant with respect to reparameterizations. That is, if we relabel
the parameters, the estimator might not remain unbiased. This is, in fact,
one of the strongest arguments that has been raised against the idea of re-
stricting our attention to unbiased estimators. Exercise 57: Is the sample
mean an unbiased estimator of

√
p, where p is the parameter of a binomial

distribution? What about the square root of the sample mean: is p̂ =
√

n/N
an unbiased estimator of

√
p?

The other big drawback, as mentioned above, is that unbiased estimators
don’t necessarily exist. Exercise 58: Does an unbiased estimator exist for
log p, where p is the parameter of a binomial distribution? If so, supply one;
if not, prove it.
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Maximum likelihood estimators (MLE)

Figure 11: Fisher.

The idea of maximum likelihood is perhaps the most important concept
in parametric estimation. It is straightforward to describe (if not always to
implement), it can be applied to any parametric family of distributions (that
is, any class of distributions that is indexed by a finite set of parameters
θ1, θ2, ..., θd), and it turns out to be optimal in an asymptotic sense we will
develop more fully in a couple lectures.

The basic idea is to choose the parameter θ̂ML under which the observed
data, D, was “most likely.” I.e., choose the θ̂ML which maximizes the likeli-
hood, pθ(D). Let’s think about this in terms of Bayes’ rule: if we start with
some prior on the parameters, p(θ), then the posterior on the parameters
given the data is

p(θ|D) =
1

Z
p(θ)p(D|θ) =

1

Z
p(θ)pθ(D),

where Z = p(D) =
∫

p(θ)pθ(D)dθ is a constant ensuring the normalization of
the posterior. So if we ignore the prior p(θ) on the right hand side (or assume
p(θ) is roughly constant in θ), then maximizing the likelihood is roughly the
same as maximizing the posterior probability density of θ, given the data.

It’s clear that this can be applied fairly generally. But how do we actu-
ally compute the maximum? Well, we can ask a computer to do it, using a
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numerical optimization scheme. Sometimes we can find the optimum ana-
lytically. For example, assume (as usual) that we have i.i.d. data Xi. This
means that

pθ(D) =
∏

i

pθ(Xi).

This suggests that we maximize the log-likelihood instead, since sums are
easier to work with than products:

θ̂ML = arg max
θ

pθ(D) = arg max
θ

∏

i

pθ(Xi) = arg max
θ

∑

i

log pθ(Xi).

Often we can take the gradient of

L(θ) ≡
∑

i

log pθ(Xi)

and set it to zero to obtain a local optimum; then we can sometimes addi-
tionally argue that the optimum is unique. Exercise 59: Give a simple con-
dition, in terms of the second derivative of the log-likelihood d2 log pθ(x)/dθ2,
ensuring that the likelihood has a unique global maximum as a function of
θ ∈ Θ.

Here’s an example: let xi be exponential. Then

pθ({xi}) =
∏

i

θe−θxi ,

so if we set the derivative of the loglikelihood equal to zero, we get

0 =
∂

∂θ

(

N log θ −
N

∑

i=1

θxi

)

∣

∣

∣

∣

θ=θ̂MLE

=
N

θ̂MLE

−
∑

i

xi,

so we have that

θ̂MLE =

(

1

N

∑

i

xi

)−1

;

the MLE for θ is just the inverse of the sample mean of xi. This makes sense:
if we see that the sample mean is very close to zero, then it seems likely that
θ is large.



Paninski, Intro. Math. Stats., December 8, 2005 56

Exercise 60: Find the MLE for (µ,σ2) for Gaussian data, given N
i.i.d. data samples xi. Is the MLE biased? If so, compute the bias.

Exercise 61: Find the MLE for (a, b) for uniform U(a, b) data, given N
i.i.d. data samples xi. Is the MLE biased? If so, compute the bias.

Invariance

One more important point about the MLE is that it is invariant with respect
to reparameterizations. That is, if θ̂ML is an MLE for θ, then g(θ̂ML) is an
MLE for g(θ) whenever g(.) is invertible. For example, the MLE for σ is just
√

σ̂2
ML. Exercise 62: Prove this.

Regression18

One important application of ML estimation is to regression analysis. Un-
fortunately we don’t have time to go very deeply into this very important
topic; check out W4315 for more information.

The basic model for regression is as follows: we see paired data {Xi, Yi},
and we have reason to believe Xi and Yi are related. In fact, we can hypoth-
esize a model:

Yi = aXi + ei,

where ei is some (unobserved) i.i.d. noise source; i.e., Y is given by aX,
a linearly-scaled version of X, but contaminated by additive noise. Let’s
assume that ei ∼ N (0,σ2). What is the MLE for the parameters (a,σ2)?

Well, first we write down the loglikelihood.

L(a,σ2) =
∑

i

logN (0,σ2)(Yi − aXi)

=
∑

i

− log(σ
√

2π) − (Yi − aXi)2

2σ2
.

Now if we take the gradient and set it to zero, we get two equations (one for
a and one for σ2:

∑

i

Xi(Yi − âMLXi) = 0,

18HMC 12.3
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and
∑

i

− 1

σ2
+

(Yi − aXi)2

(σ2)2
= 0.

So

âML =

∑

i XiYi
∑

i XiXi

and

σ̂2
ML =

∑N
i=1(Yi − aXi)2

N
,

both of which have a fairly intuitive interpretation.
Again, check out W4315 to learn more about what to do when X is multi-

dimensional, when more complicated (nonlinear) relationships hold between
X and Y , when ei is not normal or even i.i.d., etc.

