| Statistical concept / technique |
Neuroscience application |
| Point processes; conditional intensity functions | Neural
spike trains; photon-limited image data |
| Time-rescaling theorem for point processes | Fast
simulation of network models; goodness-of-fit tests for spiking
models |
| Bias, consistency, principal components | Spike-triggered
averaging; spike-triggered covariance |
| Generalized linear models | Neural encoding models
including spike-history effects; inferring network connectivity |
| Regularization; shrinkage estimation | Maximum a posteriori
estimation of high-dimensional neural encoding models |
| Laplace approximation; Fisher information | Model-based
decoding and information estimation; adaptive design of optimal
stimuli |
| Mixture models; EM algorithm; Dirichlet processes |
Spike-sorting / clustering |
| Optimization and convexity techniques | Spike-train
decoding; ML estimation of encoding models |
| Markov chain Monte Carlo: Metropolis-Hastings and hit-and-run
algorithms | Firing rate estimation and spike-train
decoding |
| State-space models; sequential Monte Carlo / particle
filtering | Decoding spike trains; optimal voltage
smoothing |
| Fast high-dimensional Kalman filtering | Optimal smoothing of
voltage and calcium signals on large dendritic trees |
| Markov processes; first-passage times; Fokker-Planck equation |
Integrate-and-fire-based neural models |
| Hierarchical Bayesian models |
Estimating multiple neural encoding models |
| Amortized inference |
Spike sorting; stimulus decoding |
| Date |
Topic |
Reading |
Notes |
| Sept 5 | Intro and
overview | Paninski and
Cunningham,
`18; International
Brain Lab,
'17, '22, '23a, '23b | Slides here. |
| Sept 12, 19 | Behavioral video
analysis | DeepLabCut, MoSeq,
PS-VAE, SLEAP,
Lightning-Pose, Blau
et al '24, BEAST
| Guest
lecture
by Matt
Whiteway. Slides here. |
| Sept 26, Oct 3 | Signal acquisition: spike sorting | Carlson and Carin '19
; Calabrese
and Paninski
'11, Lee
et al
'20; Boussard
et al
'21, Pachitariu
et al
'24; Windolf
et al '24 | EM
notes; Blei et al review
on variational inference. Guest lecture
by
Charlie
Windolf. Slides here
and here. |
| Oct 10 | Decoding
methods | Gallego
et al '20, Zhang
et al '23, Azabou et
al
'23, Zhang
et al '24a, Zhang
et al
'24b, Posani,
Wang et al '24 |
Guest lecture
by Yizi Zhang. Slides here. |
| Oct 17 | Presentations of project ideas | Just two
minutes each |
|
| Oct 24, 31 | Signal acquisition: single-cell-resolution functional imaging | Overview: Pnevmatikakis
and Paninski '18 Compression and
denoising: Buchanan
et al
'18, Eom
et al '23, Laine et al '19
Demixing: Pnevmatikakis
et al '16; Zhou
et al
'18; Friedrich
et al
'17b; Lu
et al
'17; Giovanucci et al
'17; Charles
et al
'19, Pasarkar
et al '23; Saxena
et al '20
Deconvolution: Deneux
et al '16; Picardo
et al
'16; Friedrich
et al
'17a; Berens
et al
'18, Rupprecht
et al '21 Wei
and Zhou et al '19 | Guest lecture
by Amol Pasarkar. Slides here. |
| Nov 7 | Dendritic imaging
data | Huys et
al
'06; Paninski
'10; Sun
et al
'19; Gonzalez
et al '24; Park
et al
'24; Wong-Campos
et al '24; Deistler
et al '24 | Guest
lecture
by Ben
Antin; slides here. |
| Nov 14, 21 | TBD | |
|
| Nov 28 | No class (University holiday) | |
Happy thanksgiving! |
| Dec 5, 12 | Project presentations | |
E-mail me your report as a pdf by
Dec 15. |