Convex Optimization — Boyd & Vandenberghe

3. Convex functions

e basic properties and examples

operations that preserve convexity

the conjugate function

e quasiconvex functions

log-concave and log-convex functions

convexity with respect to generalized inequalities
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Definition
f:R"™ — R is convex if dom f is a convex set and
f0r+ (1 —0)y) <O0f(x)+(1—0)f(y)

forallz,yedom f, 0<6<1

(v, f(v))
(z, f(z))

e f is concave if —f is convex

e f is strictly convex if dom f is convex and

fOx+ (1 =0)y) <0f(z) +(1-0)f(y)

forx,yedomf,x#y, 0<0<1
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Examples on R

convex:

e affine: ax + b on R, for any a,b € R

exponential: e®*, for any a € R

powers: x*on Ry, fora>1ora <0

powers of absolute value: |z|P on R, for p > 1

negative entropy: xlogx on Ry

concave:
e affine: ax + b on R, for any a,b € R
e powers: x*on Ry4, for0 <a <1

e logarithm: logz on R
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Examples on R" and R™*"

affine functions are convex and concave; all norms are convex

examples on R"

e affine function f(z) = a2z + b

o norms: [zl = (1, [#:f?) /7 for p > 1; |

Z||co = maxy, ||

examples on R™*" (m x n matrices)

e affine function

FX) =tr(ATX)+b=> "> A;X;;+b

i=1 j=1

e spectral (maximum singular value) norm

FOX) = [ X |2 = max(X) = Mmax(XTX))1/2
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Restriction of a convex function to a line

f : R"™ — R is convex if and only if the function ¢ : R — R,
g(t) = f(x + tv), domg = {t|z+tv € dom f}

is convex (in t) for any x € dom f, v € R"
can check convexity of f by checking convexity of functions of one variable
example. f:S" — R with f(X) =logdet X, dom X = S"
g(t) =logdet(X +tV) = logdet X + logdet(I 4+ tX Y2V Xx~1/2)
= logdet X + Z log(1 + tA;)
i=1
where )\; are the eigenvalues of X ~1/2V X —1/2

g is concave in t (for any choice of X > 0, V); hence f is concave
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Extended-value extension

extended-value extension f of f is

f(x) = f(z), =z €domf, f(:l:):oo, x ¢ dom f

often simplifies notation; for example, the condition
0<0<1 = f(lz+(1-0)y) <0f()+(1-0f(y)
(as an inequality in RU {oc0}), means the same as the two conditions

e dom f is convex

e for z,y € dom f,

0<0<1 = f(Oz+(1—0)y) <0f(z)+(1—0)f(y)

Convex functions 3-6



First-order condition

f is differentiable if dom f is open and the gradient

V56 = (G T )

exists at each z € dom f

1st-order condition: differentiable f with convex domain is convex iff

fy) > fx)+ Vf (@) (y—x) forall z,y € dom f

f(y)
f@) + V@) (y - =)
(z, f(x))
first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian V2f(z) € S”,

_ Pf(z)
n 8.I7;8.1,‘j,

V2 f ()i

1,7=1,...,n,

exists at each = € dom f

2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if

V2f(x) =0 forall z € dom f

o if V2f(x) = 0 for all z € dom f, then f is strictly convex
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Examples
quadratic function: f(z) = (1/2)27 Pz + ¢Tx + r (with P € S™)
Vf(z)=Px+q, V2f(z) =P
convex if P >0

least-squares objective: f(z) = ||Ax — b3
Vf(x)=24T(Az — D), V2f(x) =24TA

convex (for any A)

quadratic-over-linear: f(z,y) = 2%/y

=3 5[] =

i —X

convex for y > 0
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log-sum-exp: f(z) =log ) ,_, expxy is convex

1 . 1
V2f(z) = 1—Tzd1ag(z) - szT (z, = exp xg)

to show V2f(z) = 0, we must verify that v V2f(z)v > 0 for all v:

’UTVQf({E)U — >k Zk“i)(z(:f::l;)k)_z (X v2k) >0

since (3", vizr)? < (O, z6v3) (X4 2k) (from Cauchy-Schwarz inequality)

geometric mean: f(z) = ([[,_, zx)*/™ on R’ is concave

(similar proof as for log-sum-exp)
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Epigraph and sublevel set

a-sublevel set of f: R" — R:
Co={redomf| f(x) <a}

sublevel sets of convex functions are convex (converse is false)

epigraph of f : R" — R:
epif ={(z,t) e R"™ |z e dom f, f(z) <t}

epi f

f is convex if and only if epi f is a convex set
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Jensen’s inequality

basic inequality: if f is convex, then for 0 <60 <1,

fllx+ (1 —0)y) <Of(x)+(1—-0)f(y)

extension: if f is convex, then

f(Ez) <Ef(2)
for any random variable z

basic inequality is special case with discrete distribution

prob(z =) =0, prob(z=y)=1-16
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Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show V2f(x) = 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition

minimization

perspective
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Positive weighted sum & composition with affine function

nonnegative multiple: af is convex if f is convex, a >0

sum: f; + fo convex if fi, fo convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

examples

e log barrier for linear inequalities

f(x) = —Zlog(bi—a?m), dom f={z|alz <byi=1,...,m}
i=1

e (any) norm of affine function: f(x) = || Az + b||

Convex functions
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Pointwise maximum
if f1, ..., fm are convex, then f(x) = max{fi(x),..., fi(z)} is convex

examples

e piecewise-linear function: f(z) = maxz-:Lm’m(a;fpx + b;) is convex

e sum of r largest components of x € R™:
f(z) = T+ T+ T

is convex ([ is ith largest component of x)
proof:

flx) =max{x; +zip+- - +x;, |1 <i <ig < - <ip <n}
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Pointwise supremum

if f(x,y) is convex in x for each y € A, then

g(x) = sup f(z,y)
yeA

is convex

examples
e support function of a set C: S¢(x) = sup,cc y” x is convex

e distance to farthest point in a set C"

f(x) = sup ||z — ¥
yeC

e maximum eigenvalue of symmetric matrix: for X € S",

Amax(X) = sup yTXy
lyllo=1
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Composition with scalar functions

composition of g : R = Rand h: R — R:

i g convex, h convex, h nondecreasing

f is convex i
g concave, h convex, h nonincreasing

e proof (for n =1, differentiable g, h)
f'(@) = 1" (g(x))g'(x)* + W' (g(x))g" (x)
e note: monotonicity must hold for extended-value extension h

examples

e expg(z) is convex if g is convex

e 1/g(x) is convex if g is concave and positive
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Vector composition

composition of g : R” — R* and h: R* = R:

f(z) = h(g<$)) = h(gl<x)792($>7 e 79/6(56))

f is convex if g; convex, h convex, h nondecreasing in each argument
g; concave, h convex, h nonincreasing in each argument

proof (for n = 1, differentiable g, h)

() = g'(x)"V?h(g(2))g'(x) + Vh(g(x))" 9" (x)

examples
e > " logg;(x) is concave if g; are concave and positive

e log 2111 exp g;(x) is convex if g; are convex
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Minimization
if f(x,y) is convex in (z,y) and C is a convex set, then
= inf
g(z) = inf f(z,y)

is convex

examples

o f(x,y) = 2T Ax + 227 By + 4T Cy with

A B
BT C

130, C=0

minimizing over y gives g(z) = inf, f(z,y) = 27(A — BC™'BT)z
g is convex, hence Schur complement A — BC~'BT >~ 0

e distance to a set: dist(z,S) = inf,cg ||z — y|| is convex if S is convex
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Perspective

the perspective of a function f : R” — R is the function ¢ : R” x R — R,
g(z,t) =tf(z/t),  domg={(z,t)|x/t € dom f, ¢ >0}

g is convex if f is convex

examples
o f(x) = 2Tz is convex; hence g(z,t) = xTx/t is convex for t > 0

e negative logarithm f(x) = —logx is convex; hence relative entropy
g(z,t) =tlogt — tlogx is convex on R2+Jr

e if f is convex, then
g(a) = ("2 + ) ((Az + b)/(Te + d))

is convex on {z | T2 +d >0, (Az +b)/(cTx +d) € dom f}
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The conjugate function

the conjugate of a function f is

fy)= sup (y'z— f(z))

rEdom f

f(x)