Robustness

One very important point is that the MLE depends strongly on the para-
metric family chosen. For example, if your data is actually Cauchy, but you
apply the MLE assuming Gaussian data, then you’re not going to do very
well. (Exercise 63: Why?) This is an extreme case, but a lot of work on
the “robustness” of the MLE indicates that things can go fairly badly wrong
even when your data is “mostly” Gaussian (e.g., when data are drawn from
a “mixture” distribution

∑

aipi(x),

where the mixture weights ai are positive and sum to one; think e.g. of a
Gaussian distribution for p1 mixed with some occasional “outliers,” a2 < a1,
with p2 having heavier tails than p1). Since, of course, we don’t know a priori
what distribution our data is drawn from, this is a bit of a problem. If there’s
time at the end of the semester after developing the basic theory, we’ll return
to this robustness question. If not, of course, feel free to look up this topic
on your own; see 12.1-12.2 in HMC for a start.
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Sufficiency19

Let’s look more closely at this likelihood idea. One thing that we saw was
that not every bit of the data really mattered to our estimate. For example,
if we have i.i.d. data, it doesn’t really matter what order the data appeared
in. So we can throw out the order of the data and do inference given the
unordered data just as well.

Similarly, se saw that we didn’t need to remember everything about Gaus-
sian data, just the sample mean and sample variance (or equivalently, the
sample mean and sample mean square, since we can derive one from the
other), since the likelihood depends on the data only through these statis-
tics:

L(µ,σ2) =
∑

i

logN (µ,σ2)(Xi)

=
∑

i

− log(σ
√

2π) − (Xi − µ)2

2σ2

= −N log(σ
√

2π) − 1

2σ2

(

∑

i

X2
i − 2µ

∑

i

Xi + Nµ2

)

.

This is quite a savings: we’ve compressed N data points into just two.
This turns out to be a pretty common phenomenon, if we think about

it. We’re led to a definition: Any function T (D) of the data D (and only
of the data D) is called a “statistic.” A statistic is called sufficient for the
parameter θ if we can split the data into two parts: 1) the sufficient statistic,
and 2) the aspects of the data that have nothing to do with estimating θ.

More mathematically,

pθ(D) = F (θ, T (D))G(D),

for some functions F (.) and G(.). This is equivalent (although we’ll skip the
proof) to saying that the conditional distribution of the data D, given T (D),
does not depend on θ at all. That is, the function

pθ(D|T ) =
pθ(T (D)|D)pθ(D)

pθ(T (D))
=

pθ(D)

pθ(T (D))

19HMC 7.
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does not depend on θ.
(Yet another way of saying this: θ — T — D is a “Markov chain”: D is

conditionally independent of θ given T , for any prior distribution on θ, i.e.

p(θ, D|T ) = p(θ|T )p(D|T ).)

Here are some more examples:

• Binomial data: if xi = 1 or 0 depending on if the i-th i.i.d. coin flip
came up heads or tails, then

pθ({xi}) =

(

N
∑

i xi

)

p
P

i xi(1 − p)N−
P

i xi ;

from this we can easily see that n =
∑

i xi is sufficient.

• If we have N i.i.d. Poisson observations, then

pθ({xi}) =
∏

i

e−θ θ
xi

xi!
= e−Nθ θ

P

i xi

∏

i(xi!)
,

and once again
∑

i xi is sufficient.

• For uniform U [(0, θ]) data,

pθ({xi}) =
∏

i

1[θ≥xi]
1

θ
=

1

θN
1[θ≥maxi xi],

i.e., maxi xi is sufficient.

• For uniform U [(θ, θ + 1]) data,

pθ({xi}) = 1[θ≤mini xi]1[θ+1≥maxi xi]

i.e., the pair (mini xi, maxi xi) is sufficient (even though there is only
one parameter θ).

Exercise 64: What is a sufficient statistic for exponential data, xi ∼
exp(λ)?

Exercise 65: What is a sufficient statistic for uniform data, xi ∼ U([a, b])?
Exercise 66: What is a sufficient statistic for Gaussian data, xi ∼

N (0, θ)? (I.e., the mean is known but the variance is not.)
A couple things to note:
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• The MLE can only depend on the data through sufficient statistics,
since

arg max
θ

pθ(D) = arg max
θ

F (θ, T (D))G(D) = arg max
θ

F (θ, T (D)).

Exercise 67: Prove the following statement (if true), or (if false) give
a counterexample and salvage the statement if possible. “If the MLE
is unique, it must necessarily be a function of any sufficient statistic.”

• For similar reasons, Bayes estimators only depend on the data through
sufficient statistics. Exercise 68: Show this using Bayes’ rule.

• Sufficiency is only defined in the context of a parametric family. That
is, a statistic may be sufficient for one parametric family but not for
another one. Exercise 69: Give an example of this.

• any invertible function (relabeling) of a sufficient statistic is itself suf-
ficient. (Hence sufficient statistics are very nonunique.) Exercise 70:
Prove this using the factorization definition of sufficiency.

Minimal sufficiency

This last point leads to another important concept. A sufficient statistic is
minimal if it can be written as a function of every other conceivable sufficient
statistic. In a sense, minimal statistics have all the redundancy compressed
out — there’s nothing irrelevant left to throw out.

