| Date |
Topic |
Reading |
Notes |
| Jan 19 | Introduction | | |
| Jan 26 | Gaussian processes and Bayesian optimization | Loper
et al '20 for fast one-d GP inference. Mahsereci
and Hennig (2016) on Bayesian linesearch,
and Frazier '18
on Bayesian optimization. | See
Rasmussen and Williams
(2006) for more background on GP regression. Also notes by John
Cunningham, Gardner
et al '19, and some nice demos
by Goertler
et al '19 and Agnihotra
and Batri '20. |
| Feb 2 | Diffusion and transformer
models | Sohl-Dickstein
et al '15, Ho et
al '20, Rombach
et al '21, Vaswani
et al '17 | Additional
applications: Gong et
al '22, Li et al '22 |
| Feb 9, 16 | LASSO, nuclear norm, and Mone Carlo methods | Efron et al
(2004), Friedman et
al (2010), Bradley
et al (2011), Tibshirani
et al
(2012), Andrieu
et al (2003), Neal
(2010) | More
reading: Zou et al
(2007), Mazumder
et al (2010), Bach
et al (2011), Boyd
et al (2011) |
| Feb 16 | Stochastic gradient descent | Bottou
et al
(2018) | More reading: Wilson et
al (2018), Zhang et
al (2015) |
| Feb 23 | No class | |
| Mar 2 | Expectation maximization and variational
inference | Dempster et al
(1977), Neal and Hinton
(1999), Blei et al
(2016) | Generalizations: Knoblauch
et al (2022) |
| Mar 2 | Interpretable ReLU
networks | Sudjianto
et al (2020) | |
| Mar 9 | 2-minute project idea presentations |
| |
| Mar 16 | Spring break |
| |
| Mar 23 | Graph neural
networks | Sanchez-Lengeling
et al (2021) | |
| Mar 30 | Optimal
transport | Peyre
and Cuturi
(2020), Arjovsky
et al (2017) | |
| Mar
30 | Dirichlet processes | Orbanz (2014) | |
| Apr 6 | Graphical models; dynamic programming; message
passing | Rabiner
tutorial, Wainwright
lecture notes | Background: Wainwright and Jordan
(2008), MP and AMP notes by
A. Maleki, Sarkka and
Garcia-Fernandez (2019) on parallelizing HMM
inference, Schniter
et al
(2016), Rush and
Venkataramanan (2018) on VAMP and AMP |
| Apr
6 | RNNs for chaotic dynamics | Mikhaeil
et al '22 | |
| Apr 13 | No class |
| |
| Apr 20 | Project presentations |
| |