\/ (/0’ —f"(y)
e f*is convex (even if f is not)

e will be useful in chapter 5

Convex functions

examples
e negative logarithm f(z) = —logx
f(y) = sup(zy+logx)
x>0
_ ] —l-log(—y) y<0
- 00 otherwise

e strictly convex quadratic f(z) = (1/2)z7Qz with Q € ST},

[y = sgp(nyc—(l/?)wTch)

_1T—1
—2yQy
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Quasiconvex functions

f : R" — R is quasiconvex if dom f is convex and the sublevel sets
So={a € dom /| f(z) < a}

are convex for all «

e f is quasiconcave if —f is quasiconvex

e f is quasilinear if it is quasiconvex and quasiconcave

Convex functions

Examples

V/|x| is quasiconvex on R

o ceil(x) =inf{z € Z | z > x} is quasilinear

e log x is quasilinear on R, 4
e f(x1,z2) = x122 is quasiconcave on R?HL

e linear-fractional function

f(a:):%, dom f = {z | 'z +d > 0}
is quasilinear
e distance ratio
|z — all2

f(z)

= domf={z||z—al <z —0l}
I = b2

IS quasiconvex

Convex functions
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internal rate of return

cash flow x = (xg,...,x,); x; is payment in period i (to us if x; > 0)

e we assume ro < Oand zg+21+ -+ 2, >0

e present value of cash flow z, for interest rate r:
n
PV(z,r) = Z(l +7) 'y
i=0
e internal rate of return is smallest interest rate for which PV (z,r) = 0:

IRR(z) = inf{r > 0| PV(z,r) =0}
IRR is quasiconcave: superlevel set is intersection of halfspaces

IRR(z) >R <= Y (1+47r)'z;>0for0<r<R

1=0
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Properties
modified Jensen inequality: for quasiconvex f

0<0<1 = f(0z+(1-0)y) <max{f(x), f(y)}

first-order condition: differentiable f with cvx domain is quasiconvex iff

fy) < fle) = Vf@@)'(y—2)<0

Vi(z)

sums of quasiconvex functions are not necessarily quasiconvex
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Log-concave and log-convex functions

a positive function f is log-concave if log f is concave:
fOx+(1—=0)y) > f(2)f(y)' =" for0<6<1

f is log-convex if log f is convex

e powers: x% on R, is log-convex for a < 0, log-concave for a > 0

e many common probability densities are log-concave, e.g., normal:

f(.’lf) — 1 e—%(x—i’)TZ_l(x—:E)

(2m)" det &

e cumulative Gaussian distribution function ® is log-concave

1 x
O(x) = \/—2_7/ e~ /2 gy
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Properties of log-concave functions

e twice differentiable f with convex domain is log-concave if and only if
f@)V2 f(x) 2 Vf(2)Vf(x)"
for all x € dom f
e product of log-concave functions is log-concave
e sum of log-concave functions is not always log-concave

e integration: if f: R" x R™ — R is log-concave, then

9(x) :/f(a?,y) dy
is log-concave (not easy to show)
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consequences of integration property

e convolution f % g of log-concave functions f, g is log-concave
()@ = [ Fla =gy

e if C C R" convex and y is a random variable with log-concave pdf then
f(z) = prob(z +y € C)

is log-concave

proof: write f(x) as integral of product of log-concave functions

f() Z/g(w+y)p(y)dya 9(u) :{ (1) Z;g

p is pdf of y
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example: yield function
Y (x) = prob(z +w € 5)
e = € R™: nominal parameter values for product
e w € R": random variations of parameters in manufactured product

e S: set of acceptable values

if S is convex and w has a log-concave pdf, then

e Y is log-concave

e yield regions {x | Y(x) > «a} are convex
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Convexity with respect to generalized inequalities

f:R" — R™is K-convex if dom f is convex and
PO+ (1 - 8)y) <1 07(x) + (1 - ) ()
forr,yedomf, 0<0<1
example f: S™ — 8™, f(X) = X?is S"'-convex
proof: for fixed z € R™, 27 X2z = || X2||2 is convex in X, i.e.,
ZTOX +(1-0)Y)?2<0:7X%2+ (1 -0)2TY%
for X, Y €S™ 0<0<1

therefore (0X + (1 —0)Y)2 2 0X? + (1 —0)Y?
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