In a sense, anything that doesn’t change the likelihood can be thrown
out, as the following simplification of a theorem (which we won’t prove) by
Lehmann-Scheffé shows:

Theorem 3. T is minimal sufficient if and only if the following two state-
ments are equivalent:

1. For any data samples D and D′,

pθ(D)

pθ(D′)
is constant in θ

2. T (D) = T (D′).
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This condition is often much easier to check than whether a given statistic
is a function of every other sufficient statistic.

Example: xi ∼ exp(θ). Then

pθ(D) =
N
∏

i=1

θ exp(−θxi) = θN exp(−θ
N

∑

i=1

xi)

for xi > 0 ∀i. Clearly
∑

xi is sufficient; is it minimal? Let’s apply the above
theorem: choose another arbitrary data sample, D′ = {x′

1, x
′
2, ..., x

′
N}. Now

we can see that
pθ(D)

pθ(D′)
= exp

[

θ(
∑

x′
i −

∑

xi)
]

is constant as a function of θ if and only if
∑

xi =
∑

x′
i. Thus

∑

xi is a
minimal sufficient statistic; this was much easier to check than whether

∑

xi

was a function of all other possible sufficient stats! Conversely, let’s look at
a sufficient statistic which is not minimal, namely the full data D. Here it’s
clear that 2 =⇒ 1 but 1 does not imply 2; hence, the full data D is not
minimal.

Here’s another one. Recall that (mini xi, maxi xi) was sufficient for uni-
form U [(θ, θ+ 1]) data. It’s clear from this theorem that this statistic is also
minimal.

We’ll see more examples in a moment, when we discuss exponential fam-
ilies.

Exercise 71: Let x ∼ N (0,σ2) (i.e., the mean is known but the variance
is not). Is |x| sufficient for σ2? If so, is it minimal?

Exercise 72: Let xi be drawn i.i.d. from a density in a “location family”;
that is, we know f(x) and we know pθ(x) = f(x − θ), we just want to know
θ. Can you come up with a minimal sufficient statistic for θ (and, of course,
prove that this statistic is minimal sufficient)? (Hint: the order statistics
might be useful here, as it’s intuitively clear that we don’t need to remember
what order the data actually came in.)

Rao-Blackwell theorem20

Not only does restricting our attention to sufficient statistics make life easier;
it also improves (or at least can’t hurt) our estimation accuracy:

20HMC 7.3
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Figure 12: Rao and Blackwell.

Theorem 4 (Rao-Blackwell).

E[g(E(θ̂|T ) − θ)] ≤ E[g(θ̂ − θ)]

for any estimator θ̂, convex error function g, and sufficient statistic T . In
particular,

E[(E(θ̂|T ) − θ)2] ≤ E[(θ̂ − θ)2]

In words, take any estimator θ̂. Then form the estimator E(θ̂|T ) (note
that E(θ̂|T ) is a bona fide statistic — that is, doesn’t depend on θ — if T is
sufficient). The theorem says that the risk of E(θ̂|T ) is never worse (and in
practice, often better) than that of the original estimator θ̂, as long as the
loss function g is convex. Also note that E(θ̂|T ) is unbiased whenever θ̂ is
(Exercise 73: Why?).

We’ll prove the special (g(u) = u2) case to give a sense of what’s going
on here. Just write out E[(θ̂ − θ)2]:

E[(θ̂ − θ)2] = ET

(

E[(θ̂ − θ)2|T ]

)

= ET [(E(θ̂|T ) − θ)2] + ET

(

E[(θ̂ − E(θ̂|T ))2]

)

≥ ET [(E(θ̂|T ) − θ)2].
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Exercise 74: Prove the general case using Jensen’s inequality and the
rules for combining conditional expectations.

It’s worth noting that a very similar proof establishes the important fact
we’ve used a couple times now, that the optimal Bayesian estimator under
square loss is the conditional expectation of θ given the data. I’ll leave the
proof as an exercise.

Also, the proof doesn’t seem to rely directly on sufficiency — the inequal-
ities above hold for any statistic T , not just for sufficient T . The point to
remember, again, is that if T is not sufficient then E(θ̂|T ) is not guaranteed
to even be a valid statistic.

Exponential families21

Let’s talk about a class of statistical families whose sufficient statistics are
very easy to describe. We say a parametric family is an “exponential family”
if

pθ(x) =







exp

(

f(θ)k(x) + s(x) + g(θ)

)

if a < x < b

0 otherwise,

for some −∞ ≤ a, b ≤ ∞ (note that a and b don’t depend on θ).
An example: x ∼ exp(θ).

pθ(x) = exp([−θx] + [0] + [log θ]),

from which we can read off f(θ), k(x), s(x), and g(θ).
Another example: N (θ,σ2) (σ2 known). After a little manipulation, we

can write

pθ(x) = exp

(

[
−θ
σ2

x] + [
−x2

2σ2
− 1

2
log(2πσ2)] + [

−θ2

2σ2
]

)

.

It’s pretty easy to define a minimal sufficient statistic here: if we write

pθ(x) ∼ exp

(

f(θ)k(x)

)

exp

(

s(x)

)

and recall the sufficient statistic factorization, then k(x) is a good candidate.

21HMC 7.5.
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Now for the really useful part: if we look at multiple i.i.d. samples xi,
then it’s easy to see that

∑

i k(xi) is minimal sufficient for the full data {xi}.
(Exercise 75: Prove this.) This saves a whole lot of work — to come up
with a minimal s.s. (and therefore come up with an improved estimator,
according to Rao-Blackwell), all we need to do is manipulate pθ(x) into the
above form. We’ll get some more practice with this in a moment.

More generally, sometimes we need more than one statistic to adequately
describe the data. In this case, we can define a k-dimensional exponential
family as a parametric family satisfying

pθ(x) =







exp

(

∑k
j=1 fj(θ)kj(x) + s(x) + g(θ)

)

if a < x < b

0 otherwise.

Here, {kj(x)}1≤j≤k are minimal sufficient together (but not alone).
These concepts give us a canonical parameterization of our parametric

family: fj(θ) (we call {fj(θ)}1≤j≤k the “canonical parameter”), and the nat-
ural parameter space is the set of all θ for which the above form makes sense,
that is, the set of θ such that g(θ), as defined above, is finite.

Exercise 76: Write out f(θ), k(x), s(x), and g(θ) for 1) N (µ, θ) (µ
known), 2) B(N, θ), and 3) Poiss(θ). Write out fj(θ), kj(x), s(x), and g(θ)
for the normal family in the case that both µ and σ2 are unknown.

Now to make life simpler assume we’re dealing with the canonical param-
eterization, i.e. f(θ) = θ. Let’s look more closely at g(θ). First, there is
some redundancy here: we know, since

∫

pθ(x)dx = 1, that

g(θ) = − log

(
∫

exp[θk(x) + s(x)]dx

)

.

We can go a little further if we remember some of our facts about moment-
generating functions and recognize that an mgf is hiding in the above defi-
nitions. Now, remember that taking derivatives of mgf’s kicks out moments
(hence the name). In this case, we have

∂g

∂θ
= −Eθk(x).
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This is because

−∂g

∂θ
=

∂

∂θ
log

(
∫

exp[θk(x) + s(x)]dx

)

=

∫

k(x) exp[θk(x) + s(x)]dx

exp[−g(θ)]

=

∫

pθ(x)k(x)dx = Eθk(x).

Exercise 77: Derive a relationship between g(θ), Eθk(x), and the MLE
by taking the derivative of the loglikelihood and setting it to zero.

We can use similar techniques to show that

∂2g

∂θ2
= −Vθk(x).

This, in turn, proves that the log-likelihood log pθ(x) is a concave function
of θ whenever θ is the canonical parameter of an exponential family, which
you’ll recall is quite handy in the context of ML estimation. Exercise 78:
Prove the above formula, and use this to establish the concavity of the log-
likelihood in the canonical exponential family setting.

Of course, exponential families are a special case; life isn’t always so easy.
Exercise 79: Try writing U(a, b) in the exponential form. What goes wrong?
(Hint: don’t forget to keep track of the support of U(a, b).)

It’s interesting to note (though we won’t pursue this) that exponential
families are the only ones for which a finite-dimensional sufficient statistic ex-
ists for all sample sizes N . This is called the “Koopman - Darmois” theorem,
if you want to read more about it.

Exercise 80: Give a minimal sufficient statistic for Cauchy data.

Completeness and uniqueness (time permitting)22

“Completeness” of a statistic, in the context of a given probability family, is
a property that guarantees the uniqueness of the unbiased estimator which
may be written as a function of a sufficient statistic; this estimator is then
automatically the UMVUE.

22HMC 7.4.
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We call the statistic U(x) “complete” if23

Eθ(g(U)) = 0 ∀θ =⇒ g(U) = 0.

Exercise 81: Prove that the completeness of a sufficient statistic U , as
defined above, guarantees that if φ(U) is an unbiased estimator for θ, then
φ(U) is the UMVUE. (Hint: think about what the completeness condition
says about the difference between φ(U) and any other unbiased estimator that
is a function of U . Then think about Rao-Blackwell, and the uniqueness of
UMVUEs.)

Exercise 82: Is the natural sufficient statistic in an exponential family
complete?

23The term “complete” is inherited from functional analysis (or, in the case of discrete
data, linear algebra): U(x) is complete if pθ(U) is complete in L2(U), the space of square-
integrable functions on the range of U(x), U . If you’ve taken linear algebra, just think of
functions of U as vectors — you can add them and multiply them by scalars to get new
functions of U , just like ordinary vectors. Now the completeness condition just says that
pθ(U) span the set of all functions of U : if any function is orthogonal to all pθ(U) (where
we interpret Eθg(U) =

∫

pθ(u)g(u)du as a dot product), then the function must be zero.
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Asymptotic ideas

Now we turn to the asymptotic properties of our estimators. We’ll discuss
two questions in particular:

1. Does our estimator work properly asymptotically? That is, does it
provide us with the correct answer if we give it enough data?

2. How asymptotically efficient is our estimator? For example, can we
come up with an estimator which is at least as good as any other
estimator, in some asymptotic sense?

Consistency24

We say an estimator is consistent (in probability) if it provides us with the
correct answer asymptotically. That is,

θ̂ →P θ.

(More precisely, we’re talking about convergence of a sequence of estimators,
one for each N , i.e.,

θ̂N →P θ.

But usually we’ll suppress this extra notation.)
How can we establish that an estimator is consistent? Well, the easiest

thing to do is to establish that the estimator is asymptotically unbiased,

B(θ, N) →N→∞ 0,

and that the variance goes to zero,

V (θ, N) →N→∞ 0;

then we can just apply our bias-variance decomposition and Chebysheff’s
inequality, and we’re done.

Exercise 83: Use this method to develop a simple consistent estimator
of the binomial parameter p.

It’s worth noting that it’s possible to come up with examples in which
the estimator is consistent but either the bias or the variance does not tend

24HMC p. 206.
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to zero; in other words, for consistency it is sufficient but not necessary that
the bias and variance both tend to 0. For example, an estimator might have
very fat tails, such that the variance is infinite for any N , but nonetheless
most of the mass of p(θ̂N) becomes concentrated around the true θ. I’ll leave
it to you to work out the details of such an example.

Method of moments

One way to generate consistent estimators is to find a function U(x) of a
single observation Xi such that Eθ(U(x)) = f(θ), where f(θ) is chosen to
be a one-to-one function with a continuous inverse. Then we can use our
results about convergence in probability of continuous functions to see that
the estimator

θ̂MM = f−1

(

1

N

N
∑

i=1

U(xi)

)

is consistent for θ. (To see this, note that

1

N

N
∑

i=1

U(xi) →P EθU(x) = f(θ),

by the law of large numbers and the definition of f(θ), then apply f−1 to both
sides and use what we’ve learned about continuous mappings and convergence
in probability.)

In the case of multiple parameters, we would solve this equation simul-
taneously for several Uj. When Uj are taken to be the first j moments of
X (i.e., we choose θ̂ to match the observed moments to the true moments
as a function of θ), this estimation technique is known as the “method of
moments.”

Here’s an example. Let xi ∼ exp(θ). Now let U(x) = x. Then

Eθ(U(x)) = f(θ) = 1/θ.

Therefore

θ̂MM =

(

1

N

N
∑

i=1

U(xi)

)−1

=

(

1

N

N
∑

i=1

xi

)−1

is consistent for θ.
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We saw another example of this kind of moment-matching estimator re-
cently in the homework: in an exponential family with the canonical param-
eterization, we saw that

Eθ̂MLE
(U(x)) =

1

N

N
∑

i=1

U(xi),

where U(x) = k(x) is the minimal sufficient statistic of the exponential fam-
ily. Thus in this special case (but not in general!) the MLE is exactly the
method of moments estimator.

Exercise 84: Develop the “method of moments” estimator for λ, the
parameter of the Poisson distribution, using a) U(x) = x and b) U(x) = x2.
Are these estimators consistent? How are these estimators related to the
MLE?

Exercise 85: Develop the “method of moments” estimator for (µ,σ2),
the parameters of the Gaussian distribution. Is this estimator consistent?
How is this estimator related to the MLE?

Exercise 86: Assume U(x) has some finite variance, Vθ(U(x)), and that
f−1 is continuously differentiable, with strictly nonzero derivative. Use the
central limit theorem and the delta method to derive the asymptotic distri-
bution of θ̂MM .

This type of estimator, constructed by finding the solutions of some
equations that the parameter estimate must satisfy, is often called a “Z-
estimator,” because of the special case of the MLE, when we set the gradient
of the likelihood equal to zero (hence the “Z”) and solve the resulting equa-
tions. We’ll look at some more examples in the next section.

Convergence rates and asymptotic normality

Just as we discussed the CLT as a “finer” result than the LLN, we’d like
to know more about an estimator than just the fact that it converges in
probability. For example, we’d like to know the convergence rate — how
quickly it converges to θ, for example the N−1/2 rate we saw when adding
together i.i.d. r.v.’s — and once the rate is established, what the asymptotic
distribution is on the scale defined by the convergence rate. For example,
can we prove asymptotic normality on the N−1/2 scale,

N1/2(θ̂ − θ) →D N (0,σ2)?
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And finally, what is the variance σ2 of this asymptotic rescaled distribution?
We’ll address these questions for the MLE in the next section.

Confidence intervals25

Before we get too deeply into the question of how to prove these kinds of
results, let’s step back a moment and think about what we’re going to do
with this kind of asymptotic approximation. Probably the most important
application of this idea is in the construction of confidence intervals — “error
bars.”

Let’s imagine we know that
√

N(θ̂ − θ) →D N (0,σ2(θ)),

for some estimator θ̂. That is, θ̂ is asymptotically unbiased and normal
about the true parameter θ (for now assume we know the asymptotic vari-
ance coefficient σ2(θ), even though we don’t know θ). How can we use this
information? Well, by definition of asymptotic normality, we know that

P

(

−2 <

√
N(θ̂ − θ)

σ(θ)
< 2

)

≈ 0.95;

thus

P

(

θ̂ − 2
σ(θ)√

N
< θ < θ̂ + 2

σ(θ)√
N

)

≈ 0.95.

So we’ve gone from just making a guess about θ to something stronger: we’ve
bracketed θ in a set, (θ̂− 2σ(θ)√

N
, θ̂ + 2σ(θ)√

N
), into which θ falls with about 95%

probability, assuming N is sufficiently large (it’s essential to remember — and
unfortunately easy to forget — that this argument only holds asymptotically
as N → ∞). In other words, we’ve given an approximate “95% confidence
interval” for θ.

We left one little problem: how do we get σ(θ) without knowing θ? Well,
the coefficient σ(θ) is a function of the parameter θ. If we can estimate θ,
then we can also estimate a function of θ. So we estimate σ(θ): we know
from the continuity properties of stochastic convergence theory that if an
estimator σ̂ is consistent for σ(θ), and recall we’re already assuming that

√
N(θ̂ − θ) →D N (0,σ2(θ)),

25HMC 5.4
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then26

√
N

(

θ̂ − θ

σ̂

)

→D N (0, 1).

Note, importantly, that the (unknown) parameter θ no longer appears on the
right hand side. Now, applying the same logic as above, (θ̂ − 2σ̂/

√
N, θ̂ +

2σ̂/
√

N) is an approximate 95% confidence interval for θ, and importantly,
we don’t need to know θ to construct this interval.

Exercise 87: Generalize this analysis to get a 99% confidence interval
(instead of 95%). What about the (1 − α) · 100% confidence interval, where
0 < α < 1 is some arbitrary (fixed) error tolerance?

Let’s look at a simple example. Let n ∼ Bin(N, p). Then p̂MLE = n/N .
We know from the standard CLT and the formula for the variance of n that

√
N (p̂MLE − p) →D N (0,σ2(p)),

where
σ2(p) = p(1 − p).

A simple estimator for σ is

σ̂ =
√

σ2(p̂MLE) =
√

p̂MLE(1 − p̂MLE);

we can prove that this estimator is consistent by our usual delta method
arguments. Thus

√
N

(

p̂MLE − p

σ̂

)

→D N (0, 1),

and (p̂MLE − 2σ̂/
√

N, p̂MLE + 2σ̂/
√

N) is an approximate 95% confidence
interval for p.

26If you’re reading along in HMC, be careful — the corresponding equation on page 255
(the equation just before eq. 5.4.4) is incorrect. Do you see why?
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MLE asymptotics27

Finally we get to the discussion of the asymptotic properties of the maximum
likelihood estimator. As we said long ago, when we first introduced the idea
of ML, really the best justification for the MLE is in its asymptotic properties:
it turns out to be asymptotically optimal in a sense we will define below.

Consistency: identifiability and the Kullback-Leibler di-
vergence

Before we talk about the asymptotic optimality of the MLE, though, let’s
ask a more basic question: is the MLE even consistent in general?

The answer is (generally speaking) yes, if the parameters are “identi-
fiable,” that is, if the distribution of data under any parameter θ in our
parameter space Θ differs from the distribution of the data under any other
parameter, θ′. That is,

pθ(D) -= pθ′(D), ∀ D.

This condition makes intuitive sense — if two parameters, say θ1 and θ2

— were not identifiable, of course we wouldn’t be able to distinguish them
based on their likelihoods (because the likelihoods would be equal), and so
the MLE is doomed to be inconsistent.

The interesting thing is that this simple identifiability condition is enough
to guarantee consistency in most cases, if the data are i.i.d. Let’s write out
the likelihood and try to manipulate it into a form we can deal with.

log pθ(x1, x2, ...xN ) =
N

∑

i=1

log pθ(xi).

Let’s say the true parameter is θ0. We don’t know θ0, of course (otherwise we
wouldn’t need to estimate it), but subtracting off its (unknown) loglikelihood
and dividing by N won’t change the location of the MLE:

θ̂ML = arg max
θ

N
∑

i=1

log pθ(xi) = arg max
θ

1

N

N
∑

i=1

(log pθ(xi) − log pθ0(xi)) ;

27HMC 6.1-6.2
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remember, log pθ0(xi) is constant in θ, so subtracting it off doesn’t perturb
the MLE at all.

Now we’re left with something that looks a little more familiar: the log-
likelihood ratio

1

N

N
∑

i=1

(log pθ(xi) − log pθ0(xi)) =
1

N

N
∑

i=1

log
pθ(xi)

pθ0(xi)

— the log of the ratio of the likelihood of the data under θ0 and under θ —
is a sample average of i.i.d. r.v.’s! So, by the LLN,

1

N

N
∑

i=1

log
pθ(xi)

pθ0(xi)
→P Eθ0 log

pθ(x)

pθ0(x)
= −Eθ0 log

pθ0(x)

pθ(x)
;

the expectation is taken under θ0 because, remember, that is the true pa-
rameter (i.e., our data are drawn i.i.d. from pθ0(x)).

Now, this last term has a name you might have encountered before;

Eθ0 log
pθ0

(x)

pθ(x) is called the “Kullback-Leibler divergence” between the distri-

butions pθ0(x) and pθ(x). This is called a “divergence” because it measures
the distance between pθ0(x) and pθ(x), in the sense that

DKL(pθ1 ; pθ2) = Eθ1 log
pθ1(x)

pθ2(x)
≥ 0,

with equality only when pθ1(x) = pθ2(x) with pθ1-probability one. Exercise
88: Prove this using Jensen’s inequality.

So what have we learned? We now know that, for any fixed θ, the normal-
ized log-likelihood ratio, 1

N

∑N
i=1 log pθ(xi)

pθ0
(xi)

, tends to a function, −DKL(pθ0 ; pθ),

which has a unique maximum at θ0. (Why is the maximum unique? Identifi-
ability.) So we can argue that the MLE asymptotically picks out the argmax
of −DKL(pθ0 ; pθ), i.e., is consistent. (Actually, completing this consistency
argument rigorously does require a couple technical conditions — e.g., it is
enough that pθ(x) is continuous in θ with probability one, and

Eθ0

(

max
θ∈Θ

| log pθ(x)|
)

< ∞

— but we’ll ignore these technical details. The basic logic — LLN + defini-
tion of K-L divergence + Jensen — should be clear.)
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Asymptotic normality and the Fisher information

OK, that takes care of consistency: now we know that θ̂MLE →P θ0. But
just as in the LLN case, we want to know more. How fast does the MLE
converge? What is the limiting (rescaled) distribution?

It turns out to be useful and informative to step back and look at the
behavior of the posterior density. We know from the above that

p(θ|x1, x2, ...xN) =
1

Z
p(θ)p(x1, x2, ...xN |θ) =

1

Z
p(θ)

N
∏

i=1

p(xi|θ)

≈ 1

Z
exp(−NDKL(p(x|θ0); p(x|θ))).

Note immediately that we’re ignoring the prior p(θ) asymptotically; as N
becomes large the likelihood term dominates the shape of the posterior, be-
cause the likelihood term is growing linearly with N , whereas the prior term
is fixed as a function of N .

Next, remember that −DKL(θ0; θ) has a unique maximum at θ0; this
implies that

∂

∂θ
DKL(θ0; θ)

∣

∣

∣

∣

θ=θ0

= 0.

Now if we make a second-order expansion around θ0,

log p(θ|x1, x2, ...xN) ∼ −NDKL(θ0; θ)

= −N(0 + 0 +
1

2
(θ − θ0)I(θ0)(θ − θ0) + ...),

i.e., the posterior likelihood is well-approximated by a Gaussian with mean
θ0 and variance

1

N
I(θ0)

−1,

where we have abbreviated the curvature of the DKL function at θ as

I(θ0) =
∂2

∂θ2
DKL(θ0; θ)

∣

∣

∣

∣

θ=θ0

.

This simple geometric quantity I(θ0) is called the “Fisher information” at θ0;
it’s called “information” because the larger I is, the smaller the asymptotic
variance of the posterior is — thus, in a sense, large values of I indicate that
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the data tell us a lot about the true underlying θ, and vice versa. (This
number is named after Fisher, the statistician who first developed a great
deal of the estimation theory we’ve been talking about in this section.)

What about the mean of this Gaussian? We know it’s close to θ0, be-
cause the posterior decays exponentially everywhere else. (This is another
way of saying that θ̂MLE is consistent.) But how close exactly? We took a
relatively crude approach above: we took the random log-likelihood function
log p(xi|θ) and substituted its average, DKL(θ0; θ). What if we try expanding
the loglikelihood directly: We look at

∑

i log p(xi|θ):

∑

i

log p(xi|θ0) +
∑

i

∂

∂θ
log pθ(xi)

∣

∣

∣

∣

θ0

(θ − θ0) +
1

2

∑

i

∂2 log p(xi|θ)
∂θ2

∣

∣

∣

∣

θ0

(θ − θ0)
2

≈ KN +
∑

i

∂

∂θ
log pθ(xi)

∣

∣

∣

∣

θ0

(θ − θ0) −
1

2
NI(θ0)(θ − θ0)

2

Look at
∂

∂θ
log pθ(x)

∣

∣

∣

∣

θ0

.

This is an important random variable — albeit one with a somewhat compli-
cated definition — known as the “score.” Exercise 89: Prove that this r.v.
has mean zero and variance I(θ0) (a nice coincidence!). (Caveat: to prove
this, you’ll need to interchange an integral and a derivative, which isn’t al-
ways legal. We’ll mostly ignore this mathematical delicacy here, but note
that it does lead to problems in some cases, e.g. in the case that pθ(x) is
uniform U(0, θ).)

So we can apply the CLT: if we abbreviate

GN =
∑

i

∂

∂θ
log pθ(xi)

∣

∣

∣

∣

θ0

,

then GN is asymptotically Gaussian, with mean zero and variance NI(θ0).
So log p(D|θ) looks like a random upside-down bowl-shaped function:

∑

i

log p(xi|θ) ∼ GN(θ − θ0) −
1

2
NI(θ0)(θ − θ0)

2.

The curvature of this bowl is −NI(θ0). The top of the bowl (i.e., the MLE)
is random, on the other hand, asymptotically Gaussian with mean θ0 and
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variance (NI(θ0))−1. Exercise 90: Prove this, using what you know about
the peak of an upside-down quadratic, what you already know about the
mean and variance of GN , and the usual rules for multiplication of variances
and the fact that Gaussians are preserved under addition and multiplication
by scalars.

To sum up, our main result: the posterior likelihood is well-approximated
by a Gaussian shape, with variance (NI(θ0))−1 and mean

√
N

(

θ̂MLE − θ0

)

→D N (0, I(θ0)
−1).

Note that, as we’ve seen with our concrete examples, the variance asymp-
totically depends on the underlying true parameter θ0, because the Fisher
information I(θ0) depends on θ0.

Exercise 91: We’ve seen some examples where computing the asymp-
totic variance of the MLE is easy by direct methods. Use direct methods to
compute the asymptotic variance of the MLE, then use the above formula to
derive the Fisher information I(θ0), for a) the Gaussian with unknown mean
and known variance; b) the binomial; c) the Poisson.

Exercise 92: Use the delta method to compute the asymptotic variance
of the MLE for exponential data. Now compute the Fisher information I(θ0),
and from this derive the asymptotic variance. Do your answers agree?

Exercise 93: Compute the score and Fisher information in an exponen-
tial family with the canonical parameterization.

Exercise 94: Compute the MLE for double-exponential data,

pθ(x) =
1

2
exp(−|x − θ|).

Now compute the asymptotic variance of the median under double-exponential
data.

Exercise 95: Compute the Fisher information in N i.i.d. observations.
More generally, if x and y are conditionally independent given θ (i.e., p(x, y|θ) =
p(x|θ)p(y|θ), what is the information in the joint sample (x, y)? (Hint: write
out the score, and take the variance.)

Exercise 96: It might be helpful to step back and look at all this from
a more general viewpoint. We are estimating θ by maximizing a function of
the form

MN(θ) =
N

∑

i=1

m(xi, θ);
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here m(xi, θ) is just the log-likelihood of one sample point, log pθ(xi) (and
as usual, xi are i.i.d. from pθ0(x)). What can you say about the asymptotic
distribution of the “M-estimator” (where “M” stands for “maximization”)

θ̂N = arg max
θ∈Θ

MN(θ),

if you know that:

1. Epθ0
(x)[m(x, θ)] has a unique maximum at θ0;

2.
∂2

∂θ2
Epθ0

(x)[m(x, θ)]

∣

∣

∣

∣

θ=θ0

= −A, A > 0;

3. Vpθ0
(x)[

∂m(x,θ)
∂θ ] = B, 0 < B < ∞.

Now how does this result fit in with what we just proved about the MLE
(e.g., what form do A and B take in the MLE case)?

Multiparameter case

A similar asymptotic analysis can be performed when we need to estimate
more than one parameter simultaneously. We’ll leave the details to you, but
the basic result is that if (θ̂MLE,1, θ̂MLE,2) is the MLE for (θ1, θ2), then we
can construct the Fisher information matrix

Iij = E
∂

∂θi

∂

∂θj
logθ1,θ2

(x),

and the asymptotic covariance matrix of the MLE is given exactly by (NI)−1,
where here (.)−1 is interpreted as a matrix inverse.

Exercise 97: What is the asymptotic variance of θ̂MLE,1 if θ2 is known?
What if θ2 is unknown?

Exercise 98: Compute the asymptotic covariance of µ̂MLE and σ̂2
MLE un-

der Gaussian data, in two ways: 1) directly, and 2) using the multiparameter
Fisher information.
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Cramer-Rao bound, efficiency, asymptotic efficiency

We just established that the asymptotic variance of the MLE looks like
(NI(θ))−1. It turns out that this is asymptotically optimal, as the following
bound shows:

Theorem 5 (Cramer-Rao lower bound on variance). Let θ̂ be unbiased. Then

V (θ̂) ≥ (I(θ))−1.

More generally, for any estimator θ̂,

V (θ̂) ≥

[

dEθ(θ̂)/dθ
]2

I(θ)
.

Proof. For the general case, compute the covariance of θ̂ and the score; then
apply Cauchy-Schwartz.

For the special unbiased case, just plug in Eθ(θ̂) = θ.

Exercise 99: Fill in the gaps in the above proof.
Estimators for which the Cramer-Rao bound is achieved exactly are called

“efficient.” However, such estimators are the exception rather than the rule,
as the following exercise demonstrates. Nonetheless, efficiency is still an
extremely useful concept, if applied in an asymptotic sense: a sequence of
estimators θ̂N is “asymptotically efficient” if it asymptotically meets the C-R
bound, that is,

lim
N→∞

[NV (θ̂N)] = I(θ)−1.

Exercise 100: Look at the derivation of the Cramer-Rao bound more
closely. What can you say about the case that the bound is met exactly (i.e.,
equality holds in the bound)? More precisely: if the bound is met precisely,
what does this imply about the parametric family pθ(x)?

Exercise 101: If θ̂1 and θ̂2 are two asymptotically efficient estimators,
what can you say about their (rescaled) difference,

√
N(θ̂1 − θ̂2)? Does

this imply anything about the “asymptotic uniqueness” of the MLE as an
asymptotically efficient estimator?
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Sufficiency and information loss

Exercise 102: Compute the Fisher information for a sufficient statistic and
compare it to the Fisher information in the full data. Is it necessarily true
that a sufficient statistic preserves all the information in the full sample? How
about the converse: if IT (x)(θ) = Ix(θ), then is T (x) automatically sufficient?
Can we ever have IT (x)(θ) > Ix(θ)? If yes, give an example; if no, prove it.

One-step estimators

It’s often a hassle to exactly solve the likelihood equation

∂L(θ)

∂θ
= 0.

However, in some cases we can come up with a decent estimator θ̂1 that at
least gets us close: say, θ̂1 is

√
N -consistent.

Now, we have established that the loglikelihood surface is asymptoti-
cally (as N → ∞) well-approximated (on a N−1/2 scale) by an upside-down
quadratic. So a natural idea is to use the estimator θ̂2 derived by apply-
ing one step of “Newton’s algorithm”28 for finding the local maximum of a
function which looks like an upside-down quadratic:

θ̂2 = θ̂1 −
l′(θ̂1)

l′′(θ̂1)

(where l′ and l′′ are the first and second derivative of the loglikelihood with
respect to θ, respectively).

Now the very interesting result is that this “one-step” estimator — which
can be computed analytically whenever θ̂1 can — is asymptotically efficient,
that is, asymptotically just as good as the MLE, even though the MLE
might be a lot harder to compute exactly. Exercise 103: Prove this; that
is, establish the asymptotic efficiency of the one-step estimator. (Hint: the
most direct way to do this uses basically the same logic we used to establish
the optimality and asymptotic distribution of the MLE. So try mimicking
that proof.)

28Recall the logic of Newton’s algorithm: to maximize the function f(x) given an initial
guess x1, approximate f(x) with a second-order Taylor expansion about x1 and then
(analytically) solve for the maximum of this quadratic approximation to obtain x2. Draw
a picture and do the relevant algebra to remind yourself of what’s going on here.


